2

I-com s User Interface

Gerrit Meixner, Fabio Paterno, Jean Vanderdonckt

Past, Present, and Future of Model-Based
User Interface Development

Vergangenheit, Gegenwart und Zukunft der modellbasierten
Entwicklung von Benutzungsschnittstellen

Model-Based User Interface Development, MBUID, User InterfaceManagement Systems; UIMS,

User Interface Software and Technology, Challenges

Zusammenfassung. Dieser Artikel gibteinen Uberblick tber
die letzten|30 Jahre der Forschung imBeteich der modeltbasier-
ten Entwicklung von Benutzungsschnittstellen. Dazu wird zu-
nachst die Geschichte-atfgearbeitet, bevor wesentliche Kon-
zepte und| aktuelle” Ansatze beschrieben werden. Der letzte
Abschnitt zeigt aktuelle Herausforderungen auf und gibttmpli-
kationen, wie diesen-zuklinftig begegnet werden-kann.

Summary: This article presents the past, present and future
of modeél-based user interface development. After 30 years of
research there has been significant/success in modeling user
interfaces. This article aims to givé a comprehensive overview
of the history, describes important aspects and current ap-
proaches, lists actual challenges of model-based user interface
development and gives implications for the next generation.

1. Introduction

The development of user interfaces (Ul)
for interactive systems became a time-
consuming and, therefore, costly task
with the diffusion of the graphical Uls, as
was shown. in a study of Myers-and Ros-
son (Myers and Rosson, 1992). By analyz-
ing a number of different software appli-
cations, it was found that about 48% of
the source code, about 45% of the devel-
opment time, about 50% of the imple-
mentation time, and about 37% of the
maintenance time are required for as-
pects regarding Ul. These values still seem
to be valid today, because the spread of
interactive systems as well as their re-
quirements have drastically increased over
the last years. Today, developers of Ul for
interactive systems have to face several
challenges: 1. Heterogeneity of end users:
an interactive system is normally used by
several different end users. End users dif-
fer with respect to, e.g., their preferences,
capabilities, speaking different languag-
es and level of experience; 2. Heteroge-
neity of computing platforms, input ca-

DOI 10.1524/icom.2011.0026

pabilities and modalities: today, there is
a large diversity of computing platforms
(e.g., Smartphone; Desktop PC, PDA, em-
bedded devices) using different input ca-
pabilities (e.g., keyboard, mouse, (multi-)
touch, data gloves) with different inter-
action modalities (e.g., graphic, speech,
haptics, gesture); 3. Heterogeneity of pro-
gramming/markup languages and widget
toolkits: for developing a Ul, developers
use different programming/markup lan-
guages (e.g., Java, C++, HTML) with dif-
ferent widget libraries (e.g., Swing, Qt,
GTK+) and 4. Heterogeneity of working
environments: today, many workflows in
the real world are supported by interac-
tive systems through the pervasiveness
of computing devices, i.e. that end us-
ers have to cope with different contextu-
al constraints (e.g., noisy environments).

Model-Based User Interface Devel-
opment (MBUID) is one approach which
aims to cope with the above mentioned
challenges and which aims to decrease
the effort needed to develop Uls.

This paper starts with a historical over-
view of the research field of User Inter-
face Management Systems (UIMS) and

MBUID, then, we describe current, impor-
tant approaches and finally, we discuss
future challenges that must be solved in
order to cope with the challenges and to
achieve the promised goals.

2. History

2.1 User Interface Manage-
ment Systems (UIMS)

The term and the first concepts of a UIMS
were coined and developed first in 1982
by Kasik (Kasik, 1982), but a system by
Newman from 1968 — the Reaction Han-
dler —is called the first UIMS, because it
integrated several properties of a UIMS
(Lowgren,1988; Hix, 1990).

The outcome of a workshop on soft-
ware tools for Ul development at the
ACM SIGGRAPH conference in 1987 was,
amongst other things, a common defini-
tion of a UIMS (Betts et al., 1987):

"A User Interface Management Sys-
tem is a tool (or tool set) designed to en-
courage interdisciplinary cooperation
in the rapid development, tailoring and

UIMS Timeline

Interface Builder

UIDE

University of Alberta UIMS

GUIDE
Peridot

@

N

w0

Q

o

=

>

(5]

o
= o
[}
5 2 =
c — ©
© o o
S g "
© o
@ [o]
4 E

1st generation
1968|1969 1980/1981|1982|1983

1984|1985|1986|1987|1988|1989]|1990

Fig. 1: Chronological overview of the UIMS generations.

management (control) of the interaction
in an application domain across varying
devices, interaction techniques and Ul
styles. A UIMS tailors and manages (con-
trols) user interaction in an application
domain to allow for rapid and consistent
development. A UIMS can be viewed as
a tool for increasing programmer produc-
tivity. In this way, it is similar to a fourth
generation language, where the concen-
tration is on specification instead of cod-
ing.”

Deborah Hix analyzed different UIMS
approaches that she divides into four
generations based on the target audi-
ence and the methods of the UIMS (Hix,
1990). In the early 1980s, most Uls were
teletype Uls (text-based dialogue sys-
tem) with a keyboard and a monitor as
the common environment. The first (ap-
proximately 1968-1984) and the second
(approximately 1982-1986) UIMS gener-
ation targeted, therefore, only teletype
Uls, whereas the third (approximately
1985-1988) and fourth (approximately
1988-1990) generation targeted graph-
ical direct manipulation Uls. Fig. 1 gives
a chronological overview about the four
different UIMS generations and denom-
inates different examples of each gener-
ation.

The first UIMS generation often used
formal grammars (e.g., Backus-Naur-

Form) supplemented by a conventional
programming language to specify (parts)
of the Ul. This generation only targeted
programmers. The second generation ex-
tended their functional capabilities and
used mainly the notation of a transition
network to specify parts of the Ul. Also
the second generation needed a lot of
programming knowledge for specifica-
tion. Therefore, it also targeted only pro-
grammers. The third generation shifted
the view away from programming the
Ul towards more designing the Ul. The
third generation targeted more (complex)
graphical Uls with direct manipulation as
the main interaction style. To better sup-
port the interface designer and develop-
ers (who used UIMS), the fourth gener-
ation started to target the improvement
of the Ul of a UIMS themselves by us-
ing the WIMP paradigm. This should re-
duce the required amount of program-
ming skills which was needed to use a
UIMS. Furthermore, in the fourth gener-
ation concepts from the area of artificial
intelligence (e.g., knowledge bases, ex-
pert systems) were integrated to better
support developers specifying a Ul with
a UIMS.

Research on UIMS was a well-estab-
lished area in the Human-Computer-in-
teraction (HCI) community at that time,
but they were not widely available and

312011 i-Com

used in the industry. The missing gener-
al acceptance of UIMS is caused by sev-
eral major problems (Myers, 1987): 1.
UIMS are too hard to use: especially the
first three UIMS generations were hard
to use for non-programmers like e.g., Ul
designer. Ul designers had to learn pro-
gramming techniques and languages in
order to be able to use these UIMS at all.
2. UIMS are too limited in the types of Uls
they can create: only a few UIMS directly
addressed WIMP Uls. WIMP Uls are much
more complex then teletype Uls, because
WIMP Uls e.g., supported different inter-
action techniques, allowed multiples in-
teraction techniques to be available and
operated at the same time. 3. UIMS are
not portable: UIMS were too tightly cou-
pled with a computing platform, operat-
ing system or widget toolkit. The main
reason was that at that time UIMS direct-
ly had to deal with low-level aspects like
managing data of the various input de-
vices (e.g., mouse, keyboard) and “draw-
ing” the interaction objects of the Ul on
the screen of the output device.

To solve these problems in the up-
coming generations Myers (Myers, 1995)
suggested 1. more research and develop-
ment in the area of graphical specification
technigues and Ul development process-
es and 2. more investigation in the area
of developing (high-level) Ul models. Fur-
thermore, Green (Green, 1985) suggested
1. to start the development of the Ul in
with a task model and 2. to (better) inte-
grate UIMS in software engineering pro-
cesses to receive a better integration to
the core of the application functionality.

2.2 Model-Based User
Interface Development
(MBUID)

The evolution from UIMS to the new par-
adigm of MBUID (Da Silva, 2000) is based
on the fact that through the late 1980s
modeling languages (e.g., object-orient-
ed programming languages) for creating
richer and more complex Uls were devel-
oped which were in turn used by MBUID
systems to generate more sophisticated
Uls (Puerta and Szekely, 1994; Szekely,
1996).

Schlungbaum (Schlungbaum, 1996)
defines two necessary criteria for a
Ul tool to be a model-based user interface

i-Com 32011

development environment (MBUIDE):
1. "MBUIDE must include a high-level, ab-
stract and explicitly represented (declara-
tive) model about the interactive system
to be developed (either a task model or a
domain model or both)” and 2. "MBUIDE
must exploit a clear and computer-sup-
ported relation from (1) to the desired
and running Ul. That means that there is
some kind of automatic transformation
like knowledge-based generation or sim-
ple compilation to implement the run-
ning UL."

These necessary criteria are conform-
ing to the former mentioned suggestions.
MBUID could, therefore, be a possible so-
lution to overcome the major problems of
UIMSs (Puerta and Szekely, 1994) which
could then lead to a general acceptance
in the industry. Furthermore, the interest
in MBUID increased again due to the in-
creasing diversity of platforms.

Currently, there are four identified
generations of MBUID (Schlungbaum,
1996; Da Silva, 1999; Paterno, Santoro
and Spano, 2009). Fig. 2 gives a chron-
ological overview about the four differ-
ent MBUID generations and denominates
different important developments during
the generations.

The first generation (approximately
1990-1996) focused on identifying and
abstracting relevant aspects of a Ul. Tools
in this generation mainly used one univer-
sal declarative Ul model which integrated
all relevant aspects of a Ul. Approaches
(mainly engineering-centric tools) focused
on the fully automatic generation of the
Ulinstead of an integrated holistic MBUID
process. Examples for the first generation
are UIDE, AME or HUMANOID.

The second generation (approximate-
ly 1995-2000) focused on the extension
of the Ul model by integration of other
distinct models into a MBUIDE and ex-
pressing the high-level semantics of a Ul.
Therefore, the Ul model is structured into
several other models like e.g., task model,
dialog model or presentation model. With
the second generation, developers were
able to specify, generate and execute Ul.
Much emphasis has been done on the in-
tegration of task models (e.g., CTT) into
MBUID. Furthermore, a user-centered de-
velopment (UCD) approach for Ul on the
basis of a task model has been recognized
as crucial for the effective design of Uls.

User Interface

MBUID Timeline
—
(=]
z 2 -
= g = ‘o
o | 4] =
wu | = | = -l = w -
i (=l |22
= a 12 3 Sld |<|2
E =< - |: 5 o & (=]
= w = w wi
2 v |lg g o < 3 [
= 2|2 |Z |k 2 s |E
C‘l_ (a] - - -
= o |W jlw | D
AREICIE IR
sl |13|3|&
1%} w
g 2812] ; 2nd generation
1st generation
1990(1991[1992(1993|1594/1995|1996|1997|1998|1999|2000{2001 |2002|2003|2004|2005|2006|2007 200812009

Fig. 2: Chronological overview of the MBUID generations.

Examples for the second generations are
ADEPT, TRIDENT or MASTERMIND.

The third generation (approximate-
ly 2000-2004) was mainly driven by the
plethora of new interaction platforms and
devices. Mobile devices like e.g., smart-
phones or PDAs, became popular. In-
deed, as Myers, Hudson and Pausch in-
dicated while discussing the future of Ul
tools, the wide platform variability en-
courages a return to the study of some
techniques for device-independent Ul
specification (Myers, Hudson and Pausch,
2000) Then, the system might choose ap-
propriate interaction techniques taking all
of these into account. Developers and de-
signers had to face the challenge of de-
veloping a Ul for several different devic-
es with different constraints (e.g., screen
size). An expressive integrated MBUIDE
became more relevant than in the gener-
ations before. Examples for the third gen-
eration are TERESA or Dygimes.

The current fourth generation (ap-
proximately 2004—today) is focusing on
the development of context-sensitive Uls
for a variety of different platforms, de-
vices and modalities (multi-path develop-
ment) and the integration of web-appli-
cations. Central elements of most of the
current approaches are models which are
stored (mostly) as XML-based languages
to enable easy import and export into au-
thoring tools. Furthermore, one research
focus is on the optimization of the au-
tomatically generated Uls by ensuring a
higher degree of usability. Today, MBUID
approaches are often called “model-driv-
en” and not "model-based” anymore.

Model-driven Ul development puts mod-
els at the center of the development pro-
cess, which are then (semi-)automatical-
ly transformed into an executable code or
rendered by an interpreter. Current exam-
ples of the fourth generation are given in
the next section.

3. Current Approaches

Today, there is an almost common un-
derstanding of the abstraction layers and
type of models which need to be consid-
ered for the development of current Uls
within MBUID, but there is still no con-
sensus (and no standards) about the in-
formation (semantics) the different mod-
els have to contain. Therefore, this section
shortly introduces the three core models
(which have direct influence on the con-
tent and appearance of a Ul), the Camele-
on Reference Framework and gives some
examples of the current fourth genera-
tion MBUIDE.

3.1 The Three Core Models

Task model: a task model represents a de-
scription of the tasks which can be ac
complished by users of interactive sys-
tems. These tasks can be hierarchically
decomposed into subtasks until they are
on the level of elementary actions. Tasks
are related by temporal relations and can
have conditions which regulate their ex-
ecution.

Dialog model: a dialog model de-
scribes the set of actions (or tasks) the
user can carry out within various system

/ Context of Use A

Context of Use B

/

Tasks & Concepts
i ¥

Abstract User Interface

Tasks & Concepts
i ¥

Abstract User Interface

(AUI)
i i

Concrete User Interface

(AUI)
i i

Concrete User Interface

(culy
1 i

Final User Interface (FUI)

(culy
i i

Final User Interface (FUI)

N /

l Rei [cation

4 Abstraction —

" /

Translation

Fig. 3: The (simplified) Cameleon Reference Framework.

states, and the transitions between states
that are triggered by certain actions. Not
being a stand-alone model, it is derived
from the task model by evaluating the
temporal relation between tasks. It also
connects the tasks with corresponding
interaction elements, forming a bridge
between the task and the presentation
model.

Presentation model: a presentation
model represents (a hierarchal composi-
tion of) the visual, haptic or auditory ele-
ments that a Ul offers to its users.

Different Ul aspects, such as the
presentation and the dialog model, but
not limited to it, can be specified by a
Ul Description Language (UIDL) (Souchon
and Vanderdonckt, 2003).

3.2 The Cameleon Reference
Framework

Different frameworks were developed
over the last years to capture conceptually
the important parts of a MBUID process.
Szekely introduces a generic architec-
ture for MBUID already in 1996 (Sze-
kely, 1996). In 2000, Da Silva describes
an architecture for Ul development with a
MBUID approach (Da Silva, 2000). Finally,
in 2002, the Cameleon Reference Frame-
work (CRF) (Calvary et al., 2002) result-
ed from the EU-funded FP 5 CAMELE-
ON project and has been subsequently

refined and revised (Calvary et al., 2003).
It describes a framework that serves as a
reference for classifying Uls that support
multiple targets, or multiple contexts of
use on the basis of a model-based ap-
proach. The framework covers both the
design-time and runtime phases of mul-
ti-target Uls. Furthermore, the CRF pro-
vides a unified understanding of context-
sensitive Uls rather than a prescription of
various ways or methods for tackling dif-
ferent steps of development. As such, it
hasnow become widely accepted in the
HCI community to locate each related
work.

As depicted in Fig. 3, the framework
describes different layers of abstraction,
which are important for MBUID, and their
relationships among each other: the Task
and Concepts level considers, e.g., the hi-
erarchies of tasks that need to be per-
formed in a specific temporal order in or-
der to achieve the users' goals (during
the interaction with a Ul); the Abstract
Ul (AUI) expresses the Ul in terms of Ab-
stract Interaction Objects (AIOs) (Vander-
donckt and Bodart, 1993). These AlOs are
independent of any platform or modal-
ity (e.g., graphical, vocal, haptic). Fur-
thermore, AlOs can be grouped logical-
ly; the Concrete Ul (CUI) expresses the Ul
in terms of Concrete Interaction Objects
(CIOs) (Vanderdonckt and Bodart, 1993).
These ClOs are modality-dependent, but

312011 i-Com

implementation-language-independent.
The CUI defines more concretely how the
Ul is perceived by the users, and the Fi-
nal Ul (FUI) expresses the Ul in terms of
implementation-dependent source code.
A FUI can be represented in any Ul pro-
gramming language (e.g., Java Ul toolkit)
or mark-up language (e.g., HTML). A FUI
can then be interpreted or compiled.

Between these levels there are dif-
ferent relationships (Limbourg and Van-
derdonckt, 2009) e.g., Reification covers
the inference process from high-level ab-
stract descriptions to runtime code. The
CRF recommends a four-step reification
process: a Concepts-and-Tasks Model is
reified into an Abstract Ul which in turn
leads to a Concrete Ul. A Concrete Ul is
then turned into a Final Ul, typically by
means of code generation techniques;
Abstraction is an operation intended to
map a Ul representation from one non-in-
itial level of abstraction to a higher level of
abstraction. In the context of reverse en-
gineering, it is the opposite of reification;
Translation is an operation that trans-
forms a description intended for a partic-
ular target into a description at the same
abstraction level but aimed at a different
target. It is not needed to go through all
steps: one could start at any level of ab-
straction and reify or abstract depending
on the project.

3.3 CTT+MARIA

The ConcurTaskTrees (CTT) notation (Pa-
terno, 1999) has represented an impor-
tant contribution towards engineering
task models making them exploitable in
various contexts at both design and run-
time. It has a set of features that make it
suitable to easily represent activities that
need to be carried out to reach the users’
goals: hierarchical structure, temporal re-
lations, icons to indicate task allocation,
and a set of attributes to indicate various
aspects (e.g., task type, task objects and
relevant platforms for task execution). Re-
cently, the possibility of better specifying
pre-conditions has been added. Such pre-
conditions can also be considered by the
associated interactive simulator, which is
included in the ConcurTaskTrees Environ-
ment (a publicly downloadable tool for
editing and analyzing task models). The
CTT specifications can be saved in XML

i-Com 32011

format in order to include and exploit
them in other tools and environments.
CTT and the associated tool have been
exploited over time in various application
domains e.g., interactive safety-critical
systems (such as ATC), ERP applications
and service engineering.

The MARIA language (Paterno, San-
toro and Spano, 2009) addresses differ-
ent abstraction layers: the Abstract and
Concrete Ul. Also in this case there is an
associated publicly downloadable tool
(MARIAE). This language has been de-
veloped based on the experiences gath-
ered with previous approaches in order
to: support a Data Model, which is use-
ful for specifying the format of input val-
ues, association of various data objects to
the various interactors; specify events at
abstract/concrete levels, which can be
property change events or activation
events (e.g., access to a web service or
a database); include an extended dialog
model, obtained through conditions and
CTT operators for event handlers, thus
allowing specification of parallel input;
support Uls including complex and Ajax
scripts with the possibility of continuous-
ly updating of fields without explicit user
request; and describe a dynamic set of
Ul elements with the possibility of con-
ditional connections between presen-
tations and changes to only a part of
a Ul. The associated tool supports the
editing of Abstract Uls in the MARIA
language, which can be derived from a
task model or created from scratch. The
editor supports browsing the specifica-
tion through an interactive tree view of
the specification and a graphical repre-
sentation of the elements of a selected
presentation, in addition to showing the
XML specification. The editor allows the
editing through drag-and-drop of the
elements and their attributes. From the
abstract description, it is possible to
derive concrete descriptions for various
platforms: desktop, mobile, vocal, mul-
timodal. Each concrete description can
be presented and edited in modalities
similar to those for the abstract specifi-
cations. From the concrete descriptions,
it is possible to obtain implementations
for various implementation languag-
es (XHTML, HTMLS5, JSP + WS access,
VoiceXML, X4V, SMIL) through associat-
ed transformations.

User Interface

3.4 UsiXML

The USer Interface eXtensible Markup
Language (UsiXML) is structured accord-
ing to four levels of abstraction defined
by the CRF, including the context model
and the quality model. UsiXML relies on a
transformational approach that progres-
sively moves among levels to the FUI (Lim-
bourg et al., 2005). The transformational
methodology of UsiXML allows the mod-
ification of the development sub-steps,
thus ensuring various alternatives for the
existing sub-steps to be explored and/or
expanded with new sub-steps. As such,
UsiXML supports model-driven engineer-
ing of Uls as defined by the Object Man-
agement Group (OMG). Designers can
shape the Ul of any new interactive ap-
plication by specifying and describing it
in the UIDL, without requiring program-
ming skills usually found in markup lan-
guages and programming languages.
UsiXML allows cross-toolkit development
of an interactive application. A Ul of any
UsiXML-compliant application runs in all
toolkits that implement it. UsiXML sup-
ports device independence: a Ul can be
described in a way that remains auton-
omous with respect to the devices used
in the interactions (e.g., mouse, screen,
keyboard, voice recognition system). In
case of need, a reference to a particu-
lar device can be incorporated. UsiXML
supports platform independence: a Ul
can be described in a way that remains
autonomous with respect to the vari-
ous existing computing platforms (e.g.,
mobile phone, Pocket PC, Tablet PC, ki-
osk, laptop, desktop, and wall screen). In
case of need, a reference to a particular
computing platform can be incorporat-
ed. UsiXML supports modality independ-
ence: a Ul can be described in a way that
remains independent of any interaction
modality (e.g., graphical interaction, vo-
cal interaction, 3D interaction, virtual re-
ality interaction). In case of need, a ref-
erence to a particular modality can be
incorporated. UsiXML allows reusing el-
ements previously described in anterior
Uls to compose a Ul in new applications.

Historically, the first version of UsiXML
resulted from the EU-funded FP5 Came-
leon project and has been continuously
supported by the following projects: FP6
Similar, FP7 Human, FP7 Selfman, FP7 Ser-
enoa, and ITEA2 UsiXML. UsiXML V2.0 is

now accessible via the UsiXML End User
Club (Calvary et al., 2011).

3.5 useML+DISL+UIML

This approach uses three different XML-
based languages at the different ab-
straction layers of the CRF to model Uls
(Meixner, Breiner and Seissler, 2011).

useML

The Useware Markup Language (useML)
1.0 was developed to support a user-cen-
tered development (UCD) process (ISO
9241-210) with a modeling language
representing the results of the initial task
analysis. Accordingly, the use model (task
model) abstracts platform-independent
tasks into use objects (UO) that make up a
hierarchically ordered structure. Further-
more, the leaf tasks of a use model are
described with a set of elementary use
objects (eUO) representing atomic inter-
active tasks: inform, trigger, select, enter
and change. In Version 2.0, useML was
extended by five temporal operators to
support temporal relationships as well as
it provides the possibility to define mul-
tiple executions or (pre-/post-) conditions
that can be attached to tasks of the mod-
el (Meixner, Breiner and Seissler, 2011).
This information can be used later in the
transformation process to derive a dialog
model. useML is supported by Udit — an
interactive editor and simulator for use
models. Udit is also able to transform use
models into DISL models.

DISL

The abstract Ul is modeled with the Di-
alog and Interface Specification Lan-
guage (DISL), which was developed at
the University of Paderborn, Germany, as
a modeling language for platform- and
modality-independent Uls for mobile de-
vices. DISL focuses on scalability, reactivi-
ty, easy usability for developers, and low
demands on processing power and mem-
ory consumption. An important precondi-
tion to the systematic development of Ul
is the strict separation of structure, pres-
entation and behavior of a Ul. DISL sup-
ports only 8 generic (meaning platform
and modality-independent) widgets, but
allows the extension for future generic
widgets. Recently, an interactive DISL ed-
itor has been developed.

Fig. 4: Relating the current approaches with the CRF.

C4. Risk of model proliferation
C6. Support (de)composition

C8. Support multi-fidelity

C9. Support method engineering
. High threshold

. Low ceiling

. Wide walls

. Unpredictability

C1. Need to ensure quality properties of a model
C2. Need to cover semantics, syntax, and stylistics
C3. Difficulty of identifying the minimal amount of models

C5. Support annotation-based Ul design

C7. Support multi-path development of Uls

. Lack of propagation of modifications

. System dependent and private models

. Need for a common User Interface Description Language (UIDL)
. Need for improved effort incrementality

. Need for advanced modeling for dynamic aspects

. Need for powerful transformation and rendering engines

. Need to ensure model traceability

Fig. 5: The 20 challenges of MBUID (Vanderdonckt, 2008).

UIML

The User Interface Markup Language
(UIML) has been developed as a speci-
fication for an abstract meta-language
that can provide a canonical XML repre-
sentation of any Ul and has been stand-
ardized in version 4.0 by the OASIS. The
Ul description is implementation-lan-
guage-independent since it uses a ge-
neric vocabulary to specify the interac-
tion objects. These interaction objects
can be translated into interaction ob-
jects by using the peers-element, which is
an addition to the vocabulary to map
the ClOs to their representation in the
target language. There are peers for sev-
eral languages, including Java Swing,
XHTML and the .NET components. UIML
is not only able to describe the presenta-

tion of the Ul; it is also capable of speci-
fying its behavior.

3.6 Relating the Current
Approaches

Fig. 4 visualizes the three current ap-
proaches which are compliant to the
CRF. On the left side, the abstraction lay-
ers of the CRF are shown, followed by
the UsiXML approach, followed by the
CTT+MARIA approach and finally, by the
useML+DISL+UIML approach.

4. Future Challenges

Even after more than 30 years of research,
MBUID is not a common practice in the
daily industrial software development.

3/2011 i-Com

In this section, we describe several im-
portant future challenges which have to
be solved by the upcoming fifth MBUID
generation. Several well-known research-
ers in the MBUID community have de-
fined challenges and drawbacks of the
last MBUID generations, e.g., (Puerta and
Szekely, 1994), (Szekely, 1996), (Vander-
donckt, 2008), (Calvary and Pinna, 2008).
In the following, we will give a summary
of the most important challenges which
are mainly based on the 20 identified
challenges by Vanderdonckt (see Fig. 5)
and which have to be addressed in fu-
ture. Most recognized challenges can be
classified into the following main catego-
ries: standardization, holistic model-driv-
en development process, tool support as
well as real-word usage and case studies.

4.1 Standardization

In 1999, Da Silva recognized already that
standard notations for MBUID are nec-
essary: “The use of a standard notation
may be useful in order to describe differ-
ent Ul models using a common set of con-
structors. In fact, these constructors may
facilitate the comparison and the reuse
of Ul models and their MBUIDEs. For in-
stance, the reuse of Ul models may be dif-
ficult these days since they are based on
several notations [...]. Further, the reuse
of Ul models can be essential for make
MBUIDESs scalable for real applications.”
(da Silva, 2000) Furthermore, Calvary and
Pinna state that “... there is a need of rec-
onciliation to clarify the state of the art.”
(Calvary and Pinna, 2008).

Challenges and Discussion

C2: generally, standard notations have
rigorously defined semantics, syntax and
stylistics.

C3: a standardized framework with
different entry points would support de-
velopers in finding the ideal entry point
for the development process. General-
ly, the development of a (more) usable
Ul should start by conducting a task and
context analysis followed by task mode-
ling activities. (Semi-)Jautomatic transfor-
mations support developers and reduce
the amount of manual work to deduce
the other models. In practice, developers
will need larger case studies, real world
MBUID implementations and document-

i-Com 32011

ed experiences for getting the right feel-
ing which models are really needed in in
their type of project.

C15, C16: publicly and freely availa-
ble standardized languages would be the
key for developing associated interoper-
able open tools and development envi-
ronments. Having an unambiguous stand-
ard notation, the exchange of models
between tools and MBUIDE will be im-
proved. Basic model operations and al-
gorithms could be defined in an abstract
language (programming language inde-
pendent) so that the tools which imple-
ment the model operations and algo-
rithms are able to reuse the knowledge of
the algorithms. During the last 20 years of
research in MBUID, many different UIDLs
have been developed, but they are often
limited in terms of adoption in real-world
industrial software development.

C18: recently much effort has been in-
vestigated by different groups to define
powerful notations for modeling the dy-
namic aspects. Among others, there are
the DISL and State Chart XML (SCXML).
The dialog model of DISL has been incor-
porated into the OASIS standard of the
UIML. SCXML is an XML-based markup
language for providing a generic state-
machine based execution environment
based on Harel statecharts which will be
certainly standardized by the W3C (cur-
rently SCXML is a working draft).

Up to now, some efforts have been
done in the area of standardization.
UIML 4.0 has been standardized in 2009
by the OASIS (Helms et al., 2009). ANSI/
CEA-2018 (published in 2008) defines an
XMlL-based language for task model de-
scriptions relevant to consumer electron-
ics devices. The MBUI Incubator group
at W3C has evaluated research on mod-
el-based Uls as a framework for author-
ing web applications and with a view
to proposing work on related stand-
ards published as a report (http:/www.
w3.0rg/2005/Incubator/model-based-ui/
XGR-mbui-20100504/). Currently, a work-
ing group is being established at W3C
(http://www.w3.0rg/2011/01/mbui-wg-
charter) to initialize standardization with
focus on: use cases and requirements,
specification of meta-models for inter-
change of models between authoring
tools for (context aware) Uls for web-
based interactive application front ends,

User Interface

specification of a markup language and
APl which realize the meta-models, test
assertions and test suite for demonstrat-
ing interoperability, model-based Ul de-
sign primer and Open Source Implemen-
tations.

4.2 Holistic Model-Driven
Development Process

As stated by Léwgren: “If UIMSs (and
analogously MBUIDE) could be method-
ologically integrated in software develop-
ment processes, they would significant-
ly contribute to the development of even
better application systems.” (Léwgren,
1988), Model-Driven Engineering (MDE)
has become an important paradigm in
the software development community.
MDE uses models as primary artifacts dur-
ing the analysis, design, implementation
and maintenance phases of the system
lifecycle and employs automated mod-
el management mechanisms for mod-
el analysis, validation and transformation
to support systematic and efficient soft-
ware development. In the industry, MDE is
common practice. Several companies have
developed mature commercial develop-
ment environments. But there is a clear
lack of harmonization between MDE and
MBUID approaches: while the MDE com-
munity has focused on the issue of ge-
nericity (e.g., generic transformation lan-
guages, generic meta-model extension
techniques, generic visual language defi-
nition mechanisms), the MBUID communi-
ty has focused on Ul specific aspects (e.g.,
definition and refinement of task, dialog
and presentation models). Although the
core concepts of both approaches are
largely similar (based on models), they
developed mostly independently with-
in different communities. Not surprising-
ly, there are different types of stakehold-
ers involved in both approaches that have
grown accustom to their own vocabular-
ies, modeling techniques and processes.
Research is, therefore, fragmented into
groups focusing on different abstractions,
languages and tools, which are parts of
larger, mostly disjoint communities, each
publishing within their own conferences
and journals. In addition, MBUID has fo-
cused primarily on fragmented Ul mod-
els, largely neglecting the relation to other
software views, such as models of relat-

ed workflows. This often resulted in so-
lutions that are incompatible with other
MDE approaches at the conceptual lev-
el or at the level of transformation tools.
MDE and MBUID must be combined and
treated as one holistic approach for mod-
el-driven development of interactive sys-
tems. Bridging both domains is indispen-
sable for future sustainable design and
development of complex interactive sys-
tems. Furthermore, Calvary and Pinna
support our argument of a holistic mod-
el-driven development approach for inter-
active systems by stating that “... horizon-
tal collaboration between the functional
core and the Ul are not yet well support-
ed.” (Calvary and Pinna, 2008).

Challenges and Discussion

C7, C8, C9: a holistic model-driven devel-
opment approach for interactive systems
which is integrated in a UCD methodol-
ogy should be developed. Models could
then be developed and later refined when
more information has been acquired. The
development and evaluation of mock-
ups and prototypes is a vital part in UCD.
Therefore, tools have to be developed
which visualize (parts of) the model in a
way which is suitable for the communica-
tion between different stakeholders in the
development process.

Currently, there are several research-
ers working on the integration of MDE,
MBUID, UCD and usability conceptsinto a
holistic process, e.g., Meixner, Breiner and
Seissler show how a UCD process can be
extended by Ul models heading towards
a user-centered MBUID process (Meixner,
Breiner and Seissler, 2011). Lallemand an-
alyzes the possible integration of usabili-
ty at different stages of software devel-
opment on the basis of MDE (Lallemand,
2011).

4.3 Tool Support

Tool support has always been one of
the major challenges in the history of
MBUID (Myers, 1987). Puerta and Szeke-
ly state that “... the main shortcoming of
the model-based approach is that build-
ing models is difficult. A rich model de-
scribing all the features of an interface is
a complex object, and hence non-trivial
to specify.” (Puerta and Szekely, 1994).
Therefore, supporting the different types

'y

Capabilities

100%

50%

=
S
©
5
e -1
< B
S £
© =
o c
g x 4 S
8 > [
- h=] Q
@ c c
['7] o (1]
= o
o £
‘@' S
i £
_‘r
T_{ Threshold

.- Resources
(time, experience,...)

Walls

Fig. 6: Low threshold, high ceiling, and wide walls for MBUIDEs.

of involved stakeholders (e.g., program-
mers, Ul designer, interaction designer)
with tools they really need and accept is
absolutely essential.

Challenges and Discussion

C1: a model should be at least complete,
consistent, and correct. Having a standard
notation with a clear defined semantics a
model can easily be checked by e.g., mod-
el checking tools.

C5, C6, C10: for developing, main-
taining and deploying Ul models, devel-
opers should be supported by an easy-to-
use WYSIWYG editor (interface builder).
Such an editor prevents users from learn-
ing one or more particular specification
language(s). Even if the developers have
to learn a specification language, the au-
tomation of a portion of the development
should reduce the development effort.
Furthermore, an editor should have the
features the different developers need,
e.g., annotating further information to
models or model fragments, possibility
of “copy&paste” of interaction objects
(widgets) from one model to another. In-
telligent layout mechanisms should sup-
port developers by automatically provid-
ing possible arrangements for the new
interaction objects.

C13, C14, C20: transformations must
be transparent for developers, in a way
they are able to understand the transfor-
mation and its effects (traceability). Fur-
thermore, larger real-world case studies
are needed to show possible side effects
and to enhance model propagations and
transformations. This could also lead to
a more comprehensive understanding
about side effects.

C11, C12, C19: MBUIDEs must be ex-
tensible regarding transformations. With
standardized notations the community is
able to build and share better transforma-
tions for a wide range of target platforms.
Furthermore, the usability of automatical-
ly generated Uls is rather low. A fully au-
tomatic transformation approach seems
currently not suitable. This challenge has
often been mentioned in the history of
MBUID (Calvary and Pinna, 2008; My-
ers et al.,, 1990; Myers, 1995). Presum-
ably, the solution lies in semi-automatic
transformation approaches. Transforma-
tions are supporting developers in stand-
ard tasks, but developers are able to re-
fine manually the generated Ul (tweaks,
beautifications). Manual refinements of
generated Uls are lost, when developers
regenerate other draft designs of the Ul,
i.e. manual modifications have to be in-

312011 i-Com

corporated in the models again to ensure
round-trip engineering. Besides manual-
ly tweaking the generated Ul, the inte-
gration of Human-Computer-Interaction
(HCI) patterns in transformation processes
seems to be a promising approach to en-
counter generated Uls with a low level of
usability. Furthermore, the integration of
formalized standards and guidelines into
a MBUIDE is desirable to support manual
adaptations done by developers and de-
signers (Meskens et al., 2011). The need
for the integration of ergonomic criteria
is also mentioned by Calvary and Pinna:
“... one open issue specific to HCl is the
modeling of ergonomic criteria.” (Calvary
and Pinna, 2008).

Low threshold and high ceiling (Myers,
1990) could be augmented by wide walls
(Fig. 6) (Vanderdonckt, 2008): not only it
is crucial that the threshold, with which
designers and developers could create
a Ul with the MBUIDE, is as low as pos-
sible (i.e., the time required to create a
Ul is minimal) and that the ceiling is high
(i.e., the capability to create a Ul is large),
but also the walls should be wide (i.e.,
the resources required to create different
Uls should be minimal). The last criterion
is vital: often MBUIDEs have been criti-
cized for having a high threshold and a
low ceiling. Nowadays, the new gener-
ations of MBUIDEs lower the threshold
and increase the ceiling, but also enlarge
the walls.

Currently, there are several excellent
freely tools and MBUIDE available (see
e.g., section 3.3 — 3.5). In the future, re-
search and development on tool support
is still essential for MBUID. Tool support
should, therefore, be pushed after the
community has developed clear stand-
ards and has defined a holistic model-
driven development approach for inter-
active systems.

4.4 Real-World Usage and
Case Studies

In 1990, Hix stated already that “eventu-
ally — probably in this decade — UIMSs will
have sufficient functionality, usability, and
accessibility to be found readily in real-
world development environments.” (Hix,
1990) Until now, MBUIDEs have not been
(commercially) successful in real-world us-
age. Furthermore, Calvary and Pinna state

10

i-Com 32011

in 2008 that “... the global picture [of
MBUID] has been demonstrated on sim-
ple case studies in HCl so far, we now aim
at going beyond toy applications.” (Calva-
ry and Pinna, 2008).

Challenges and Discussion

C3, C4, C17: the future of MBUID could
heavily benefit from larger case studies
and real-world usage. Until now, only the
research community has seen smaller Uls
or Ul fragments, which have been gener-
ated by MBUID processes. The develop-
ment and the adaptation of Ul models,
languages and their MBUIDE are a key fac-
tor for the adoption by the industry. The
development of domain-specific transfor-
mations and domain-specific languages
at, e.g., CUI level could be a promising
approach.

Requirements concerning the devel-
opment of Uls for infotainment systems
in the automotive industry are demand-
ing for a flexible MBUID process. Cur-
rently, there is a large-scale public-fund-
ed research project in the German car
industry which targets exactly this prob-
lem and tries to establish a real-world us-
age of MBUID in this complex domain.
The project automotiveHMI (http://www.
automotive-hmi.org) aims to improve
the process of the development of Ul in
the automotive sector. An integrated ap-
proach based on standardized languages,
models and interfaces targets to improve
the development efficiency of all compa-
nies and involves from car manufacturers
and component suppliers to producers of
the used tools. The description based on
abstract models also enables the conver-
gence of new, multi-media and multimod-
al forms of interaction in completely new
operating systems. The outcome of this
project — the establishment of a mature
MBUID process in the German car indus-
try — could be a very important milestone
for the future of MBUID.

5. Conclusion and
Outlook

Modeling languages, transformations
and development tools got much more
expressive and easier to use, but Uls and
their development became also more
complex since the manifestation of the

User Interface

WIMP paradigm. Today, being in the post-
WIMP area (e.g., Mixed Reality, Tangible
Uls, 3D-Uls), Ul development is a still com-
plex and time-consuming task. In order to
get an impression about the question if
MBUID approaches could be successful in
the future, we first gave a brief overview
about the history of UIMS and MBUID. Af-
ter explaining the core models of Ul devel-
opment and the different abstraction lay-
ers of the CRF, we gave a short overview
about current approaches of the fourth
generation of MBUID. The last section of
this paper was about the main challenges
of the upcoming fifth MBUID generation.

Currently, researchers are working
hard to solve the main challenges. De-
spite all the problems and challenges re-
searchers encountered during the last 20
years, we think that by solving the above
mentioned main challenges, MBUID could
be successful in the near future so that
MBUID possibly gets accepted by com-
panies which develop software for real-
world usage and not only for showing the
feasibility of an approach by demonstrat-
ing the automated generation of portions
of a Ul

References

Betts et al.: Goals and Objectives for User Inter-
face Software. Computer Graphics, 21(2),
pp. 73-78, 1987.

Calvary, G. et al.. The CAMELEON Reference
Framework, CAMELEON Project, Septem-
ber 2002, available at http://giove.isti.cnr.
it/projects/cameleon/pdf/CAMELEON%20
D1.1RefFramework.pdf, 2002.

Calvary, G. et al.: A Unifying Reference Frame-
work for multi-target user interfaces. Inter-
acting with Computers, 15(3), pp. 289-308,
2003.

Calvary, G.; Pinna, A.-M.: Lessons of Experience
in Model-Driven Engineering of Interactive
Systems. Proc. of the 1st International Work-
shop on Challenges in Model-Driven Soft-
ware Engineering (ChaMDE), 2008.

Calvary, G. et al.: User Interface eXtensible Mark-
up Language SIG. Proc. of IFIP TC13 Int.
Conf. on Human-Computer Interaction, Lec-
ture Notes in Computer Science, Vol. 6949,
Springer, Berlin, pp. 693-695, 2011.

Da Silva, P. P.: User Interface Declarative Mod-
els and Development Environments: A Sur-
vey. Proc. of the 7th International Conference
on Design, Specification, and Verification of
Interactive Systems, pp. 207-226, 2000.

Green, M.: The University of Alberta User Inter-
face Management System. Proc. of the 12th
Annual Conference on Computer Graphics
and Interactive Techniques, pp. 205-213,
1985.

Helms, J. et al.: Human-Centered Engineering
with the User Interface Markup Language.
In A. Seffah, J. Vanderdonckt, M. Desmarais
(eds.), Human-Centered Software Engineer-
ing, Springer, London, pp. 141-173, 2009.

Hix, D.: Generations of user-interface manage-
ment systems. IEEE Software, 7(5), pp. 77-87,
1990.

Kasik, D. J.: A User Interface Management Sys-
tem, Proc. of the 9th Annual Conference on
Computer Graphics and Interactive Tech-
niques, pp. 99-106, 1982.

Lallemand, C.: Toward a closer integration of usa-
bility in software development: a study of us-
ability inputs in a model-driven engineering
process. Proc. of the 3rd ACM SIGCHI sym-
posium on Engineering interactive comput-
ing systems, pp. 299-302, 2011.

Limbourg, Q. et al.: UsiXML: a Language Sup-
porting Multi-Path Development of User In-
terfaces. Proc. of 9th IFIP Working Confer-
ence on Engineering for Human-Computer
Interaction jointly with 11th Int. Workshop
on Design, Specification, and Verification of
Interactive Systems EHCI-DSVIS'2004. Lec-
ture Notes in Computer Science, Vol. 3425,
Springer, Berlin, pp. 200-220, 2005.

Limbourg, Q.; Vanderdonckt, J.: Multi-Path Trans-
formational Development of User Interfaces
with Graph Transformations, In A. Seffah, J.
Vanderdonckt, M. Desmarais (eds.), Human-
Centered Software Engineering, Springer,
London, 2009.

Léwgren, J.: History, State and Future of User In-
terface Management Systems. ACM SIGCHI
Bulletin, 20(1), pp. 32-44, 1988.

Meixner, G.; Breiner, K.; Seissler, M.: Model-
Driven Useware Engineering. In H. Huss-
mann, G. Meixner, D. Zuehlke (eds.), Model-
Driven Development of Advanced User Inter-
faces, Springer, Heidelberg, 2011.

Meskens, J. et al.: GUIDE2ux: a GUI design envi-
ronment for enhancing the user experience.
Proc. of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing System,
pp. 137-142, 2011.

Myers, B.: Gaining General Acceptance for
UIMSs. Computer Graphics, 21(2), pp. 130-
134, 1987.

Myers, B.: User Interface Software Tools. ACM
Transactions on Computer-Human Interac-
tion, 2(1), pp. 64-103, 1995.

Myers, B.; Rosson, M. B.: Survey on User Inter-
face Programming. Proc. of the 10th Annual
CHI Conference on Human Factors in Com-
puting Systems, pp. 195-202, 2000.

Myers, B.; Hudson, S.; Pausch, R.: Past, present,
and future of user interface software tools.
ACM Transactions on Computer-Human In-
teraction, 7(1), pp. 3-28, 2000.

Paterno, F.. Model-based Design and Evaluati-
on of Interactive Applications, Springer Ver-
lag, 1999.

Paterno, F.; Santoro, C.; Spano, L. D.: MARIA: A
Universal, Declarative, Multiple Abstraction-
Level Language for Service-Oriented Appli-
cations in Ubiquitous Environments. ACM

Transactions on Computer-Human Interac-
tion, 16(4), 2009.

Puerta, A. R.; Szekely, P.: Model-based interface
development. CHI'94 Conference compa-
nion on Human factors in computing sys-
tems, pp. 389-390, 1994.

Schlungbaum, E.. Model-Based User Interface
Software Tools — Current State of Declarative
Models. Technical Report, 96-30, Graphics,
Visualization and Usability Center, Georgia
Institute of Technology, 1996.

Souchon, N.; Vanderdonckt, J.: A Review of
XML-Compliant User Interface Descripti-
on Languages. Proc. of 10th Int. Conf. on
Design, Specification, and Verification of
Interactive Systems. Lecture Notes in Com-
puter Science, Vol. 2844, Springer, Berlin,
pp. 377-391, 2003.

1 Gerrit Meixner is Senior Researcher at the
German Research Center for Artificial Intelligence
(DFKI) where he leads the Center for Human-
Machine-Interaction (ZMMI). He is scientific coor-
dinator of the German automotiveHMI project. He
is co-demonstration chair for EICS 2012, chair of
the W3C Model-based User Interfaces Working
Group and member of the Academic Advisory
Board of USID Foundation (India).

2 Fabio Paterno is Research Director at CNR-
ISTI, Pisa, Italy, where he leads the Laboratory on
Human Interfaces in Information Systems. He
wrote a book on Model-Based Design and Evalu-
ation of Interactive Applications. He has been the
scientific coordinator of five EU projects (MEFISTO,
GUITARE, EUD-Net, CAMELEON, OPEN) and one

312011 i-Com

Szekely, P.: Retrospective and Challenges for Mo-
del-Based Interface Development. Proc. of
the 3rd International Eurographics Work-
shop, pp. 1-27, 1996.

Vanderdonckt, J.; Bodart, F.. Encapsulating
Knowledge for Intelligent Automatic Inter-
action Objects Selection. Proc. of the ACM
Conf. on Human Factors in Computing Sys-
tems. ACM Press, New York, pp. 424-429,
1993.

Vanderdonckt, J.. Model-Driven Engineering of
User Interfaces — Promises, Successes, Failu-
res, and Challenges. Proc. of the 5th Annual
Romanian Conference on Human-Computer
Interaction, pp. 1-10, 2008.

of the main investigators in several others. He
is Chair of IFIP WG 2.7/13.4. He was appointed
ACM Distinguished Scientist in 2010.

3 Jean Vanderdonckt is Professor of Compu-
ter Science at Louvain School of Management,
Université catholique de Louvain (Belgium) whe-
re he leads the Louvain Interaction Laboratory
(www.lilab.be). The mission of this lab is about en-
gineering interactive information systems, based
on usability engineering and human-computer
interaction. He is the scientific coordinator of the
European ITEA2 UsiXML project and involved
in FP7 Human, FP7 Selfman, and FP7 Serenoa
European projects. He is co-editor in chief of the
Springer HCI Series.

11

