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1. Introduction 

Consider the problem of numerical calculation of the integral 

(1.1) I[f] = £^f(x)w{x)dx, 

where w is a given integrable weight function. Beside Gauss type rules, i.e., Gauß, Lobatto 
and Radau rules, another quadrature method of interpolatory type frequently occurs in 
the present literature - the Clenshaw-Curtis rule. For arbitrary, not necessarily positive 
weight functions w , the n"* Clenshaw-Curtis (product) formula 

(1-2) = 
i/=l 
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is defined uniquely by having the nodes x^ = — cos(i /—l)7r/(n-l) and by its interpolatory 
property 

(1.3) Q^'^lp] = /[p] = j ^ p(x)w{x)dx, for each p € V„-i , 

where denotes the space of all polynomials of degree less than or equal to n — \ . A 
first reason, why to prefer the Clenshaw-Curtis formulae against Gauss type quadrature 
formulae is simply that the latter may not exist if w has sign changes. The slightly higher 
computational efFort for the evaluation of the Gaussian formulae cannot play a serious role 
when using Computers. 

However, the main advantages of the Clenshaw-Curtis rule may occur in situations, 
when Integrals with respect to difFerent weight functions have to be computed for a fixed 
given function / . Using Gaussian formulae, the function values of / have to be computed 
again for each integrcJ, since the nodes may not coincide for difFerent weight functions. This 
is of particuleir importance if the efFort for the evaluation of function values is essentially 
higher than that of the summation of the quadrature formula. The latter reason justifies 
the use of a fixed nodal system. 

The mMn argimient for the special choice of Clenshaw-Curtis nodes originates in the 
Lebesgue inequality, 

(1-4) • £ „ _ , [ / ] , 

where R^^ := I - Q^^ is the remainder functional which corresponds to the Clenshaw-
Curtis formula. Here, E„_i[f] denotes the error of the best approximation to / from 
the Space V„-i . Indeed, the Lebesgue inequality in this form holds for each quadrature 
formula of interpolatory type, but the norms of the corresponding remainder functionals 
may be quite different. Sloan and Smith [5] have shown the importjiiit property 

(1.5) lim = 2| | / | | , if / ' |u;(a;)|P dx < oo for some p > 1 . 

Estimates using the approximation theoretical approach (1.4) are universally applicable. 
They therefore often lack some precision. 

In this paper we will restrict consideration to error estimates using the supremum 
norm of the n '^ derivative of the integrand. The method succeeds for each estimate with 
a norm of a 'high' order derivative of / . 

Defining the error constant 

(1.6) emiR'n'^.w) := sup { | j H/l"» < l} , 
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we obtain by (1.4) and (1.5) that 

holds for each weight function w , which satisfies (1.5). For w(x) = 1 we can improve 
upon (1.7) by a factor of the order (cf. Braß and Förster [2] and Fiedler [3]) and 
further results of this type are given in the sequel. 

Of course, for positive weight functions, the Clenshaw-Curtis rule has to compete 
with the Gaussian rule, (Ä^)^gj^ , which satisfies 

(cf. Braß and Förster [2]). We may therefore ask , under which assuniptions the improve-
ment of the best possible error estimate of the Clenshaw-Curtis rule upon (1.7) is only 
polynomial for increasing n or under which assuniptions it is exponential. Our investiga-
tions show that in general, at most a polynomial improvement is possible, while we win 
a factor of exponential order if w = wy • W2 , where u)] is the Gauss-Chebyshev weight 
function, wi(x) = (1 — x^) , and w^ is aneilytical. 

We conjecture that, for each fixed nodal system, there is at most such a sniall cla.ss 
of weight functions, which yields' an exponential improvement upon the standcird estimate 
(1.7), eis for the Clenshaw-Curtis rule. 

2. The M e t h o d 

The error constants , w) may be expressed in terms of Peano kernels. For a 
given linear functional L : C[—1,1] —• R , which vanishes on the space of all polynoniials 
of d e g r ^ less than m , the Peano kernel Km{L, •) is defined by 

(2.1) Kr„{L,x) = L[h^], 

where 

( t - x ) r ' 
0, if < < X and 

(m - 1)! 
-, i{t>x. 

(2.2) M t ) = 

Since L hsis the representation 

(2.3) L[/] = j ' ^ f ( ^ \ x ) K m { L , x ) d x . 
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whenever exists, the error constant is given by 

(2.4) em(L)= sup \L[f]\= \Km{L,x)\dx. 
Il/^^^llc»^! 

The method, which is used to prove the restilts in Section 3, is essentially ba»sed on 
a resvdt of Braß and Förster [2]. They have proved a series expansion of Km(L, •), whose 
first partial sum Km,l satisfies 

(2.5) = 

where 

(2.6) l '^\Km,i{x)\dx = - ^ \ L [ T ^ ] \ 

and 

1/2 

(cf. Braß and Förster [2], (3) and (17)). This paper shall show, how the result of Braß 
and Förster caji be used to simpUfy investigations on high order error constants of the 
Clenshaw-Curtis rule. We just have to estimate the errors to obtain reason-
able bounds for -.w). Fortunately, for the Clenshaw-Curtis formulae, these errors 
may be expressed rather exphcit as follows, 

(2.8) /

I , 

= - 2 / sin /(n - 1)< sin {l(n - 1) + k)t sin< u;(cos t) dt, |ifc| < n - 1 
Jo 

(cf. Sloan and Smith [5]). The main part of the expansion (2.5)-(2.7) is mostly given by 
the errors Rn'^[Tn-\+k\ > fc = 1 , 2 , . . . , 2n - 2 , where eq. (2.8) reads thus 

rir 
(2.9) R£^[T„--i+k] = -2 l sm(n-l)tsinktsmiw{cost)dt, fc = 1 , 2 , . . . ,2n - 2. 

Jo 

It is useful to interpret the quadrature errors for Chebyshev polynomials as multiples of 
functionals given by 

rn 
(2.10) = - 2 y sin//f sin/c( sintu)(cos<)df = 
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for appropriate combiiiations of ß , k and u . 

For the results in Section 3 we generally assmiie that w is in a certain cla-ss such 

as w & K' = Vs := { / | is of bounded Variation} or that, for instance, w{x)Vl — x'^ 
is analytic. Since we want to estimate the integral (2.10) in these cases, we may use the 

typical methods which Eire applied in quadratiire theory. 

For example, if w is supposed to be in Vg we define a quadrature formula Q'f''^^ 
such that the kernel of l'f' '^^ = /<"•«) - Q ' f "^ includes Vs . The best possible estimate 
for under the only Eissumption tü e K is then 

(2.11) 

where Var(/) denotes the totaJ Variation of / . Using these estimates for iZ^^fT^], we 

obtain boimds for ßn(Rn^, , which are asymptotically best possible. 

The method may not only yield such sharp bounds for the error constants 

, but would also succeed at least for ,w), where fi > n — s and 

s is fixed. 

3. The Results 

THEOREM 1. 
a) Let n > 4 and Jet w be of bounded Variation, then, 

(3.1) w) < {Var(u>) + ^ (Var(t«) + 2|«;(0)|)} . 

b) Let n > 5 and let w' be of bounded Variation, then, 

^ ( V a r ( u ; ' ) + 2 H l ) | + 2 H - l ) | ) | . 

c) Let n > 6 and let w" be of bounded Variation, then, 

w) < „ ; 2 n - 2 | „ _ 5 ) 3 { v a r ( u . " ) + 2|u,(l)| + 2|u,(-l)| 

2 / 32 M 
+ + 3\w(l)\ + - | « ; ( 0 ) | + 3\w{l)\j 
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R e m a r k 1. The bounds are asymptotically best possible in the sense that additional 
factors on the right-hajid side must be greater or equaJ 

R e m a r k 2 . For w{x) = 1 , Theorem Ic) yields the estimate 

which is EisymptoticaJly sharp ut to a factor 1 + C>(ri~'/2). 

Note that the estimate of Theorem 1 c) may not be replaced by one of the form 

(3.5) ßniRn ^ ^ ^ 

for increasing n , since the case w{x) = 1 would already yield a contradiction. The 
next theorem will give a generalization of this Observation. For instance, we can conclude 
from Theorem 2 that a multiple of Var(u'(®)) can only be the main term in a reasonable 
estimate for w) , if = = 0 for all i/ < (s - 3)/2 . Furthennore, 
we see that for weight functions, whose second derivative is of bounded Variation, the error 
constant will in general be only of the order 0 ( ( 2 " n ! n 3 ) ~ ' ) . 

T H E O R E M 2. Let be absolutely continuous on [ - 1 , 1 ] , let ii)('')(l) = 
«,(<^>(-1) = 0 for all u<r<(s- 3)/2 , and let I^^Cl ) ! + ^< ' '^-1)1 > 0 , then, 

(3.6) • ̂ hm = [ ^ « ( i ) + 
(2r + 2)! 

n even 

and 

^ n odd 

For the proof of Theorem 2, we simply have to expand the integral (2.10) similar to 
the Euler-Maclaurin summation formula. 

The Clenshaw-Curtis formula works particuljirly well for the weight function 111(1) = 
(1 — , i.e., for a weight function which has singularities at both ends of the basic 
interval. We would therefore like to obtain results as in Theorem 1 without assuming w 
to be bounded. 
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T H E O R E M 3. Consider the function W given hy W{x) = (1 - x'^)w{x) . 
a) Let n > 4 and let W be of bounded Variation, then, 

(3-8) < { l + • 

b) Let n > 4 and Jet W' be of bounded Variation, then, 

c) Let n > 4 and Jet W" be of bounded Variation, tJien, 

+ ^ ( V a r ( W ^ " ) + 8 K 0 ) | ) } . 

RemarJc 1 JioJds anaJogousJy. 

From Braß' and Förster's resiilt we caji readily deduce that, if we have a positive 
weight function, the n'^ error constants of the corresponding Gaussian rule, Q„ = Q^ , 
satisfy 

(3.11) limsup ^n \gn{Rn ,w) < 

where, in general, equeJity holds. Furthermore, if we have any (not necessarily positive) 
weight function, for which a bounded sequence of quadrature formula« of algebraic degree 
greater or equal to 2n — k , k fixed, exists, we cein obtain the same constant on the 
right-hand side of (3.11). 

For the classes of weight functions considered in Theorem 2, 1/2 a.s a constant on 
the right-hand side of (3.11) is not improvable for the Clenshaw-Curtis rule. In the CEise 

that w{x) = (1 — ^ jj^g Clenshaw-Curtis rule is the corresponding Lobatto rule 
and therefore also satisfies the limit relation (3.11) as well as the Gaussian rule. We may 
thus ask, for which weight functions we can guarantee, that the Clenshaw-Curtis rule has 
such small error constants as described in (3.11), i.e., can compete with formula^ of high 
algebraic degree. The answer will be that w(x) = W{x){l — with W being 
analytic in the interior Cr of an ellipse, which is given by its foci —1 and 1 and the sum 
r > 3 v ^ / 2 of its semi-axis. 
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THEOREM 4. Let the function W he deßned on the closure of Cr such that its 
restriction to [—1,1] is given by 

(3.12) W(z) = \/1-22 

Assuming W to be anaJytJc in Cr and bounded on dCr . we have 

(3.13) 

Remark 3. If 2r < 3v/3 and we a-ssuine analyticity of w only in Cr \ {̂ q } , where ZQ lies 
on the boundary of the ellipse C »̂ , r* < r , weobtain l/2r* as an unimprovable constant 
on the right-hand side of (3.13). l/2r* i.s indeed the constaiit if W{z) = 1/(2 — ZQ) . 

The only Situation, in which the limit on the left-hand side of (3.13) may be estimated by 
a constant less than 1/2 is similar to that of Theorem 4. 

THEOREM 5. The relation 

(3.14) limsup ^ n ! < J 

n—oo ' i 

holds if and only if there is an analytic 2ir -periodic function v , which satisßes 

(3.15) v(t) = w(cost)lsintl, 

whenever t is real. 

4. Proof of the Results 

Proofo f Theorem 1: The moments mi''' ' ' ' of the functionals /(''•'=) defined in (2.10) 
are given by 

(4.1) mlr'"^ [p^] = y sin fit sin Kt sint cos" t dt, p^(x) = x". 

Hence, by the equation cos< sinßt = (sin(// + l)t + sin(/i —l)t)/2 , we obtain the recurrence 
relation: 

(4.2) 
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and 

(4.3) m^"'"» = 

2{l + (-l)^'-''}^lK 
, if l/i — k| ^ 1 and 

0 otherwise. 

Defining the quadrature formula« 

(4.4) = 

(4.5) 

and 

Q'rhf] ="" /(i) + 
(u.K) {ß,K) 

mir ' — m^^' 
/ ( - l ) 

(4.6) Qi^'^^hf] = / ( l ) - (m^"-«) - + / ( - l ) . 

the functionals L ' f ' "^ = - , where « = 0,1,2 , map all polynomials of degree 

less than or equal to s onto zero. 

The theorem wiU almost be proved, if we are able to estiinate the corre.sponding 

Peano kernels appropriately. They are given by 

(4.7) 

ir (cos x - cost ) ' . 
K^+liDT' \cost)= ^ -j sin^iisi 

Jo 'S' 
sin Kx sin x dx 

(• - cos< )^ 

For 5 = 0 and k < n - 3 , v/e have 

(4.8) 
1 /cos(w + k-2)t cos(n + k)t cos(n - k - 2)t cos(n - k)t\ 

4V n+k-2 n+k n - k - 2 ^ n-k j ' 

such that 

(4.9) 

+ 
n+k-2 n+k n - k - 2 n-k 

1 / 1 1 1 1 \ 

n - 1 

" (n + Ä;)(n - i t - 2 ) " 
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Considering the representation, 

- 2 

(4.10) 
( n - 3 ) ( n - l ) ( n + l ) 

1 / . 2 , , cos(n + l)< c o s ( n - 3 ) t \ 

we readily see that the estimate (4.9) may be improved at most by a summand of order 
n - 2 , if /fc = 1 . 

Analogously, by elementary calculations, we also obtain 

/ 1 1 _ 1 1 2 2 \ 
~ 4 \ n - i f c - 3 n-k-2 n-k n-k+1 n+k-2 n+k) 

(4.11) 

and 

< 

1 
n(n - 4 ) ' 

22 
9(n + 2)(n - 3) 

if A; = 1 and 

, if 2 < ik < (n - 3)/2, 

(4.12) 

<1 + - + 
16\n-k-4: n-k-3 n-k n-k + 1 

1 1 1 1 \ 
n+k-3 n+k-2 n+k+1 n+k+2) 

' n(n — l ) (n — 5 ) ' 
if ife < (n - 4)/2 . 

Since in (4.7), n is always greater or equal to n — 1 , we may estimate the Peano 
kernels for all occurring combinations of y. and k by 

(4.13) ||/ir i (4 ' ' ' ' '^-) l loo<2/3, 

(4.14) l|A'2(i' < 1/3 
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and 

(4.15) <1/16. 

This estimation requires some distinctions of cases, quite a lot of elementary calculations 

aiid numerical investigations for small /i and K, . but this is all stajidard work and may 

partially be automated on a Computer. 

By (4.4) and (4.9), we first obtain 

In Order to estimate e\ , we consider the bound in (4.9) for k < (n — 3)/2, which 

yields 

such that 

(4.18) 

+ 9 
,i=[(n-l)/2] 

An explicit expression for the series is given by 

H\ _ s! 2m + s 
^ ^ (/i + 2m)! ~ (2m + s)! 2m - 1 (4.19) E 

(cf. Bra.ß and Förster [2], eq. (17)), such that a further estimation yields the bound (3.1) 

of Theorem 1. 

The bounds in the cases that w' respectively w" eure of bounded Variation may be 
proved analogously. • 

Proof of Theorem 2: We first state the following 'Euler-Maclaurin-type' result for the 

integral (2.10). 
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L E M M A . Let 

and let exist, then, 

j ^ «;(x)T„,(a [x)dx 

s - l 

= — m 
u=0 

i / = 0 

(4.21) +i-lY J ^Cs{x)w^''>ix)dx 

t/=0 

Proof of the Lemma: We can show by induction that 

(4.22) = 

and that 

(4.21) is therefore readily proved by partial integration. • 

is obviously bounded aboveby 2||u)||i . For the estimation of the integral 
in (4.21), we Substitute x = cos t and then apply Lemma 1 of Braß [1], p. 170, from which 
it results that 

(4.24) dx = o(m-»). 

For fixed k , we therefore have 

(4.25) 
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Using 

26) - „ _ , _ , ( ! ) = ( - i r 
as n —» 00, 

we See that, under the cissumptions of the theorem, 

(4.27) = 0 

for fixed ß . Hence, \Kn^\{x)\dx is the main term of gn{Rn^ . We furthermore 
observe that 

= I J'^ {Tn(x) - T„_2ix))w{x)dx\ 

(4.28) = - C , + i , „ _ 2 ( l ) ) u , W ( l ) 

which yields the theorem. • 

P r o o f of T h e o r e m 3: The proof is essentially the same as that of Theorem 1. Now, the 
functionals , which shall be estimated and which annihilate the respective polyno-
mial spaces are of the form 

(4.29) = r s i n ^ x ^ / ( c o s x ) d x -
Jo s m i 

In the following, an asterisk at a sum indicates that each summand with a zero denominator 
has to be omitted. By the identity 

(4.30) s i n / i x ^ ^ ^ ^ = ^ s in( / / - K - 1 + 2i/)x, 
f = l 

the terms of the form (^ ± /c — , s = 0 , ± 1 , . . . , in (4.3) ff. will be replaced by the 
sums 

x M ^ y * ^ — .2.-
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We taJce now care of choosing the nodes of the respective quadrature formula« at the 

boundary, since the function W vanishes at ±1 . Hence, the quadrature formula 

corresponding to LQ^'"^ is given by 

(4.32) = A^"-«) {/(l) + ( - l f - f { - l ) } . 

The moments again satisfy the recurrence relation (4.2), but with the initialization 

(4.33) = (1 + ( -D^-^jAC' ' '^ 

Analogously to the proof of Theorem 1 we obtain 

(4.34) 
11^1(4"'''',Olloo < Af"'") < A([(''+«)/2].[(^+«)/21) 

where C = 0.577.. . is Euler's constant (for the last inequality, see Ostrowski [4], eq. 
(111,11), who referred an eariier result on the remainder in Euler-Maclaurin's summation 
formula of Malmsten). Thus, we can estimate the occuring Peano kernels by 

(4.35) 

and 

(4.36) 

Furthermore, we have 

for k < n/2. 

n - 1 

(4.37) 

Let 

\ f l - K H - K + I J 

k M _ ^ L _ + ^ 
4|\/i — /«— 1 ß — K ß—K + 1 IX — K + 2 

1 1 1 

(4.38) 
+ 

1 

fi + K — 2 fl + K — 1 H + K ' ^ + K + 1 
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then, 

||A'3(4"''=\-)i|co = ||A'3(4'̂  

(4.39) 

< 

1 / 1 1 1 1 A ^ 
7 ;; 7 r + ;; for K = 1, 

fcC*«.«) + 7/12 
for 2 < /£ < /i — 2 and 

for K G {/I — 1, ju}. 

For the sum of the A*''-"' in (4.38), we apply Ostrowski's equation as in (4.34). (4.39) 
may be estimated for all ß > 4 and arbitrary k by 

(4.40) ||A-3(4"'''\-)IIoc< 1.1, 

as well as for // = n — 1 and k < (2n — 3)/3 by 

(4.41) 
81ik 

50(n - 1)3 • 

Inserting the obtained bounds for into the estimate of Braß aaid Förster, (2.5), 
we have (3.8)-(3.10). • 

P r o o f of Theorem 4: We need the following Lemma. 

L E M M A . Under the same assumptions as in Theorem 4. we have 

(4.42) 
f r » + 3 r(l/2) / 1 \ 3r((n -1)/2) 1 
\ n - 1 r ( n - 1/2) ^ V (n - l)(r -1)J 2r( (3n - 3)/2) / ' 

The lemma is proved as follows. For each z € dCr , define v(z) such that 2 = 
(u(z) + t)~'(z))/2 and |t;(z)| = . Since may be written as a difference of 
expressions of the form /[T^], we iise the representation (cf. Breiß, [1], p.71) 

(4.43) = J^^ T^(x)wix)dx = ^ W(z)k(z)dz, 
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where 

(4.44) k(z) = J ^ dx = 

Using the fuiictions 

t l i 
pjr\i) 

we have, according to Braß and Förster [2], that 

/ i = n 

(4-46) ^ " ^ 

;=i /=i 
n - 2 oo oo 

+ E -'i^^iEhlin-D+.-lM + E 6 2 , ( „ - ! ) - , } dz. 

Braß and Förster ([2], Lemma 1) proved the inequality 

_2_ 
(4-47) ßft ••= , T,;... , Ol, /.. I o.,—TT - II"/«II«" 

and that ([2], eq. (29)) 

Inserting these bounds in (2.5), we obtain 

< J _ / M r j _ / r ( l / 2 ) 
Jacr ir-i - - 1 )2"-1 I r " Vr(n - 1/2) ^ (n - l)!;* 

(4.49) , r ( ( n - l)/2) 1 r ( n - l ) 
r ( ( 3 n - 3 ) / 2 ) r « - l r (2n - 2) 

" - 2 1 . r ( ( n - 1 + ß)/2) r ( ( n - 1 - ^i)/2) X I 
^ ^ , r A r ( ( 3 n - 3 + ^)/2) r ( ( 3 n - 3 - ^)/2) / 
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Let = r ( ( n - 1 + / i ) /2 ) / r ( (3n - 3 + /i)/2) , then we can show that the sequence of the 
values i ß l ' i n - \ is monotonely increasing with liinit 1 as ß—<• oo . Hence, the sequence 
(7^,) is decreasing. We can also show that, defining S^ = r ~ T ( ( n — 1 — / j ) /2 ) / r ( (3n — 
3 — , the sequence { i i i S f i - i l i s monotonely decreasing with Hmit 1 as /ii is 
decreasingto —00, such that 1 < < yields the convexity 
of the sequence . We therefore have 

(4.50) S^ < + 

The lemma now directly follows, Eind Theorem 3 is an immediate consequence of the lemma 
and Stirling's formula. • 

Proof of Theorem 5: Let the constant on the right-hand side of (3.13) be less than 
1/2 . Using the notation of Theorem 4 and 5, we have 

> = |J[T„ - r„_2]| 

1 
= öl/ v{t){cosnt-co%(n-2)t) dt\. 

2 J-ir 

V is integrable and even, such that the sine coefficients of the Fourier series equal zero 
while the cosine coefficients a^ tend to zero. The assumption is equiveilent with 

(4.52) | a „ - a „ _ 2 | < c - 9 " for all n 

with appropriate constants c and g < 1. This imphes 
00 

l"n| = I " ön+2fc+2)l 
<t=0 
00 

(4.53) < l°n+2fc+2 - an+2k\ 
fc=0 
00 n-l-9 

*:=0 ^ 

This estimate of the Fourier coefficients implies that v is analytic. 

If we assume the Jinalyticity of t;, we obtain an estimate |an| < d • r " with r < 1 
for eill n and thus 

(4.54) | a „ _ l + f c - a „ _ l _ t | < 2 d r " - l - ^ fc = 1 ,2 , . . . ,n - 1. 
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We can therefore estimate the error constant in the saine way as in the proof of Theo-
rem 4. • 

Acknowledgement: I am grateful to the referee for his helpful comments. 
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ON THE GENERAL ASYMPTOTIC EXPANSIONS OF H,"'-TRANSFORM AND 

RELATED BESSEL TRANSFORMS 

Hui-Hui Dai 

Receivecl 

Abstract Theorems are establislied to give tlie asyinptotic expatisions of H^'" -

transfonns and related Bessel traiisfomis of fimctions wliicli liave general 

asyinptotic expansions near the origin. The results are thus the extensions to those 

of the existing literatnre (e.g. Wong 1976, Soni 1982 and Soni&Soni 1985) which 

dealt with the cases tiiat the functions have power expansions near the origin. Our 

approach uses a leinina proved in an earlier paper (Dai 1992) on the general 

asyniptotic expansions of K, - transfonns and adopts a novel niethod to overcoine 

divergent Integrals. 

AMS subject cla.ssificatioiis: 41A6Ü, 44A15, 33A40. 

l.Iiitruduction 

Olver (1974) obtained a fonnula for the asyniptotic expansion of the Fourier transfonn 

(1.1) F(s)=f^e'%t)dt 

when the paraineter .v -* +oo and where tlie behavioiir of the fiinction f(i) near Ihe origin is 

given by an asyinptotic expansion of the Ibnn 

(1.2) 
n-O 

where 0 < \ < 1. The inethod adopted by Olver entails writing 
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N'l 
(1.3) / ( o = E V " ' 

As tlie individual temis oii the night band side of (1.3) do not possess Fourier traiisfonns, tliis 

equation is first imiitiplied by e", and tlien, Fourier transfonn is tiiicen for eacli side of llie 

equation. Tiie suniniability factor e " evades tiie appearance of divergent iiitegrals. The paraineter 

e is positive and later niade to teiid to zero. By tiiis procedure, and by treating tiie lierein 

appeared Fourier transfonn of by integrating by parts N tiiiies. the desired asyniptotic 

expansion of F(s) can be obtained. 

Olver's niethod was consequently adopted by Wong (1976) to obtain the asyinptotic 

expansion of the Hankel transfonn 

(1.4) m ^ f ^ J ^ i s t m d t , s - i 

by introducing the suinniability factor e'"\ where the behaviour of fit) near to the origin is given 

by (1.2). Also See the paper by Soni and Soni (1985) which gave a detailod di.scu.ssioii of the 

conditions under which the suniniability niethods applicable to this class of probleins. Aiiotlier 

method in connection with the asyniptotic expansion of Hankel transfornis was given by Soni, 

whicli is an extension of tlie technique due to Handelsnian and Lew (1969) by using the Parseval 

relation for the Mellin transfonn. For details, we refer to Soni (1982). 

In all above-nientioned niethods, tlie function is assunied to have an algebraic power 

expansion near the origin. However, in many practical cases (for exainple, see Naylor 1990), 

the fomi of the function near / = 0 is iionnally given by the general asyniptotic expansion 

(1.5) y ( o - E " A ( o . ' - 0* 
(1=0 

where {4>„(t)} is an asyniptotic sequence. If 0 , / f j can not in tum be expanded in power series, 

generally speaking, neither Olver's method or Soni's method is applicable. Even if can be 

expanded in a power series 

(1.6) ' l ' „ ( 0 = E V " ' -
/ i = 0 

and then the above-nientioned niethods are applicable, the resulting expansions of integral 

transfornis would be expressed in tenns of coefricients which are related to o„ and /;„ by 
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soinewhat coiiiplicalecl Ibrmulas . Tlius it would b e desirable to obtain expansions involving only 

coeff ic ients a„. 

In a previous paper (Dai ancJ Naylor 1992), w e have oblained llie asyniptol ic expansion 

of the Four ie r t r ans fonn F(s) when the paranie ter 5 ^ + 0 0 and wliere the beliaviour of tlie 

funct ion f ( t ) near tlie origin is g iven by (1 .5) . In tliis paper we .sliall give tlie a.symplotic 

expansions of tlie fol lowing Be.ssel t ransfornis 

j ^ H l % t ) A t ) d t , f ^ H f \ s t ) m d t , f y ^ ( s t ) M d t , f ^ ' j ^ ( s t ) M d t 

when s -> + 00. 

W e siiall concentra te on tlie case of a H J " - tn ins fon i i , and tlie ollier Iransforins are tlien 

treated siinilarly. Diffici i l ty in tliis class of problenis , as disctissed in the above , is ihe 

d ivergence of the integral herein appeared . He re , the di fnci i l ty is overconic by inlKKlucing a 

fac tor sinii lar to a neutral izer (c . f . (3 .3)) , which was first iised in a ear l ier paper (Dai and 

Nay lo r 1992). T h e - t r a n s f o n n can then b e t r ans fonned inlo a K, - t r a n s f o n n . A leninia 

proved in a previous paper (Dai 1992) on the generai asymptot ic expans ions of A'„ - t r ans fonns 

(c . f . leinma 1) is used to handle the diff iculy caused by the fact that the funct ion has a generai 

expansion near or igin. Our iiietliod seenis to be novel , and the re.sults are extensions to llio.se in 

the existing literature. 

F o r simplicity, w e sliall assunie that r is real and i> > 0. F o r v < 0, siniilar resulis can 

be obtained by Standard continuation foniiulas, given, forexaniple , by Wat.son (IV.'iS, pp74-7.'>). 

2.Prel imi i iar ies 

In die fo l lowing , we use U j t ) lo denote funct ions H j " ( l ) , H j - ' ( t ) , or Y J i ) , and writc 

(2.1) V=A:+ji 

whe re K > 0 is a posit ive integer and 0 < n < 1. W e niake the fo l lowing assinnplions: 

( i )The beliaviour o f ß O near the origin is given by (l..")), which is asyniptolic. So ihat. if wc 

wri te 

N-l 

(2.2) m = 
n-0 

tlien 

(2.3) 4 ( 0 = O ( V 0 ) , J - 0 ' 
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(ii)In (0, oo) f(i) is coiUimious, M times dilTereiiliable and let asyinptotic series Ibr ihe 

d e r i v a t i v e s . . . , / " ' are obtainable froiii (1.5) by successive differenliatioii, and 

(2.4) , «=1,2,...,A/, t - 0 ' 

Cn\y"'(t) = o(f"-), t - oo, n = 0, 1, . . . , M-l; and 

/"AOQ/sOA . f'/">(t)r-*'n/st)dt 

are assuined to be unifonniy convergent for s iarge enougi) for each n = 0, 1, .... M, wliere p 

= V - M M < K + 1 or p = n \f M = K + 2k or p =11 - 1 M = K + 2k + / , wliere k 

> 7 is a positive integer (see (2.1) for tlie definitions of K and 

{iy){<t>„(±ii)}' is an asyniplotic seqiience; and <i>„(±ii) (ii=0,l,...,N-1) does not spirai into zero 

(so tiiat equatioiis (2.15) and (2.16) hold). 

('Herein and alter, tlie sign + means tiiat, tlie sign + should be taken if Uji) = HJ"(t), tlie sign 

- should be taken il" ÜJt) = Hj-'(t), and both signs + and - should be taken il" »„(t) = Yji)). 

(v)</>„('±zj (n = 0, 1, ..., N-1) Is analytic and regulär in the Tirst quarter plane except at z = 0. 

and there exists a positive constant c (which inay depend on N) such that 

(2.5) |<j)„(±z)|</l|e«| , , 

(2.6) |<|)„(±iOl<'4|e"| , 

where is a positive constant. 

(vi) 

(2.7) , <\>,{±it)=0{n . r-0-

where a > -1 + v = K + ^ -1. 

(vii) 

(2.8) <t);/0=O(f'') , <|>/±i0=O(''') , t - 0 -

(2.9) <t>j \̂t)=O(tl>-0 , 4>y\±i()=0(tl>-Ö , ;=i.....M. 

where ß > a > K + n -1, and if further A/ > AT + we furllier require that 
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(2.10) p>M-l*\i ,ifM=K*2k 

(2.11) ß>M-\i , if M=K+2k*l 

where k ^ 0 is a positive integer. 

As we ailow tiie funct ion/f /J to liave a geiierai asymptotic expansion iiear tlie origiii, it 

is necessary to iinpose the additionai conditioiis (iv) to (vii) oii <t>„(t). But we woiiid poinl out tliat 

tliese fiirtiier conditioiis are autoniaticaiiy satisfied for a iarge ciass of l'tnictions. 

To prove oiir niain results presented in sections 3 and 4, we require the following tliree 

ieinnias. 

Leninia 1 Suppose that real functions g(!) and h(l) have K, - t ransfonns 

(2.12) G(s)=j^K^(st)g(t)dt 

(2.13) H(,S) = [''K (,si)h(,t)dt 
Jo " 

for sufficientiy Iarge s, and /i(0 > 0 for 0 < r < i,, where t, is a positive con.stant. Tlien, H(s) 

> 0 for sufficientiy iarge s, and 

(2.14) toÄdtaMi 
H(s) Kt) 

Tliis leniina is a .special case of a leinnia givcii in a previoiis work (Dai 1992), and for 

proof, we refer to that paper. 

Lemma 2 {^„'(s)} (0 < n ^ N - I ) h an asymptotic sequence as s + oo, where ^Vj(s) dent)tes 

the K^ - transfonn of <t>„(il)-

Proof 

Froni the assumptions listed above it is easy to see that the K^ - transfonn for <t>Jii) 

exists. Noting that Re(t)Jit) and Im<t>„(it) is continuous for t > 0 and we can put factors ±1 and 

+/' into a„ in (1.5) (also see assumption (iv)), we may assunie that 

(2.15) Re^ßt)>0 for 0<t<f, 

and 
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(2.16) lim ' " 

Tlieii, we liave 

(2.17) |(t„(it)iä:ÖÄe4'„('0 . t-O' 

wliere ß is a positive constaiU. For a positive s, we have 

(2.18) I <I>i(5) I äÄe«I>;,(s) = fjK^(st)Re(t,„(m 

Froin Lemma 1, we kiiow tliat Re'^„'(s) > 0. using (2.17) and (2.18). we have 

- - « t - » . / ' ' ) -<^„„( ' •o „ lim älmi slim s l i m — — = 0 

B 

Tluis 

aiui {"^„'(5)} (n = 0, 1, .... N-1) is an asyinptotic sequence. 

Lemma 3 {'t„''(s)} (0 < ii < N-1) is an asymptotic sequence as J ^ +<», where {'l'„ '(s)} 
clenotes tlie K, - transfonn of 4>J-ii). 

The proof of tliis lemma is very similar to tliat of lemma 2, and we omit the dctails. 

3. The a.svmptutic expuiisioii.s for II.'" - transforms. II..'''-transfonii.s aiid Y.-triiiisform.s 

Theorein 1 Let the functions f(t), 4>„(t) .satist'y the condilions eninneraled in llie .scciion 2 (in 
present case, Ujl) = HJ"((), and for the sign +, we only lai<e the sign +), ihen 

(3.1) = E'^n 'I ' lW ^ ö(l'iv-iW) ^ . 
t n=0 
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If further ~ where C, and Mg < M are constanls, then 

9 --ivK "-1 
(3.2) F^{s)=-e ^ Yi «n^U«) " . 

" <1-0 

We point out tliat, for tlie fonnula (3.1) to be effective one or iiiore terms of Ihe series 

appeared in (3.1) must doniinate the 0(s") tenii. Altematively, as in the second pari of liie 

above tiieoreni, we niake a suitable assuniption conceniing tiie niagnitude of tiie function 4>^_i(ii) 

for sniaii vaiue of t, then inagnitude of tiie 0(s'") tenn can be related to tliat of the otiier terms. 

Proof 

Consider the function 

(3.3) E Ö A W 
n-O 

where b > c (for the definition of c see assuniption (v)) and M, > O is an integer tal<en as large 

as desired. We tlien write 

(3.4) - « ( ' ) ' W ^ Sit) 

=G(t) + m 

where 

(3.5) 
G W ' E a A « -

( 1 = 0 

W-l N-l 

n-O ifO 

R=0 
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As 

«t-^W^CXe") , 

it follows that 

(3.7) 0 ( 0 = 0 ( 6 - « " ' " ) , 

(3.8) 0 ( 0 = 0 ( 1 " ) , t - 0* 

TIuls Ihe HJ" - traiisl'orin of G(i) exists. Siiice L(l) = f(t) - G(t), tlie HJ" - traiisroriii of L(i) 

also exists. So we can write 

(3.9) 
F(s)=fjH^'>(sOMdt 

For tlie flrst integral, rotating the integration path to the upper-half iinaginary axis, wliicli is 

pennitted by the Caiicliy's theoreiii, for siifficient large j , and noting that 

/ i . 

2 
(3.10) K ( z ) = i - n i e ^ K ' i z e - ) , 

we have 

(3.11) 

{''H[\t)G{t)dt=-e ("KSsOGiiOdt 
Jo it •'0 

TT « TT 0 

The last temi in (3.11) can be shown to be o('t,,,.,'{sJJ by using Lemma 1. For this puqxi.se, wl-

may assinne that satislles eqiiations (2.15), (2.16) and (2.17) with n = N -1. Thcii. 

applying lemma 1, we have 
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(3.12) lim-^^^! i l in i -

Froiii equation (3.3) we liave 

(3.13) g ( i t )=0{t ' ' ' ^4 . i t ) )=0( t ' ' ' " ) , t-0^ 

and from (2.17), assumptioiis (iv) and (vii), we liave 

(3.15) . 

As M, can be taken as lange as desired, tlie riglu hand side of the inequavility (3.12) eqiials zero, 

so that 

(3.16) I f j K ^ { s m t ) d t I =o(<I.;,.,(j)) , H 

Consequently, we liave 

(3.17) r H l \ t ) G m = - e ^ X ^ a X W + o((I>;,.,(4)) . 
° ^ n-O 

We shail treat the second integral on the riglit hand side of (3.9) by integration by parts. 

Tliere are two fomiulas available for this piiriiose (Abamowitz&Stegun 1964, p361); 

(3.18) i/,">(z)=(v-l)z-'tfy. ' ,(z) -
dz 

(3.19) ffy?,(z)=vz-'//f(z) + 
dz 

We introduce the following functioiis 

(3.20) 
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(3.21) * , 

and ifM > K + 1, t l ien 

(3.22) = ^ 

(3.23) ^ ( v - A ' - l ) f - ' L , , , , . Or 

F r o m assi i inptions ( i ) , ( v i i ) and (3 .6 ) , it is easy to see that 

(3.24) l o W ^ O C " ) . 

F r o m assumptions ( i i ) and (v i i ) and eqi iat ions (3.6) and (3 .20) to (3 .23) , It f o l i o w s tliat 

(3.25) L l i f ) = 0 ( t ^ - i ) , , 7=1, . . . ,M 

B y appeal l ing to R i t t ' s T i ieo ren i , it is k i i o w n that <f>„"°\z) = 0{e."), z -» oo. Th i is , f ro tn eq i ia l ion 

(3 .5) , we i iave 

(3.26) G<'")(0=O(e-<*- ' ) ' ) , 

A s 

(3.27) / " ' > ( 0 = o ( f ' " ^ ) , m = 0 , l , . . . , M - l . 

and 

(3.28) L ^ ( t ) = m - G ( 0 , 

f r o m equat ion (3 .20) to (3 .23 ) , it is easy to see that 

(3.29) . y = 0 , l , . . . , A f - l , 

A f t e r tliese preparat ions we now can evaiuate the second integral on the r ight hand side 
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of equation (3.9). We liave 

(3.30) f ° m H l % - t ) d t 

Usiiig equation (3.18) and integrating by part.s oiice, it follows Ihat 

(3.31) f"L(t) / / ,"Wt=--l imI(t)H^'' , (sOlS ^ - l i m f J 0 .c c J 0 

Noting tliat 

(3.32) h I \ ) ~ 2 
— e , , 
nz 

(3.33) / / » ) ( z ) - - J . r ( v ) ( i z ) - ' . z - 0 , 

and from the asymptotic properties of L/t) (see equations (3.24), (3.25) and (3.29)), it easy to 

see tiiat the integrated tenn vaiiisiies. If M < AT + / , we sliaii continue tiiis procediire M - 1 

tinies (all the integrated teniis shall vanish), tiien 

(3.34) fjL(t)ff^'\sc)ät=(-)*' limfjLJt)/f^"(st)dt 
—•'0 

wiiere p = v - M (forM < K + 1). If M > K + 1, v/c iise above procedure K + I tiines, i.e. 

we have 

rL(Off!%t)dt=(-f" lim 
(3.35) ^ 

In the foilowing, we shall use equations (3.19) and (3.18) in tum, and noting that all the 

integrated terms vanish as ß satisfies (2.10) and (2.11), we have 
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(3.36) fjL(t)N^'\st)dt=(lr lim 
S o-

wliere p = n \f M = K + 2k or p = n - l U M = K + 2k + 1 (k > I is di posilive integer). 

Now we wisli to show that 

exists. We write 

(3.37) + 

By siibstitiHing (3.28) into (3.20) to (3.23), it caii be .seen that 

(3.38) L^(0 = f : d ^ f - Y - K t ) - f : 
n-O n>0 

where d„ are constant coefficieiUs. Substituting (3.38) into (3.40), we Imve 

(3.39) 

n-O ' 

Froin the asymptotic properties of G"'(t) (see (3.26)) and Ln,(t) (see (3.25)), and assuinptiun (iii), 

it is easy to see tiiat all the integrals on tiie right hand side of (3.39) exists. Thus 

exists. Consequently, froni (3.36) (er (3.34)), we have 

(3.40) , 

Conibining equations (3.40), (3.17) and (3.9) gives eqiiation (3.1). 

For the second part of theoreni 1, we only require to prove that 0(s ") = For 
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this purpose we inay assuine tliat 0„.;fi7jsatisfies equations (2.15), (2.16) and (2.17) wiih /; = 
N -1. Applying leinma 1, and noting that <i> f,.,(it) ~ M„ < A/,we have 

_ l/Xc«)'""''/'! — irwf*'"''/'! — -
lim s lim slim slim =0 

B 

As 

Jo " 2 2 2 2 

it follows that 

This conipletes the proof of the second part of theoreni 1. 

By noting that 

i i 
I - - v n - - H 

(3.41) = ^ Hf\ze ^ ) . 

it is easy to see that we can establish tiie siinilar results for the asymptotic expansions o f / / / ' ' -
transfonns. This is consequently the following theoreni: 
Theorem 2 Let the functions f(t) and </>„Wsatisfy the conditions enunierated in section 2 (in 
present case, H/t) = HJ-'(i), and for tiie sign ± , we only take the sign -), then 

(3.42) F , ( s ) = C ° H l \ t ) M d t = - e ^ ^ ' E^n'^n'i'') * ^ 0(5 *') , 

If further ~ C / i ' , t ^ 0* , where C,and A/_, < M are constants, then 
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t <1-0 
(3.43) ^ , 

To prove this theorem we write 

(3.44) Fp )= j^H^^ \ s t )G( t )d t + f ' H ' ' \ s t ) L m 

For the first integral on tlie riglit liand side of (3.44), by rotating tlie integration path to tlie 

lower-half iinagiiiary axis, it can be sliown that 

(3.45) E ^ n ' ^ ' n V ) + o(,<Sfi,(s)) . 
n-O 

For the second integral on tlie rigiit iiand side of (3.44), by integrating by parts, it can be siiown 

that 

(3.46) j \ { t ) H l \ t ) d t = a i s ) " f \ ^ t ) H ' ^ \ s t ) d t = 0 { s - ' ' ) , 

The detaiied procediire used to derive (3.45) and (3.46) is very siniilar to that used to derive 

(3.17) and (3.40), we thus oniit the details. Combining (3.44), (3.45) and (3.46) gives (3.42). 

The second pari of theorem 2 can be closely proved by the niethod used to prove the second part 

of theorem 1. 

Noting that 

(3.47) 

We see that the asymptotic expansions of Y, - transfonns can be obtained by combining the 

results of theorem 1 and theorem 2. However, as there are both H ' " - transfonns and -

involved, we have to impose conditions on both <t>Jit) and <t>„(-il). 

Theorem 3 Let the function f(t) and <t>Jt) satlsfy the conditions eninnerated in section 2 (In 

present case, QJt) = YJt), and for the sign + , we take both the sign + and the sign -), then 
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n „,n It „-0 (3.48) Jo „ „ 

If fiirther <l)^.,(il) - C / ( r ' or (i>^.i(-it) ~ i - 0*. where C„ C„ < M and M, < M 

are constants, tlieii 

V'*^) t B-O t n=0 

To prove (Iiis tlieorem we write 

(3.50) 

The first two integrals on tlie riglit hand side of (3.50) liave been evaluated previoiisly (.see 

(3.17) and (3.45)). The last integral can be treated by the sanie inetliod iised to handle tlie last 

integral on the right hand side of (3.9). The secoiid part of theoreiii 3 can be closely proved by 

the niethod used to prove the second part of tlieorein 1. Here, we oinit the detaiis. 

4. The asvmptutic expaiisioiis of .1, - t ransforms 

The asymptotic expansions of J, - transfoniis (Hankel traiisfoniis) can bc oblained 

siiiiilarly by noting that 

(4.1) J , ( z ) = | ( i / " ' ( z ) + w f ( z ) ) . 

However, 

which is different from the asymptotic properties of Hj"(z) (= 0(z"), z-* 0) and Hj-'(z) 
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(= O(z '), z -* 0). Consequeiitly, tlie conditioii iniposed on f(t) and <t>„(t) are soinewhat dilTerent. 

We inodify the assumptions enuinerated in section 2 as follows: 

(i), (ii), ( iv), (v ) and (v i ) are sanie as tliose for Y, - transfonns. 

{iii)f">(t) = o(t "-), t oo, n=0, 1 M-1; and 

are assiimed to be unifoniily convergent for i iarge enougii for each n = 0, 1, ..., M. 

(vii) 

(4.3) V ) = 0 ( f ' ' ) . V ± i 0 = O ( f l ' ) , /-O-

(4.4) (t)J?(f)=o(f''-o , <j)5?(±(0=o(f''"ö • 

where ß > a. 

Theorem 4 Let tiie functions f(t) and <t>„(t) satisfy the conditions enumeraled above, tlieii 

r4 F,(s)=f 'j^(stmdt= - e aX^s^^e ^ a^Xs) 
(.^-S) n „ 0 B-o 

I f fiiitiier <t>f,.i(U) ~ C / t ' or <t)N.iHt) ~ C/'i', t-* 0*, where C „ C,, M„ < M and M, < M 

are constants, then 

, -ivn'v-' , ivn 

(40 ) IX „.0 " n-O 

+ 0(<I>;,.l(s)) + 0(<I>;.,(i)) , 

Proof 

We write 
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where GftJ and LftJ are defined by (3.5) and (3.6). The first two Integrals on tlie riglit hand side 

of (4.7) liave been evaluated before (see (3.17) and (3.45)). To evaluated the last integral, we 

introduce the following fiuictions defined by: 

(4.8) P^{t)=L{,t)=m-G{t) 

(4.9) + (v+y>- 'P . . , (0 , y=l,....M. 

It can be seen that 

(4.10) P(,(0 =0(4 .^0)=0( tP) . f -0* 

From assumptions (ii) and (vii) and equations (3.6), (4.8) and (4.9), it follows that 

(4.11) ? / 0 = O ( / ' ' - 0 , j=l,...M. 

By substituting (4.8) into (4.9), we have 

(4.12) w i f - ' f K t ) - ^ . j=\,.M. 
i.=0 n=0 

where o,/ are constant coefficients. Front assuniption (ii) and eqiiation (3.26), it can be seen that 

' (4.13) , t - * ^ , 7=0,1....,W-1. 

New we can treat the third integral on the right hand side of (4.7). We write 

(4.14) f^X(.st)Ut)dt 

Using the fomiula 



36 Ddi 

(4.15) 
dz 

and integrating by parts oiice, we liave 

(4.16) • 

Noting that 

(4.17) J,(z)~ 
nz 2 4 

and iising equations (4.2), (4.10) and (4.13), it can be seen that the integrated (enn vanishes. 

Continuing tliis procedure M-1 tiiiies (all the integrated teniis vanisli), we obtain 

(4.18) fjL([)J^(sl)dHl)» lim fJP^t)/f"\st)dt 

It can be shown that 

exists. Indeed, by using equation (4.12), we have 

M 

By assumption (iii) (in section 4) and the asyniptotic properties of Pn,(i) and G""(l), it is ea.sy to 

see tiiat all the Integrals on the right hand side of (4.19) exists. Thus 
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(4.20) f ' j ^ ( s t )Ut )d t=m' ' f^P^ t ) J^ .u{s t )d t=0( , s - ' ' ) , 

Conibiiiing equations (4.7), (4.20), (3.17) and (3.45) gives equation (4.5). 
For tlie second part of theorem 4, we only require to prove that s " = or s " 

= The proof is very similar to that of the second part of theorem 1. We omit the 
details here. 

We point out that the coiidition or - c > in assuniption (vi) is stronger than necessary 
as JJt) = 0 ( f ) (i> S 0), t o*. What is actually required is that a + v > -7. In practice we 
couid iiiake certain modifications to include the case a + v > -1. For instance, we niay 
introduce two functions f,(t) a n d a n d write 

(4.21) m = m * f ß ) 

such that f,(t) satisfies all the requireiiient of theorein 4 and the - transfonn o f f 2 ( t ) exists and 

can be explicitiy evaluated. Then 

(4.22) • 

By applying theorem 4 to the J, - transfonn o f f , { t ) we can consequentiy oblain the asymptotic 
expansion of the J, - transfonn of f(t). 
Example The asymptotic expansions of the H,'" -, H,'-' Y, - and J, - transfonn of the 
following function 

f Y , ( f ) 
At)= , li>Y>l • 

(l+f)" 

(\)Hi"' - transfonn case 
We have 

(1+0'' «-0 /i-o 

where 
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We note tliat, due to the asyniptotic beliaviour of Y i ( i ) , (t>Jt) camiot be expandecl in (he lonn ol" 

(1.6), tlius, the methods in literature (Woiig 1976, Soni 1982) are not applicable to this exaniple. 

Here we apply our results. 

It is easy to check tliat all the conditions of theoreni 1 are satisfied (we take M = N = 

2 k + l ( k > 1 is an integer) first, and then let k tend to infinity). So we have 

N-l 

- E 
• n=0 

where 

" 11/1=0 

... , .n*y*l 

In obtaining the above equation, use has been made of tiie following relation 

. TT 

Using the fomulas given by Oberhettinger (1974, pl24) , we have 

•'O 2 2 J— 5 - - 1 

Jo ' ' 2 2 2 i 

Where p\(s) is the Legendre function. Tlius, letting k tend to infinity, we have 
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as 5 ^ + oo. 

- transfomi case 

Applying tlieorein 2, we liave 

2 / A Aß. 

wliere 

Using tlie above-ineiUioned foniiula given by Oberhettinger (1974), we have 

(1+0'' 2 2 s ^ - i 

2 2 2 2 

as J -» + oo. 

(iii)y, - traiisfonii case 

Froin theorein 3, we have 

( i+f)" 

Using the above-obtained results, we have 

It"-' n=0 2 2 2 2 j Z.V 

as J -» + oo . 

(iv)y, - transfonn case 

Froni tlieoreni 4, and using tiie above-obtained results, we iiave 
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(l+f)** "«=0 ^ 2 2 — .V--] 

„=o 2 2 2 2 I 

as i ^ + oo. 

Acknowledgement 

The author would like to thank Professor D. Naylor for Iiis critical reading of tlie llrst 

mamiscript and valuable comments. Tlie paper was written when the author was a postdoctoral 

fellow in the Department of Applied Matheinatics of the University of Western Ontario and was 

supported by NSERC fiiiids. He is also gratefui to tlie refree for vahiabie comments. 

Refereiices 

1. Abramowitz, M. and Stegun, I. A.: Handbook of Matheinaticai Functions, Applied 

Matheniatics Series 55, New York: National Bureau of Standards, 1974. 

2. Dai, H.-H. : On the general asymptotic expansions of - transfonns. Applicable Analysis, 

46, 157-174(1992). 

3. Dai, H.-H. and Naylor, D.; On an asymptotic expansions of Fourier Integrals, Proc. R. Soc. 

Lond. A., 436, 109-120(1992). 

4. Handelsman, R. A. and Lew, J. S.: Asymptotic expansion of a class of integral transfomi 

via Meilin transfonns, Aich. Rational Mech. Anal., 35, 382-396(1969). 

5. Naylor, D.: On an asymptotic expansion of the Kontonrovich-Lebedev transfonn. Applicable 

Analysis, 39, 249-263(1990). 

6. Oberhettinger, F. : Tables of Mellin Transfonns, New York: Springer-Verlag, 1974. 

7. Olver, F. W. J.: Error bounds for stationary phase approximations, SIAM J. Math. Anal., 

5, 19-29(1974). 

8. Soni, K.: Asymptotic expansion of the Hankel transfonn with explicit reniainder tenn, 

Quart. Appl. Math., 50, 1-14(1982). 

9. Soni, K. and Soni, R. P.: A note on summability and asymptotics, SIAM J. Math. Anal. 16, 

392-404(1985). 

10. Watson, G. N.: Theory of Bessel Functions, 2nd ed., Cambridge: Cambridge University 



Asymptotic Expatisiotis of Bessel Trattsforms 41 

Press, 1958. 

11. Wong, R.: Error bouiids for asymptotic expansions of Hankel transfoniis, SIAM J. Math. 

Anal.. 7, 767-770(1976). 

Department of Applied Matiiematics' 

The University of Western Ontario 

London, Ontario 

Canada N6A 5B9 

'Ciirrent address: 

Department of Applied Matiiematics 

University of Manitoba 

Wiiinipeg, Manitoba 

Canada R3T 2N2 





Analysis 14,43-56 (1994) Analysis 
e R. Oldenbourg Verlag München 1994 
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Abstract: SufBcient conditions have been obtained for oscillation of all solutions of a class 
of coupled hyperbolic differentiaJ equations of neutral type. 

Subject Classification: (AMS 1991) 

1. Oscillatory behaviour of solutions of hyperbolic difFerential equations of neutral type 
has been studied by several authors in recent years (see [2, 4, 5, 8, 9] and the references 
therein). As coupled hyperbolic equations occur in many mathematical models in physics 
(see [6]), it seems interesting to study the oscillation of solutions of such equations. It 
appears to the present authors that the study of oscillatory behaviour of solutions of cou-
pled hyperbolic differential equations of neutral type has not been imdertaken before. It 
is interesting to note that the present study is applicable to a class of coupled nonlin-
ear Klein-Gordon equations ([3, 6]) which describe the motion of charged mesons in an 
electromagnetic field. 

We consider coupled hyperbolic differential equations of neutral type of the form 

- [ai A u ( i , t) + «2At/(x, < - Ti) -)- «3 Av(x, t) onAv{x, t - T2)] 

(1) + Cl{x,t,u{x,t),u{x,t- <Tl),v(x,t),vix,t- <72)) = f l { x j ) 

and 

vtt{x, t) + S2 Vtt(x, t - P2) + Vt{x,t - 62) 

- Ati(a:, t) + ßi^uix, t - n) + ß^Avix, t) ß4Av(x, t - u)] 

(2) + C2(x, t, u(x, t), u{x, t-az), v(x,t), v(x, t - (7^)) = f2{x, t) 

(x,t) € Q := Q X (0,oo), where ft is a bounded domain in R" with smooth boundary 
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r : = and A is the Laplacian in R", with boundary conditions 

du dv 
( S i ) = r x ( o , o o ) 

&u dv 
(B2) ^ + f J i ( x , t ) u = r/>i and ^ + v = V2 on r x ( 0 , o o ) 

( ß s ) u = and V = ri>2 on F x (0,00) , 

where and are real-valued continuous functions on T x (0,oo), /Ji and m are 
non-negative continuous functions on F x (0,00) and v denotes the unit exterior normal 
vector to F. 

A pair of functions {u{x,t),v{x,t)) such that each of u and v € C^(f2 x (—mi, 
00)) n X (—m2,oo)) is Said to be a Solution of the problem (1,2), ( 5 , ) , i = 1 ,2 , 3 , 
if the equations (1) and (2) and the boundary conditions (ß,), i = 1 , 2 , 3 , are satisfied 
simultaneously, where mi = max{/()i,/92,''i,T2,T3,T4} and m2 = max{<7i, <72,03, C4,öi, Ö2}. 
A real-valued continuous function w(x,<) in Q is said to oscillate in Q if for every to > 0 
there exists a point (xi ,<i) € Qto = ß x {to,oo) such that w(xi,ti) = 0. A Solution 
(u(x,t),v(x,t)) of the Problem (1,2), (Bi), i = 1 ,2 ,3 , is said to oscillate in Q if u{x,t) 
or v{x,i) oscillates in Q. It is said to oscillate strongly in Q if each of u(x,t) and v(x,t) 
osciUates in Q. 

The following assumptions are made for the work in this paper: 

(Ai) ci(x,<,^i, $2,'?i,'?2) and C2(x,<,^i,f2,'?i,'?2) are real-valued continuous functions 
in 0 X IR'* such that 

... / w f . / > 0 if and € (0,oo) 
(0 if I ^„d ^ € ( - 0 0 , 0 ) 

(ii) 
> 0 if 7?i and 772 € (0,oo) 
< 0 if 771 and J 7 2 e ( - o o , 0 ) 

(•^2) fi{x,t) and f2(x,t) are real-v2ilued continuous functions in Q. 

(A3) a2,Q3,ai,ßi,6i,62,'n,'r2,Pl,p2,^i,62,cri,<T2,<73,ai,Ti,T2,T3,T4 are non-nega-
tive constants, ßi ,ß2 are non-positive constants, a i ,ß3 are positive constants. 

(A4) a2,a3,ai,ßi,ß2,ß4,6i,62,'l\,l2,pi,P2,0i,62,ai,a2,a3,<7i,Ti,T2,T3,u are non-
negative constants, ai,/?3 are postive constants. 

(As) To = max{^i,^>2,öi,Ö2,Ti,r2,r3,r4,CTi,<r2,cr3,<^4}-
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It is well-known (see [1]) that the first eigenvsilue Ai of the eigenvalue problem 
—Au> = Aw in n, u) = 0 on dQ is positive and the associated eigenfunction (p{x) is of 
consteint sign in ß and hence may be chosen positive in Q,. We shall assume: 

(i) ( a i + Ä ) ' > 4 ( a i / 3 3 - a 3 ^ i ) , 

(ii) aißz > ßiOi 

which ensures the tot{d hyperbolicity of Eqs. (1) and (2) (see [7]). 

We use the following notations in the sequel: For u and v € C^{Q) H C'(Q), we 
denote 

!/{<)= f u(x,t)dx, t>0, V ( t ) = f v{x,t)dx, t>0 
Ja Jn 

Ü{t)= [ <p{x) u(x,t)dx, <>0, V{t)= [ ^(x) v(x,t)dx, t>0. 
Jn Jsi 

Further we denote 

= J^ i = h2, t>0 

4>i{t) = 1 = 1,2, t>0 

Fi(t)= f fi(x,t)dx, i = l,2, < > 0 
Jn 

Fi(t)= [ ^{x) fi{x,t)dx, 1 = 1,2, t>0. 
Ja 

We obtain the following results in this work. 

T H E O R E M I Suppose that (Ai),(>l2),(A4),(>l5) hold. If 

1 /•' 
liminf — - / ( < - s ) [ F , ( 3 ) + qi«' i(5) + 0 2 ^ - 1 ( 3 - T i ) +03^-2(5) + « 4 

<—00 t-to Jt^ 
( f f l ) = - 0 0 , 

and 
1 ft 

limsup — — / ( < - s ) [ F i ( 3 ) + ai ' l ' i (s) + a 2 ' J ' i ( 3 - r i ) +03^-2(5)+ 0 4 - r 2 ) ] < i s 
t->oo t — to Jto 

(Hi) = 00 , 

or, if 
1 /•' 

liminf — — / ( t - s ) [ F 2 ( s ) + ß,<S!i{s) + ß2<i , (s -T3) + ß:i<S>2(s)+ßi'i2(s-u)]ds 
t-00 t-to Jto 

{H3) = - 0 0 , 

and 
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1 f* 
limSUp — — / { t - s ) [ F 2 i s ) + ß l ^ l { s ) + ß 2 ' a i { s - T 3 ) + ß3<l!2is) + ßi<b2{s-u) ]ds 

<-oo t - to Jto 
(H,) = oo , 

for any fo > 0, then all solutions of the problem (1,2), ( ß i ) oscillate in Q. 

T H E O R E M I I Suppose that ( A i ) , M 2 ) , ( A 4 ) , ( y l 5 ) , ( i f , ) - ( i f 4 ) hold. Then all solu-
tions of the problem (1,2), { B i ) oscillate strongly in Q. 

T H E O R E M I I I Let the conditions (>l i ) , (^2), (^Is) and (A5) be satisfied. If { H i ) -

{H4) hold, then all solutions of the problem (1,2), {B2) oscillate in Q. 

T H E O R E M I V Let (Ai), (A2), (A3) and {A^) hold. If 

1 /•' -
liminf - — - / i t - s ) [ F i i s ) - a i < i ! i { s ) - a 2 ^ i ( s - T i ) - a 3 < a 2 ( s ) - a i ' i f 2 { s - r 2 ) ] d s 

t^oo t - to J,^ 

- —00 , 
1 /•' - - - - -

liminf — - / ( < - s ) [ F 2 ( 5 ) - A ^ l ( ä ) - i 8 2 4 ' l ( « - r 3 ) - A ^ ' 2 ( 3 ) - / ? 4 « ' 2 ( 3 - T 4 ) ] d 3 
<-00 t - to Jt„ 

= -00 , 
1 /•' - - - - -

limsup — — / ( < - s ) [ F , ( s ) - a i « ' i ( Ä ) - « 2 ^ 1 ( 5 - T i ) - 0 3 4 - 2 ( 5 ) - a 4 « ' 2 ( 5 - r 2 ) ] c ( ^ 
t^oo t — to Jt^ 

= 00 , 

and 
I r* - - - - -

limsup — - / ( t -5 ) [F2 (a ) -/3 i4 ' l ( 5 ) -/324 ' l ( 5 -T3 ) -Ä*2 (ä ) -/?44 '2 (5 - r4 ) ] d5 
<—00 t — to Jta 

— 00 , 

for any <0 > 0, then all solutions of the problem (1,2), (S3) oscillate in Q. 

2. This section deals with the formulation of the problem. We need the following 
lemmas in the sequel. 

L E M M A 2.1. Suppose that (AO(z) , (A j ) , (A4), (^Is) are satisfied. If iuix,t),v(x,t)) 

is a Solution of the problem (1,2), ( ß i ) such that u{x,t) > 0 in Qt„ for some <0 > 0, then 
the function U{i) satisfies the differential inequality of neutral type 

y"(<) + ^i y " ( < - P i ) + 7i y'it-ff,) 

( 3 ) < Fi(t) + a i « ' i ( t ) + a2<ai{t - n ) + 03^2^ + a^^^iit - T2) 

f o r t>to + To. 
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Proof. Let t > <o +To. Integrating (1) with respect to x over the domain fl we obtain 

U'\t) + 6, + U'it-Bi) 

<Fi{t)+ai I Au{x,t)dx + a2 / Au{x,t-Ti)dx 
Ja Ja 

+ «3 / Av{x,t)dx + a4 I Av{x,t - T2)dx . 
Ja Ja 

Green's fonnula yields 

^ Au(x, t)dx = = = 

and 

^ Au(x, i-r,)dx = r, )ds = J^M^J - T,)ds = <b,{t - r,) . 

Thus we have 

< Fi{t) + ax <biit) + a j $i(< - r,) + «3 + Q4 - Ti) 

for < > <0 + To. 

Hence the lemma is proved. 

LEMMA 2.2. Let the assumptions hold. If {u{x,t),v{x,t)) 
is a Solution of the problem (1,2), (Bi) such that v{x,t) > 0 in Qt„ for some <0 > 0, then 
the function V'(<) satisfies the difFerential inequality of neutral type 

(4) < F2{t) + ßl'Ülit) + ß2<i/l(t - Tj) + ßi'Üiit) + - n) 

for t>to + To. 

The proof proceeds in the lines of that of Lemma 2.1 and hence is omitted. 

LEMMA 2.3. Let the assumptions (Ai)(i), (A2), (A3), (As) hold. Let (u(i, t), «(x, f)) 
be a Solution of the problem (1,2), (S2). If > 0 and v{x,t) > 0 in Qt„ for some 
<0 > 0, then the function U{t) satisfies the inequality (3) for « > <0 + To- If u(x,t) < 0 
aaid v(x,t) < 0 in Qt„ for some to > 0, then the function —U(t) satisfies the differential 
inequality of neutral type 

y"(t) + ^i y " ( < - P i ) + 7i y\t-0,) 

(5) < -[Fi{t) + 01*1(0 + a2^i{t - n ) + as'iiit) + «44-2(4 - rj)] 

for t > to + To-
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L E M M A 2.4. Suppose that ( ^ i ) ( t t ) , (.42), (Aj) , {Ai) hold. Let (m(x, <), v{x,t)) be a 
Solution of the problem (1,2) (B2). If u{x,t) < 0 and v{x,t) > 0 in Q«, for some tp > 0, 
then the function V{t) satisfies the inequality (4) for < > <0 + To- If u{x,t) > 0 and 
v{x,t) < 0 in Qto for some to > 0, then the function —V(t) satisfies the inequality 

y"(<) + ^ 2 y " ( < - P 2 ) + 72y ' (<-Ö2) 

(6) < - [F2 ( t ) + ßl9l(t) + ß2^l(t - Ts) + ßi^iCt) + - u)] 

for t>to + To. 

The proof of eeich of the Lemmeis 2.3 and 2.4 is similax to that of Lemma 2.1 and 
hence is omitted. 

L E M M A 2.5. Let the assumptions (^i)(i), (Aj) , (>13), (A5) hold. Let {u(x,t),v(x,t)) 
be a Solution of the problem (1,2), (B3). If u{x,t) > 0 and v(x,t) > 0 in Qt„ for some 
to > 0, then the function Ü{t) satisfies the inequality 

y"{t) + 6, y " ( < - / , ! ) + 7 1 y'it-ßi) 

(7) < Fi{t) - a i^ -Kt) - a2'I'i(< - n ) - a34'2(<) - a442(< - T2) 

for t > to + Tq. If u{x,t) < 0 and v(x,t) < 0 in Qt„ for some to > 0, then the function 
—U{t) satisfies the inequality 

y"{t) + 6i j , " ( f - p , ) + 7 i J / ' ( < - f i ) 

(8) < -[Fi(<) - a j ^ i i t ) - - n ) - - - T2)] 

for t>to + To. 

Proof . Let t > to + To. Multiplying (1) through by ip{x) and integrating the resulting 
identity with respect to x over the domain ü, we obtain 

Ü"{t) + 6^ + Ü'{t-0i) 

<Fi(t) + ai / ip{x) Au{x,t)dx + 02 / <fi{x) Au{x,t-ri)dx 
Jo Jsi 

+ aj I <fi(x) Av(x,t)dx + a^ 1 ifi{x) Av(x,t - T2)dx . 
Jn Jn 

Applying Green's formula we get 

^ ip{x) Au(x, t)dx = u(x, t) ^{x)dx 

= Ü{t) 

and 
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J^ V'(x) A u ( i , t-Ti)dx = - d s - X i J^uix,t-n) .fi{x)dx 

= -*l(<-ri)-Ai Ü(t-n). 

Thus we have 

ü"{t) + s, ^0 + 71 ü'{t-e,) 

< Fi(t) - ai4'i(<) - - TJ) - a^^i i t ) - - r j ) . 

Thus the first part of the lemma is proved. The proof of the second paxt of the lemma 

proceeds as above. 

Hence the lemma is proved. 

L E M M A 2.6. Suppose that the conditions (Ai ){ii), (^2), (^3) and (A5) are satisfied. 

Let {u{x,t),v{x,t)) be a Solution of the problem (1,2), (83). Uu{x,t) < 0 and v{x,t) > 0 

in Qt^ for some to > 0, then the function V(t) satisfies the inequality 

(9) < F2(i) - - - Ts) - ß3^2(t) - ß4^2(i - U) 

for < > <0 + If > 0 and v(x,t) < 0 in for some to > 0, then the function 

—V(t) satisfies the inequality 

y"(t) + y"(t-P2) +72 y'(t-^2) 

(10) < -[F2(<) - ß l ^ l ( t ) - ß2^l( i - T3) - ß3^2(t) - ß4^2(t - T4)] 

for t>to + To. 

The proof is similiir to that of Lemma 2.5 and hence is omitted. 

T H E O R E M 2.7. Let the conditions (Aj), (Aj), (A4), (^5) hold. If the differential 

inequalities (3) and (5) or if the differential inequalities (4) and (6) do not admit positive 

solutions for large t, then all solutions of the problem (1,2), (Bi) oscillate in Q. 

Proo f . Let {u{x,t),v(x,t)) be a Solution of the problem (1,2), {Bi) such that it does 

not oscillate in Q. Then there exists a to > 0 such that u(x,t) / 0 and v{x,t) / 0 in Qt„. 

Suppose that the differential inequalities (3) and (5) do not admit positive so-

lutions for large t. Clearly, u(x,t) ^ 0 in implies that u(x,t) > 0 or < 0 in Qt^. If 

u{x,t) > 0 in Qta, then U{t) is a positive Solution of (3) for t > to + To hy Lemma 2.1, a 

contradiction. If u{x,t) < 0 in Qt^, then we set ü(i,<) = —u(x,t) for (i,<) e Q. Hence 

ü{x,t) > 0 in Qt^ and {ü{x,t),v{x,t)) is a Solution of the problem 

. utt{x,t) + Si Utt(x,t- pi) + 7i Ut{x,t- öl) 

— [aiAti(a:,t) + a2^u(x , t - t i ) - a3Av{x , t ) — a i A v { x , t — T2)] 

- ci(x, t, -u{x, t), -u{x, t-ai), v{x, t), v{x, i - <72)) = - / i ( x , <) 

and 
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v„(x,<) + tf2 Vt,{x,t- P2) +Ii Vt(x,t-02) 
- l-j3iAu(x,t) - ß2Au{x,t - Tj) + ßiAv{x,t) + - u)] 

+ C2{x, t, -u(x, t), -u(x, t - f f i ) , v{x, t), t-ai)) = h{x,t) 

{x,t) € Q with boundaiy conditions 

^ = -V-i and = >̂2 on T x (0,oo) . 

Proceeding as in Lemma 2.1 one may show that U{t) is a positive Solution of (5), where 

(11) Ü{t) = f ü{x,t)dx, < > 0 , 
Jq 

a contradiction. 

If the difFerential inequalities (4) and (6) de not admit positive solutions for 
laxge t, then we proceed as above considering v{x,t) ^ 0 in to axrive at necessary 
contradictions. 

Hence the theorem is proved. 

T H E O R E M 2.8. Let the conditions (^i),(^2),(^4),(^Is) hold. Suppose that none 
of the inequsthties (3), (4), (5) and (6) admit a positive Solution for large t. Then all 
solutions of the problem (1,2), (Bi) oscillate strongly in Q. 

Proof. Assume the contrary. So there exists a Solution (u(i, <), v{x, <)) of the problem 
(1,2), (Bi) which does not oscillate strongly in Q. Thus u{x,t) or v{x,t) does not oscillate 
in Q. If u{x,t) does not oscillate in Q, then there exists a <0 > 0 such that u{x,t) > 0 or 
< 0 in Qto- If u{x,t) > 0 in Qt^, then from Lemma 2.1 it follows that U{t) is a positive 
Solution of (3), a contradiction. If u(x,t) < 0 in then setting ü(x,f) = ~u{x,t) and 
proceeding as in Lemma 2.1 it may be shown that U{t), given by (11), is a positive Solution 
of (5), a contradiction. Similar contradictions may be obtained with the help of Lemma 
2.2 if v(x,t) does not oscillate in Q. 

Thus the proof of the theorem is complete. 

T H E O R E M 2.9. Let the assumptions (v4i), (A2), (^3), (^5) hold. If the inequalities 
(3), (4), (5) and (6) do not admit positive solutions for large t then every Solution of the 
problem (1,2), {B2) oscillates in Q. 

P r o o f . If possible, suppose that {u{x,t),v(x,i)) is a Solution of the problem (1,2), 
{B2) which does not oscillate in Q. So there exists a <0 > 0 such that u{x,t) ^ 0 and 
v{x,t) / 0 in Qta- If u{x,t) > 0 and v{x,t) > 0 in Qt^, then U{t) is a positive Solution of 
(3) for < > <0 + by Lemma 2.3, a contradiction. If u(x,i) > 0 and v{x,t) < 0 in Qt^, 
then —V{t) is a positive Solution of (6) for t > <0 + ^o by Lemma 2.4, a contradiction. If 



Oscillation for coupled hyperbolic equations 51 

u{x,i) < 0 and v{x,t) > 0 in then from Lemma 2.4 it follows that V(<) is a positive 
Solution of (4) for < > <o + ^o, a contradiction. If u{x,t) < 0 and v{x,t) < 0 in Qt^, then 
from Lemma 2.3 we conclude that —U{t) is a positive Solution of (5) for t > to + To, a 
contradiction. 

Thus the theorem is proved. 

T H E O R E M 2.10. Suppose that (Ai) , ( i42) , (A3) , ( i4s) hold. If the inequalities (7), 
(8), (9), (10) do not admit postive solutions for laxge t, then every Solution of the problem 
(1,2), (ß s ) oscillates in Q. 

The proof follows from Lemmas 2.5 eind 2.6. 

3 . In this section we obtain sufficient conditions so that differential inequality of neutral 
type 

(12) y"{t) + A, y"{t -p) + X2 y'{t - 6) < g(t) , 

where Ai > 0, A2 > 0, ^ > 0, ö > 0 and g(t) is a real-valued continuous function on (0,00), 

does not admit a postive Solution for large t. We also prove Theorems I-IV. 

L E M M A 3.1. If 
1 

liminf / {t — s) g(s)d3 = —00 
t-^00 t - to Jt„ 

for every to > 0, then (12) does not admit a positive Solution for large t. 

P r o o f . If possible, let y{t) be a Solution of (12) such that y(t) > 0 for < > «o > 0. 
Integrating (12) from ti to t, where t > <1 > <0 + max{^, 0}, we obtain 

y'{t) + Ai y'{t -p)< y'{t) + Ai y'{t - p) + X^ y{t - 6) 

< ci + / g{s)ds , 
Jti 

where ci is a constsint. F\irther Integration from to t yields 

0 < yit) + Ai y(i -p)<c2 + ci(t - t i ) + [ (t- s) g{s)ds , 
Jti 

where C2 is a constant. Thus 

0 < liminf - i — [y(t) + Ai y(t - p)] < -00 , 
1—^00 t — t j 

a contradiction. Hence the lemma is proved. 

P r o o f o f T h e o r e m I. It follows from Lemma 3.1 and Theorem 2.7. 
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Proof of Theorem II. It foUows from Lemma 3.1 and Theorem 2.8. 

Proof of Theorem I I I . It follows from Lemma 3.1 and Theorem 2.9. 

Proof of Theorem I V . It follows from Lemma 3.1 and Theorem 2.10. 

Remark. We may note that Theorems I-FV are applicable to nonlinear Klein-Gordon 
equations 

Utt — Au + a^u + g^ v^u = 0 
Vtt - A v + ß \ + u^v = 0 

(x,<) 6 Q, where a , ß , g Eind h are non-zero constants, with boundary conditions (B;), 
i = 1,2,3, given in Section 1. 

The following remark is useful for cur examples. 

Remark. If 
1 f \ 

then 

1 f 
liminf - / {t - s) G{3) ds = —oo , 

+00 t Jo 

1 /•' liminf / (t — s) G{s) ds = —oo for any large <o > 0 . <-+oo t - <0 
Indeed, for large to > 0, we can write 

^ l \ t - s ) G{s) ds = ^ J \ t - s ) Gis) ds - ^ J \ t - s ) G(s) ds = 

' l j \ t - s ) G { s ) d s - j ^ j \ t - s ) G i s ) d s . 
t - t o 

We may notice that 

and 

Thus 

I fto fU 
l i m / ( t ~ s ) G ( s ) d s = G ( s ) d s , 

t — to Jo Jo 

\ f* t \ f* 
liminf / (t - s) G(s) ds = liminf / (t - s) G(s) ds = - o o 
<—+00 t — toJo <->+oo t - t o t Ja 

t 1 /•' 
- — - > 0 and liminf - {t - s) G{s) ds = —oo . 
t — to t—+CX) t Jo 

1 r' 

> liminf f (t-3) G{s) ds + liminf — V / V - ds . 
<_+oo t - to Jt^ 1-+00 t-to Jo 
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The following examples illustrate our results. 

E xamp l e 1. Consider the problem 

'Utt{x,t) + i Utt{x,t- n) + Ui{x,t - ir) 

- Au(x, t) + Au{x, t-ir) + Av{x, <) + Au (x, t - 0 

+ u{x,t) + u(x,t-Tr) 

= 2{e~'-l) e'sin t sin 1 + ( 2 - 3 6 " " ) e'costsina; 

+ e' sin t cos x — e* cos t cos x 

53 

(13) 

and 

Vtt{x,t) + - Vtt{x,t - tt) + Vt{x,t - tt) 

(14) 

Au(x, t) + Au{x, t-ir) + Av{x, () + A ü (x, < - 0 

= 2(1 - - e'costcosx + (2 — e"") e ' s i n t cos i 

+ (1 - e"") e 'costs inx 

(x,t) € (0, tt) with boundary conditions 

-Ur{0,t) = u^(n,t) = - e ' c o s t 

and 

(15) - V , ( 0 , t ) = V r ( ^ , t ) = 0 . 

Thus f l = (0,5r),^i(i,f) = - e ' c o s t and i/>2(x,t) = 0. Consequently, 'i'i(<) = -2e'cos< 

and = 0 , t > 0 . Further, 

F i ( t ) = r fi{x,t)dx 
Jo 

= 4(e- ' - l ) e'sin< + 2 (2 -3e - ' ' ) e'cost 

and 

Thus 

Fiit) = J^ f2ix,t)dx = 2(1 - e-') e 'cos i . 

m = ^ J\t - + + l-iCa -

= 7 / ( < - 5 ) [ 4 ( e - ' ' - l ) e ' s i n 5 + 2 ( l - 2 e - ' ^ ) e'coss]ds 
t Jo 

= 2 ( e - ' - l ) ^ ( l + t - e ' c o s < ) 

+ ( l - 2 e - ' ) i ( - t + e'sint) 

and 
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h{t) = J j \ t - 3)[Fiis) + «-,(3) + - = 0 . 

Clearly, liminf Ii{t) = —oo eind limsup Ji(t) = oo. FVom Theorem I it follows that 
oo oo 

all solutions of the problem (13, 14), (15) oscillate in (0, tt) x (0,oo). In particular, 
{u{x,t),v{x,t)) = (e 'co3ts in i , e ' s in<cosx) is an oscillatory Solution of the problem. 

E x a m p l e 2. Consider the problem 

ü„(i, t) + utt{x, < - ,r) + ü, (x, < - I ) 

- [Au(a:, t) + A«(x, t - w) + Av{x, t) + Av{x, t - 2n)] 

= 2 ( - 1 + e"" + e"'^) e ' s in t s in i 

(16) + (2 + e~2 - e " " ) e'costsin x + 2(< - tt) sin x 

and 

Vttix, t) + Vtt (x,t - + vt{x,t - 2Tr) 

- -Au{x, t) - Au{x, < - ff) + A v ( i , t) + Av (x,t -

+ vix,t) + vix,t-2n) 

(17) = 4<sinx + (e"'' - 1) e ' c o s t s i n i 

(x,<) 6 (0, ff) X (0,00) with boundary conditions 

(18) u = 0 and v = 0 on {0,7r} x (0,oo) . 

Thus ü = (0,7r),^^i(x,<) = 0 and ii>2(x,t) = 0. Consequently, = 0 and ^^{t) = 0 for 
< > 0. Here ip(x) = sinx and Ai = 1. Hence 

h ( t ) = j / i (x ,<)sinx d l 
Jo 

= Ol e' sin < + 02 e' cos f + 7r< — tt̂  

where 

and 

Ol = ff ( - 1 + e - ' + e - f ) , 02 = I (2 + e--^ - e"") 

m) = r 
Jo 

/2(x, t )s inx dx 

= ( 2 - 5 f f ) j + + ^ {e"'- l) e*cost . 
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Thus 

0 
t 

a i ( e ~ ' + t e~* + cosf) + a2{-t e~' + sint) 

eind 

+ ^ e - ' - T T ^ t" e-
o 

m = T e - ' + ( 2 - 5 x ) J t ^ e < 
+ ( e - ' - ! ) - ( - < e - ' + sin<) 

4 

Cleaxly, liminf /i(<) = —oo, limsup /i(<) = oo, liminf l2{t) — oo and limsup h i t ) = 
>oo (_oo «—>00 (—oo 

00. Hence by Theorem IV all solutions of the problem oscillate in (0, •k) X (0, oo). In 
particular, (u(x,t),v{x,t)) = (e* cost s inx ,<s in i ) is an oscillatory Solution of the problem. 

Acknowledgments 

The authors would like to thank Professor Abdus Salam, the International Atomic 
Energy Agency eind UNESCO for hospitality at the International Centre for Theoretical 
Physics, TVieste. They would also hke to thank the referee for pointing out some misprints. 

References 

1. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Vol.I, John Wiley 
and Sons: New York 1989. 

2. Kirane, M., Parhi, N.: On the oscillation of a class of hyperbohc equations of 
neutral type. Communicated. 

3. Miranda, M.M., Medeiros, L.A.: On the existence of global solutions of a coupled 
nonlinear Klein-Gordon equations. Rinke. Ekvac. 30, 147-161 (1987). 

4. Mishev, D.P., Bainov, D.D.: Oscillation properties of the solutions of hyperbolic 
equations of neutral type. Proceedings of the Colloquium on Qualitative Theory 
of Differential Equations (eds. B.S. Nagy and L. Hatvani) pp.771-780 (1984). 

5. Mishev, D.P., Bainov, D.D.: Oscillation properties of the solutions of a class of 
hyperbolic equations of neutral type. PYinkc. Ekvac. 29, 213-218 (1986). 

6. Segal, I,: Nonlinear partial diiferential equations in Quantum Field Theory. Free. 
Symp. Appl. Math. A.M.S. 17, 210-226 (1965). 



56 Parhi-Kirane 

7. Williams, W.E.: Partial Differential Equations. Oxford Applied Mathematics 
and Computing Science Series. Clarendon Press: Oxford 1980. 

8. Yoshida, N.: On the zeros of solutions to nonlinear hyperbolic equations. Proc. 
Roy. Soc. Edinburgh, Sect.A 106, 121-129 (1987). 

9. Yoshida, N.: On the zeros of solutions of hyperbolic equations of neutral type. 
DiflF. Integ. Eqns. 3, 155-160 (1990). 

N. Parhi 
Department of Mathematics 
Berhampur University 
Berhampur - 76000 
India 

M. Kirane 
Institut de Mathematiques 
Universite de Annaba 
B.P.12, Annaba 23000 
Algeria 



Analysis 14, 57 - 65 (1994) Analysis 
e R. Oldenbourg Verlag München 1994 

TRANSLATIVITY OF SOME ABSOLUTE 

SUMMABILITY METHODS 

B.Kuttner' B.Thorpe 

Received : February 25, 1993 

Abstract 
This note gives a simple set of necessary and sufficient conditions for | N,pn and | C, a, 7 |jt 
to be translative. 

1991 Mathematics Subject Classification 40F05. 
1 Introduction 

We shall be concerned with two absolute summability methods | Af,p„ |it and | C,a, 7 
defined as follows. Let J ^ ^ o "" ^ given infinite series with sequence of n-th partial sums 
(•Sn)n>o- Let p = (p„)n>o bc a sequence of positive numbers with 

n 

Pn = y ^ Pr —» 00 as n —> 00, 
r = 0 

and define A° by the identity 

n=0 

The sequence to sequence transformations given by 

(1) = 
r = 0 

(2) < = 
r = 0 

define the [ N a n d (C,q) means, respectively, of the sequence (S„) . The series Xl^o"« 
is Said to be summable | U where A: > 1, if (see [3]) 

(3) 00 

'Professor Kuttner died 2nd Jan. 1992 before Section 3 was completed. 
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and suinmable | C , a , ' i where a > —1,7 is any real number and fc > 1, if (see [6]) 

(4) !*<«:>. 
n=l 

We call IN, p„ left translative if the summability | iV,p„ of the series implies 
the summability | N,pn \k of the series J ^ ^ o " » - ! where a_i = 0. | N,p„ is called 
right translative if the converse holds, and translative if it is both left and right translative. 
Translativity of | C, a , 7 \k is defined similarly. 

The purpose of this paper is to use some recent results of Bor and Thorpe (see [4],[5]) 
to obtain simple necessary and sufficient conditions on (p„) for \N,pn \k to be trtinslative. 
This extends the results of Al-Madi in [1] to the case fc > 1. In the final section we use some 
recent results of Bennett in [2] to investigate the translativity properties of | C, a , 7 . 
2 Weighted mean methods 

Let (s„)„>o denote the n-th partial sum of the series JZ^o that s„ = s„_i where 
s_i = 0. Let (u„)„>o be the {N,Pn+i) transform of (s„)„>o and (<„)„>o be the (N,p„) of 
(5„)n>o- From the definitions we have 

1 " 1 
(5) in = -ß-^Pr^r = ^ P r + l S . , 

r=0 r=0 

(6) U„ = - B - ^ — r : ^ P r + l S , = p 
^n+1 - Po ^ ^n+1 - Po 

We use the following lemma. 
Lemma The sequence (s„)n>o is summable | N,pn U if and only if (5„)„>o is summable 

I N,Pn+l lt. 
Proof From (6) above we get that 

•Pn+l /7 7 X ?nP0Pn+l 
«n - «n-1 = -5 (in+1 " <n) " 

Pn+\-PO " " {Pn+1 - Po)iPn ~ Po)' 

Assume that (s„)„>o is summable | N,p„ By Minkowski's inequality it is sufficient to 
prove that 

(7) 

and that 

By the assumption, we know that 

(9) ut) 
Taking the limit of the ratio of the terms in the series (7) and (9), since P„^.i/{Pn+t — po) 
00 as n 00, we see that (7) is equivalent to (9) and so (7) holds. 

Similarly, (8) holds if and only if 

ut) m^) /_ p 7 1 \ * 
< 00. 
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By writing /„ = 6r we see that (9) is equivalent to 

(11) T f ^ r ' | 6 „ r < o o . 

To show that (10) holds consider 

I I I * ^ Pn+1 

Pn+1 
^ E 

\r=0 / T=0 / 

by Hölder's inequality where * + = 1) 

= E 
Pn+l 

by (11), since Pr > Po for r > 1. 
Conversely, we have 

7 7 A A / \ , PoPn+i <n+l - < „ = 1 1 - -= 1 (u„ - U„_i) + — Ü„_1. 
\ "n+1/ -Oi/^+l 

Assuming that (s„)n>o is summable | A'',p„+i we know that 

(12) 
"< oo 

so that by Minkowski's inequaJity, it is sufficient to prove that 

(13) 

and that 

(14) 
oo y 

n=l — ) { Pn+1 J \ 
Pn+1 

PnP1+1 I «n-1 l ) ' < OO. 

As before, since oo as n -+ oo, we see that (13) follows from (12). 
To show that (14) holds, let u„ = ^ri te (14) as 

^ E 
n=l 

PT>+1 

/ n - l \ * 

E i ^ ^ i 
\r=0 / 

„_1 \ */*' /„_i \ 

r=0 / \r=0 / 

59 
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by Hölder's inequality where j + ^ = 1, 

„=1 ,=0 
OO 00 

Pn+1 
< E p ' « 1 I * E 

r=0 n=r+l ^n+lPn 

^ ^S(^ ) ' " ' " ' " -

k-i 

Ibrl'j 
r+1 

< 00 

by (12). Hence the result. 
For two summability methods A,B we write A => £( if every series summable A is also 

summable B. 
Theorem 1 (a)|^,p„|t is left translative if and only if | N,Pn N,p„+i |it. 

(b) I N,pn is right translative if and only if | N,pn+\ |*=>-| N,pn 

Proof (a) Assume that | N,pn is left translative and that (s„)„>o is summable | N,p„ 

Then (I„)n>o is summable | N,Pn \k and so by the lemma (s„)„>o is summable | N,pn+i U 
i.e. \N,Pn U=>|Ä^,P„+i U. _ 

Conversely, if (s„)„>o is summable | N,Pn U then by assumption it is summable 
I N,Pn+i lib and so by the lemma (ä„)n>o is summable | N,pn i-e. | N,Pn U is left 
translative. 

(b) This is similar to (a) and so is omitted. 
Theorem 2 | A ,̂ Pn k translative if and only if 

Pn+l 

Proof From Theorem 1, | N,p„ ^ is translative if and only if | N,p„ is equivalent to 
I N,Pn+\ It. The result now follows from Theorem 2 in [5] and the fact that Pn+i ~ Pn+i — Po 
since —+ oo as n —• oo. 

3 Cesäro Methods If t ° denotes the n-th (C,a)mean of the sequence (na„)„>o then using 
the well known identity t° = n(<r° — (see [6]), (4) is equivalent to 

(15) |<|^<oo . 
n=l 

Thus, if f ^ denotes the n-th (C,a)mean of the sequence (na„_i)„>o where a_i = 0, then 
I C,a ,7 |t is left translative if (15) implies that 

n=l 

and right translative if the converse holds. The following simple examples show that some 
restriction on 7 is necessary for | C, a, 7 to be translative. The series 1 + 0 + 0 + • • • 
is summable | C ,a ,7 for a > — 1 and all real 7 since r ° = 0 for all n > 0. However 
the series O + l + O- fO- l - ' - ' is not summable | C, q, 7 |k for any 7 > 1 and a ^ 0 since 
T^ = A^Zl/A^. Thus for left translativity we need that 7 < 1 if a / 0. In a similar way we 
see that the series Xl^o"*» where a„ = v4~°"7(n + 1) has = 0 for n > 1 so that the 
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series 0 + oq + oj H is summable | C, a, 7 for a > — 1 and all real 7. Using the identity 
(a + = —(n + we can check that X l ^ o " » summable | C , a , 7 for 
any 7 ^ 1 and a ^ 0. Thus for right translativity we also need that 7 < 1 if o ^ 0. We now 
show that these necessary conditions for translativity are also sufficient. 
T h e o r e m 3 | C, a , 7 is translative if either (i) a = 0 and 7 is any real number, or (ii) 
a > —1 and 7 < 1. 
P r o o f Clearly | C, 0 ,7 is translative for all values of 7. We now assume a / 0 and that 
(15) holds. For n > 1 

^ = i E = i E + l ) a . 
" r=0 " r=0 

A" 1 ^ 
Aa ^n-1 + 4a Z-( •• 

and so we get the relation 
^ — 1 •^n-l _o-l 

n n 
Using Minkowski's inequality if fc > 1 and trivially if = 1, we see that | C , a , 7 is left 
translative if and only if (15) implies that 

00. 
n=l 

Expressing in terms of we get that, for n > 1, 

r A-a-l Aa-a 1 " ' 
'̂ n - ao + ^ 

r=l fcl 
, 1 1 IA-L A-A-1 

= « o + ^ ^ r . y l , ^ ^ . 
d=l T=d 

If we write this transformation in the form 

and assume that 7 < 1, we see that | C,a,f |jt is left translative if ß : —> /* where 

/ ,\-Y+A+l/k N .A-L A-C-I 
„ e , 0 

for 1 < d < n and 6„i = 0 otherwise. We now assume that a > 0 and use the identity (see 
p. 419 of [8] for a similar argument) 

r d rd r=d r=o r—d 

d ^ d ^ r 
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The proof now splits into two cases, a integral or not. If a is an integer we repeat this 
argument a further (a — 1) times to get the identity 

Aa—i A—a—i " ^ ^ a ( a - l ) . . . ( a - 3 + l ) . 

h d(d+l)...(d + s) 

where a(o: — 1 ) . . . (a — s + 1) is defined to be 1 if s = 0. Patting this back in (16) we see 
that a sufficient condition for | C, a , 7 |t to be left translative is that for each integer s where 
0 < s < Q, where 

—y+or+l/fc 

d{d+l)...(d+sy 

If a is positive and K < a < K + 1 {01 some integer K then we proceed as above to obtain 
(16) 2ind the identity (17) is replaced by 

r d{d^\)...{d + s) ^ 

-t-i ; ^ 
^ ^ d(d + l ) . . . ( d + K - l ) 4-, d{d + l ) . . . ( d + K - l ) 

if K >0 and we regard (19) as trivial if K = 0. The first term on the RHS of (19) is of the 
form of (17) when K > 0. For the second term in (19) we use the inequality 

n .a- l Ä-a+K-l , n 

I E I ^ ̂  E I I 
T=d+K r=d+K 

d+K 

since - 2 < - q + - 1 < - 1 , so that < 0 for m > 1. In this case we see that 
a sufficient condition for | C , a , 7 to be left translative is that for each integer 3 where 
0 < s < A", and that C : ^ l'' where 

(IN —1+a+llk ,0-1 

d(d-^l)...{d+ K)' 

In both cases, if s = 0 then is a diagonal matrix with bnn = 1/n so it clearly maps /* to 
IK 

Suppose that k = 1. Then ß*'» : / / if and only if I ^ni I = ^ ( l ) . In what 
follows we use M to denote a constant (that may be difFerent at each occurrence.) Thus, for 
1 < s < [a], 

n=l n=d 

\n=d n=2<i+l / 

n=d 

< Md--"*"-' 

/ iä 
= d-"-*-"" + 0 ( 1 ) 

\ n=d n=2d+i / 

= (o((r- '='+'- ') + o ( ( r - ° '+ ' - ' ) ) = oid-') 
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since 7 — q + s - 2 < - 1 . This gives the result for the integer case. For non-integer a we 
also need to consider the matrix C. Now 

00 00 

I I < - J + 1)"- ' 
n=l n=d 

and Splitting the sum up in exactly the same way as the previous case we get 

£ I c„d I = = 0(1) 
n=l 

ites, for 1 < s < [a] and 1 < <f < 
since a < K + 1. 

If fc > 1 we use the estimates, for 1 < s < [a] and 1 < d < n/2. 

which give 
nd — 

for 1 < d < n/2. In the ränge n/2 < d < n, we have the estimates 

Jn-d)'-^ 

n/v'+l 
Since all the terms are non-negative we have that for 1 < d < n, 1 < ä < [a] 

(21) < M ^ _ ^ 

(22) Cn, < M (rf-^+o- '^ '- i+i/V-i-V* + ( n - d + i r - ' n - " - ' ) . 

The first term on the RHS of (21) and (22) is a factorable matrix of the form a^d = 
(see p. 413 of [2].) In this paper, Bennett gives necessary and sufficient conditions for such 
a matrix to map /* to /*. By Corollary 8 of [2] we see that the first term of (21) maps /* to 
provided that —7 + a — s + l + l/fc > l /k , and the first term of (22) maps /* to provided 
that —f + 1 + l/k > l/k. Both these conditions hold since 7 < 1 and s < [a]. 

In Order to deal with the second term in (21) and (22) we use Hardy's inequality for 
Cesaro methods (see example (2) on p.275 of [7].) Suppose that {xd)d>i € Then, from 
(21) 

/ 00 n / ' 

\n=l </=l 

\ I/* / c o 
) < A/ 

/ \n=l Ld=i A'n 
vi /* 

l/k 

Xd 
d=l / 

< 

by Hardy's inequality for (C,s). Similarly, from (22) 

\n=l d=l / n=l 

/ «> 

"n-i I 

< M 

Ld=i 

IXd 
i/t 

1/* 

\d=i 



6 4 KUTTNER-THORPE 

by Hardy's inequality for (C, a). Putting these together we see that ß '* ' and C map /* to 
/*, and so | C ,a ,7 \k is left translative if a > 0 and 7 < 1. 

In the remaining case, where —1 < a < 0, we use the identity 

- „ 
r=d r=d 

SO that (16) becomes 

- 7 + a + l / A r / 4 - 1 „ 4 -< » - »N 

n 2—1 f . n n , . 
\ r=d / 

(23) 6„. = 

If fc = 1 then since A^ > 0 for x = a, —a — 1, we have 

oo , oo n-l 4-0-1 

n=d+l T=d 
oo A-a-1 oo 

r=<< n=r+l 

= I a I ) 
r—d 

so that 
If Ä; > 1 then in order to show that B : l —t / , it is sufficient to show that E : r /*, 

where 

(24) e„, = Y 
r=d 

for 1 < d < n and Cnd = 0 otherwise. In the ränge n/2 < d < n, we use the estimate 

If 1 < d < n/2 then we claim that 
0 < Y 

T=d 

To see this, let A be chosen so that 1/2 < A < 1. Then 

M Aa [•̂ '•l A-o-1 
0 < Y , < M ( n { l - X ) r Y ^ 

r=d r=d 

oo A-a-1 

< M n ^ y , 

n 40t 4-a- l 

r 
T=d 

T=d 
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= Also 

o < E < M^inix-my-^ ± 
r=[An]+l r=[An]+l 

= 0 ( 1 ) = O K ) . 

Hence, putting this in (24), if 1 < <f < n/2 then 

0 < < 

so that, if 1 < d < n, 

0 < en, < M + „-2) _ 

Thus by Corollary 8 in [2], we see that provided that - 7 + 1 + 1/Ä; > 1/fc and 
7 - a - l/A; - 7 + 1 + 1/A: > 1. Thus | C , a , 7 |k is left translative if (ii) holds. 

For right translativity we need to express in terms of f^ . Assuming that a ^ 0 we 
get 

- n+1 n 

and so | O, a , 7 is right translative if F : —» /* where 

From (16) we see that for n,d> 1, 

/nd = ^ ^ ^ f>n+\,d 

and so from the results proved above for B we have that F : —» Hence the result. 
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