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1. Introduction

Consider the problem of numerical calculation of the integral

1
(11) 1] = /_ Stz dz,

where w is a given integrable weight function. Beside Gauss type rules, i.e., Gau8}, Lobatto
and Radau rules, another quadrature method of interpolatory type frequently occurs in
the present literature — the Clenshaw-Curtis rule. For arbitrary, not necessarily positive
weight functions w . the nth Clenshaw-Curtis (product) formula

n

(12) QS =D af(z)

v=1
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is defined uniquely by having the nodes z, = — cos(v—1)r/(n—1) and by its interpolatory
property
1

(1.3) pr[p] = I[p] = / lp(:c')w(a:)d:c, for each p€ Pp—y,

where P,_| denotes the space of all polynomials of degree less than or equalto n—1. A
first reason, why to prefer the Clenshaw-Curtis formulae against Gauss type quadrature
formulae is simply that the latter may not exist if w has sign changes. The slightly higher
computational effort for the evaluation of the Gaussian formulae cannot play a serious role
when using computers.

However, the main advantages of the Clenshaw-Curtis rule may occur in situations,
when integrals with respect to different weight functions have to be computed for a fixed
given function f. Using Gaussian formulae, the function values of f have to be computed
again for each integral, since the nodes may not coincide for different weight functions. This
is of particular importance if the effort for the evaluation of function values is essentially
higher than that of the summation of the quadrature formula. The latter reason justifies
the use of a fixed nodal system.

The main argument for the special choice of Clenshaw-Curtis nodes originates in the
Lebesgue inequality,

(1.4) IRSC 1Al < IIRSC N - En—1f],

where RSC := I — QSC is the remainder functional which corresponds to the Clenshaw-
Curtis formula. Here, E,,_1[f] denotes the error of the best approximation to f from
the space P,_1. Indeed, the Lebesgue inequality in this form holds for each quadrature
formula of interpolatory type, but the norms of the corresponding remainder functionals
may be quite different. Sloan and Smith [5] have shown the important property

1
(1.5) lim ||RSY) = 2|1, if / [w(z)]P de < 0o for some p > 1.
n—oo -1

Estimates using the approximation theoretical approach (1.4) are universally applicable.
They therefore often lack some precision.

In this paper we will restrict consideration to error estimates using the supremum
norm of the n'® derivative of the integrand. The method succeeds for each estimate with
a norm of a ‘high’ order derivative of f.

Defining the error constant

(1.6) om(RGC w) := sup {IRSC A | IIF™ floe < 1},



High order error constants of Clenshaw-Curtis product rules 3

we obtain by (1.4) and (1.5) that

) const
(1.7) on(RYC ) < ooy

holds for each weight function w, which satisfies (1.5). For w(z) =1 we can improve
upon (1.7) by a factor of the order n=3 (cf. Bra$ and Férster [2] and Fiedler [3]) and
further results of this type are given in the sequel.

Of course, for positive weight functions, the Clenshaw-Curtis rule has to compete
with the Gaussian rule, (RS)_ N » Which satisfies

G 1
(18) (B 0) S o
(cf. BraB and Férster [2]). We may therefore ask , under which assumptions the improve-
ment of the best possible error estimate of the Clenshaw-Curtis rule upon (1.7) is only
polynomial for increasing n or under which assumptions it is exponential. Qur investiga-
tions show that in general, at most a polynomial improvement is possible, while we win
a factor of exponential order if w = w; - wy, where w; is the Gauss-Chebyshev weight
function, w{z) = (1 - z2)_1/2 , and wy is analytical.

We conjecture that, for each fixed nodal system, there is at most such a small class
of weight functions, which yields' an exponential improvement upon the standard estimate

(1.7), as for the Clenshaw-Curtis rule.

2. The Method

The error constants gn(RgC, w) may be expressed in terms of Peano kernels. For a
given linear functional L : C[—1,1] — R, which vanishes on the space of all polynomials
of degree less than m , the Peano kernel Ky,(L,-) is defined by

(2.1) Kp(L,z) = L[hg],
where
) ) 0, ift <z and
(t—=z)F~
2.2 he(t) = ——— = _ pym—
(22 O ="y Cal s

Since L has the representation

1
23) Lif] = /_ @Ko (L,3)
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whenever f™) exists, the error constant is given by

1
(2.4) om(L) = sup |Lf]| =/ |Km (L, z)|dz.
™ jloo <1 -

The method, which is used to prove the results in Section 3, is essentially based on
a result of Bral and Forster [2]. They have proved a series expansion of Kn(L,-), whose
first partial sum K, satisfies

1
25) em(L) = / K 1(2)|dz +é1,
-1
where
1
(26) [ Eona(@)lde = —p (Tl
and

1/2
(2.7) lex| < 7n|2m— {Z (n + |L[TM+#]|2}

(cf. Brafi and Fdrster [2], (3) and (17)). This paper shall show, how the result of Bra8
and Férster can be used to simplify investigations on high order error constants of the
Clenshaw-Curtis rule. We just have to estimate the errors R§C[Th4,] to obtain reason-
able bounds for gn(RgC, w) . Fortunately, for the Clenshaw-Curtis formulae, these errors
may be expressed rather explicit as follows,

1
RS Toy(n—1)+] =/ {Tzl(n-1)+k($) - T|k|($)} w(z)dz
(28) . -!
=— 2/ sin{(n — 1)t sin (I(n — 1) + k)t sint w(cost) dt, k| <n-1
0

(cf. Sloan and Smith [5]). The main part of the expansion (2.5)~(2.7) is mostly given by
the errors RSC(T,,_144], k=1,2,...,2n — 2, where eq. (2.8) reads thus

m
(2.9) RSC[Ta_14k) = —2/0 sin(n — 1)t sinkt sint w(cost) dt, k=1,2,...,2n -2,

It is useful to interpret the quadrature errors for Chebyshev polynomials as multiples of
functionals I(#%) given by

s
(2.10) —21#R) (] = —2/ sin ut sinkt sintw(cost) dt = RSC[T,]
0
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for appropriate combinations of x, « and v.

For the results in Section 3 we generally assume that w is in a certain class such
as w € K = Vs := {f| f) is of bounded variation} or that, for instance, w(z)v1 — z2
is analytic. Since we want to estimate the integral (2.10) in these cases, we may use the
typical methods which are applied in quadrature theory.

For example, if w is supposed to be in V; we define a quadrature formula Qg""‘)
such that the kernel of Lg“ ") = Tlew) Qﬁ," *) includes P;. The best possible estimate

for Lg"’")[w] under the only assumption w € V; is then
(2.11) L fwl] < Var(w) - Ko 1 (¥, oo,

where Var(f) denotes the total variation of f. Using these estimates for RCC(T,], we
obtain bounds for gn(R$C, w), which are asymptotically best possible.

The method may not only yield such sharp bounds for the error constants
on(REC, w), but would also succeed at least for g#(Rgc,w) , where ¢ > n —s and

s 1is fixed.
3. The Results

THEOREM 1.

a) Let n >4 andlet w be of bounded variation, then,

. 1 2
(31  en(RIC,w) < 7

S an2(n—_3) {Va,r(w) +

(Vasto) + 20 0)) .
b) Let n > 5 and let w' be of bounded variation, then,

1
CcC < !
en(Bn™w) S e a2 { Var(w)+

% (Var(w’) + 2jw(1)| + 2jw(-1)|) }

3.2)

¢) Let n > 6 andlet w" be of bounded variation, then,

1
CC
en(Rn™ W) S oot B

2 " Q w
# 2 (Vartw) + 3000 + Zhuo) + 3w }

{Var(w")+2|w(1)| + 2u(-1)|
(3.3)
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Remark 1. The bounds are asymptotically best possible in the sense that additional
factors on the right-hand side must be greater or equal to 1+ O(n—1/2y,

Remark 2. For w(z) =1, Theorem lc) yields the estimate

(34) on(RSC w) < m (1 + %) )

which is asymptotically sharp ut to a factor 1+ O(n~1/2).

Note that the estimate of Theorem 1 ¢) may not be replaced by one of the form

(3.5) on(REC w) < <2 \;ir,fff:;) ol

for increasing n, since the case w(z) = 1 would already yield a contradiction. The
next theorem will give a generalization of this observation. For instance, we can conclude
from Theorem 2 that a multiple of Var(w{*)) can only be the main term in a reasonable
estimate for on(R$C,w), if w(*)(1) = w*}(~1) =0 for all v < (s —3)/2. Furthermore,
we see that for weight functions, whose second derivative is of bounded variation, the error
constant gn(RSC,w) will in general be only of the order o((2"nin®)71).

THEOREM 2. Let w(s~1 be absolutely continuous on [-1,1], let w{¥)(1) =
w¥)(=1) =0 forall v <r < (s—23)/2, and let [w(M(1)| + [w(D(=1)| >0, then,

riar—2
e ton, 3+2r CcC — (™) 1\, (T)
(3.6) o1 nll»nolo n!2™n en(Ry7,w) = [w'”(1) + (1) w'"/(-1)|
n even
and
3.7 ﬂ lim n!2"n3t2 o (REC w) = [w((1) — (=1)"w{(-1)|
D o Am (B, :

n odd

For the proof of Theorem 2, we simply have to expand the integral (2.10) similar to
the Euler-Maclaurin summation formula.

The Clenshaw-Curtis formula works particularly well for the weight function w(z) =
(1 —22)~1/2 ie., for a weight function which has singularities at both ends of the basic
interval. We would therefore like to obtain results as in Theorem 1 without assuming w
to be bounded.
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THEOREM 3. Consider the function W given by W(z) = (1 — z2)w(z) .
a) Let n >4 and let W be of bounded variation, then,

g Ve {1+ 22

b) Let n >4 and let W' be of bounded variation, then,

(3.8) en(RGC,w) <

C 1 ) 4

c) Let n >4 and let W' be of bounded variation, then,

3

CcC
Qn(Rn aw) < m

{Var(W") + %]w(0)|+
(3.10)

10
+ 37 (Var(W") + 8|w(0)]) }
Remark 1 holds analogously.

From Braf’ and Forster’s result we can readily deduce that, if we have a positive

th

weight function, the n'? error constants of the corresponding Gaussian rule, Q, = QS ,

satisfy

1
3.1 li Y/l on(Rn,w) < —,
(3.11) im sup n.tzn(nw)_s\/5

where, in general, equality holds. Furthermore, if we have any (not necessarily positive)
weight function, for which a bounded sequence of quadrature formulae of algebraic degree
greater or equal to 2n — k, k fixed, exists, we can obtain the same constant on the
right-hand side of (3.11).

For the classes of weight functions considered in Theorem 2, 1/2 as a constant on
the right-hand side of (3.11) is not improvable for the Clenshaw-Curtis rule. In the case
that w(z) = (1 — 22)~1/2, the Clenshaw-Curtis rule is the corresponding Lobatto rule
and therefore also satisfies the limit relation (3.11) as well as the Gaussian rule. We may
thus ask, for which weight functions we can guarantee, that the Clenshaw-Curtis rule has
such small error constants as described in (3.11), i.e., can compete with formulae of high
algebraic degree. The answer will be that w(z) = W(z)(1 — 22)~1/2 with W being
analytic in the interior C, of an ellipse, which is given by its foci —1 and 1 and the sum
r > 3/3/2 of its semi-axis.
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THEOREM 4. Let the function W be defined on the closure of C, such that its

restriction to [—1,1] is given by
(3.12) W(z)=vV1-22 w(2)

Assuming W to be analytic in C; and bounded on 8C, . we have

. , 1 1
(3.13) limsup }/n!on(RSC, w) < max {5. m} .

n—oo

Remark 3. If 2r < 31/3 and we assume analyticity of w only in Cr\{zo} . where zg lies
on the boundary of the ellipse C,.x , ¥™* < r, weobtain 1/2r* as an unimprovable constant
on the right-hand side of (3.13). 1/2r* is indeed the constant if W{(z) = 1/(z — 2zg) .

The only situation, in which the limit on the left-hand side of (3.13) may be estimated by
a constant less than 1/2 is similar to that of Theorem 4.

THEOREM 5. The relation

(3.14) limsup }/n!on(REC, w) <

n—oo

[N

holds if and only if there is an analytic 27 -periodic function v, which satisfies
(3.15) v(t) = w(cost)|sint|,

whenever t is real.

4. Proof of the Results

Proof of Theorem 1: The moments ms," ") of the functionals I(**) defined in (2.10)

are given by
m
(4.1) ms,”"c) = I(“'")[p,,] = / sin ut sinkt sint cos” t dt, pu(z) =2".
(1}

Hence, by the equation cost sin ut = (sin(p+1)t+sin(u—1)t)/2, we obtain the recurrence
relation:

(4.2) ) = ) et
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and

2{1+ (~1)*"*}ux

_ . if [u—x|#£1 and
05 @ =] TP (eepo1p WAL

0 otherwise.

Defining the quadrature formulae

(4.4) Q¥ = m ) £(0),
(ﬂ.K.) (/"N) (I-‘,K) (p,n)
K + -
(4.5) QYA = P —f(1) + P f(-1)
and
(p.x) (s,6) (k) (1K)
(46) QY f =TT (1) - () — mfp ) f0) + T p(-1),

the functionals LS“ ") — lum) _ Qg’_‘,_’f) , where s =0,1,2, map all polynomials of degree
less than or equal to s onto zero.

The theorem will almost be proved, if we are able to estimate the corresponding
Peano kernels appropriately. They are given by

t (cos z — cost)® . .
A— " sinpzrsin krsinc dz

Kot (28, cost) = |
0

s!

=

s+1 sl

(a.7)

For s=0 and k <n—3, we have

. r(n=1,k) _1 1 1 1 1
Ki(Lo ”“”‘4(n+k—2 Rtk n-k—2Tn_k

4.8
(48) 1 cos(n+k—2)t_cos(n+k)t_cos(n—k—2)t+cos(n—k)t
4 n+k—2 n+k n—k—2 n-—k ’
such that
(n=1.6) S S W 1
K1 (Lo ’COSt)|—4‘n+k—2 n+k n—k—2+n—k
1 1 1 1 1
4.9 -
(49) +4(n+k—2+n+k+n—k—2+n—k)
n—1

A k)n—k-2)
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Considering the representation,

-2
(n=3)(n-1)n+1)
cos(n + 1)t cos(n — 3)t)

. 2
(s ot e+ G - R

KI(L(()"—I’I), cost) =

(4.10)

-1

we readily see that the estimate (4.9) may be improved at most by a summand of order
-2 .
n~c,if k=1.

Analogously, by elementary calculations, we also obtain

|Ko(L{" ), cos t)|

<l 1 _ 1 + 1 _ 1 + 2 _ 2
“4\n—-k-3 n—-k-2 n—-k n-k+1 n+k-2 n+k

(4.11)

; if k=1 and

n(n —4)’ -

<
22 .

s <k<(n—

ST 2 =3)’ if2<k<(n-3)/2,
and

|K3(LY"™Y, cost)

A

1 1 1 1 1
_R(n—k—4_n—k—3_n—k+n—k+l+
(4.12) 1 1 1 1

n+k—3—n+k—2_n+k+1+n+k+2)

k

S T e A i

Since in (4.7), g is always greater or equal to n — 1, we may estimate the Peano
kernels for all occurring combinations of y and « by

(4.13) IEL (L) Yoo < 2/3,

(4.14) 2L, Yoo < 1/3
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and
(4.15) 3L, Yoo < 1/16.

This estimation requires some distinctions of cases, quite a lot of elementary calculations
and numerical investigations for small g and x, but this is all standard work and may
partially be automated on a computer.

By (4.4) and (4.9), we first obtain

(4.16) |Rn[Tn]l < ﬁll—l) (Var(w) + mo12 lw(O)I)
In order to estimate &} , we consider the bound in (4.9) for k¥ < (n — 3)/2, which
yields
@11 RalTall € o (Vartw) + o Do),
such that
|n! 2"_261|2
4n—1) 8(n—1) P men)
@1s) {2 () + G gy )} Z (u+2n)
4 54 & p!(2n)!
+5 (Vastw) + o)) pit.0
9 35 y=[(nz—l)/2] (1 +2n)
An explicit expression for the series is given by
s! 2m+ s

(4.19)

z AE 2m)' 2m+s) 2m -1

(cf. BraB and Forster [2], eq. (17)), such that a further estimation yields the bound (3.1)
of Theorem 1.

The bounds in the cases that w' respectively w” are of bounded variation may be
proved analogously. O

Proof of Theorem 2: We first state the following ‘Euler-Maclaurin-type’ result for the
integral (2.10).
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LEMMA. Let

m—p—1)
( £ )!Tm+k—2p(z)a

(@20)  Com()i= Chl) = 3 (§)-mime=t
. k.m =0k = 2k = U (m +k — ;l)

and let w(®) exist, then,

1
/ w(z)Tm(z)de
-1
s—1
=3 (-1 (Coar M@ (1) = Cpar(-1u)(-1)
v=0

1
(4.21) +(-1)° / 1 Cs(z)w!*) (z)dz

s-1 U — by — 9
B (s e
v=0 : ’

1
+(—1)3/_ICs(z)w(3)(z)dz.

Proof of the Lemma: We can show by induction that

ds
(4.22) e Cs(z) = Tm(x)
and that
oyl _(_\m oy m(2v + 1) (m — v —2)!
(428 (-)C() = () Cp(-1) = TS
(4.21) is therefore readily proved by partial integration. ]

|QSCIT,]| is obviously bounded above by 2||wl|; . For the estimation of the integral
in (4.21), we substitute = cost and then apply Lemma 1 of Braf} [1], p. 170, from which
it results that

1 N
(4.24) /_1 Cs,m(.t)w(s)(x) dz = o(m™*%).

For fixed k, we therefore have

s~1
R[Too14k] = Z(—l)"{(cy+1,n_1+k(1) = Chptn-1-k())wt)(1)
(4.25) v=r

— (Cotm—r4k(=1) = cu+1.n_1_k(—1))w<"’(—1>} +o(n™°).
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Using
k(2v + 2)!
(4.26) Cotin—14k(1) = Cpp1n-1-k(1) = (—1)"m7,,)+—3(1+0(1/n)),
’ as n — o0,
we see that, under the assumptions of the theorem,
(4.27) RG(Tnty] = O (n~0r+9)

for fixed p. Hence, f_ll |Kn 1(z)|dz is the main term of on(R$C,w). We furthermore
observe that

1
RS =1 [ (Tn(o) ~ To-a(e)u(e) ds]

(4.28) = l(C"‘+1,n(1) - Cr+1‘n—2(1))w(r)(1)
~ (Cri1al=1) = Crat na(~1)w D (-1)]
+0 (n—(2r+3)) + o(n_s),

which yields the theorem. O

Proof of Theorem 3: The proof is essentially the same as that of Theorem 1. Now, the
functionals Lg" ") , which shall be estimated and which annihilate the respective polyno-
mial spaces are of the form

(4.29) Lgﬂ'n)[f] = /0" sin pz Sl?n'j: f(cosz)dz — Qg""‘) [f).

S

In the following, an asterisk at a sum indicates that each summand with a zero denominator
has to be omitted. By the identity

. K
(4.30) sin pz SMET _ Z sin(p — & — 1 + 2v)z,

SInzrT

v=1

the terms of the form (u+x—s)"1, s = 0,%1,..., in (4.3) ff. will be replaced by the

sums

K
1
4. Alpm) = L.
(4.31) Z p—rk—1+4+2v

v=1
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We take now care of choosing the nodes of the respective quadrature formulae at the
boundary, since the function W vanishes at +1. Hence, the quadrature formula Qgﬂ'n)

)

corresponding to Lg” *) is given by

(432) QYA = M) {£(1) + (D f(-1)} .
The moments again satisfy the recurrence relation (4.2), but with the initialization
(4.33) m{ = (14 (~1)F~%)AlBR),
Analogously to the proof of Theorem 1 we obtain
“KI(Lg/‘v")’.)”oo < ) < A([utr)/2),[(ut)/2])

(4.34) 1 1

(u+ K)?
where C = 0.577... is Euler’s constant (for the last inequality, see Ostrowski [4], eq.
(I1,11), who referred an earlier result on the remainder in Euler-Maclaurin’s summation
formula of Malmstén). Thus, we can estimate the occuring Peano kernels by

CTE A G < Mr-1k) < ki 1,1 <
(435) ”I\I(LO 9 )”oo >~ A ™ 1+ " + 9n2 for k S n/2,
and
(4.36) IEEG ™, o < -
n—
Furthermore, we have
N . *
(437) IR Moo < | (2 - o—g7) |
Let
L) 1 11y 1
Taf\p—-k-1 p—-k p—Kk+1 p—k+2
L1 11
(4.38) pu+k—2 p+e—-1 pt+e p+r+l

+ Almr=2) _ gp(utlie—2) | 45(s+2,6—2)

’

— galp+dr=2) /\(M+4,n—2)) *
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then,
1KLY, Moo = IE3(LS™ oo
l L _ 1 — 1 + ! fors =1
(4.39) 4\p—-2 p—-1 p+1 p+2 7
<
P for2<x<pu-—2and
Ewr) 4 7/12 for k € {u—1,pu}.

For the sum of the A(#¥)in (4.38), we apply Ostrowski’s equation as in (4.34). (4.39)
may be estimated for all ¢ > 4 and arbitrary « by

(4.40) IE3(LE, oo < 11,

aswellasfor u=n—1 and k£ < (2n — 3)/3 by

o or(K) . 81k
(4.41) III\3(L2 s Moo < —50(n — 1)3 .

Inserting the obtained bounds for RGC[T,] into the estimate of Bra$ and Férster, (2.5),
we have (3.8)-(3.10). O

Proof of Theorem 4: We need the following Lemma.

LEMMA. Under the same assumptions as in Theorem 4. we have

CcC r? .
» |Kn(Ry ™, 2)| Smlacrlz%lgxcr [W(z)|
(4.42) . Jn+3 T(1/2) +(1+ 1 ) 3T((n —1)/2)
n—1T(n—-1/2) (n—1)(r—1)/ 2I((3n — 3)/2) |

The lemma is proved as follows. For each z € 8C,, define v(z) such that = =
(v(2) + v~ Y(2))/2 and |v(z)| = r~!. Since RSC[T,] may be written as a difference of
expressions of the form I[T,], we use the representation (cf. Bra8, (1], p.71)

1
(4.43) 1T, = /_ Tuleula)dr = % /oc W(2)k(z)dz,
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where

! Tu(zx) mok(z)
4.44 k(z) = L dr = .
( ) (=) /;1 (z—z)vl-w2 ’ 1—v(2)?

Using the functions

(445) by(z) = bn,;‘(l‘) =

(n)
2 nl2n 2\"=1/2 P (x)
z 1-1z il L S

we have, according to BraBl and Férster [2], that

o0
Kn(RSC.2) = > R{C(T,] - bu—n(z)

p=n
1 T >
= — 2y ———— n 3
377 oo, VO T {70 X v )
(4.46) “"oo
+zb(21 Dn-1)-1(z) + o™~ Zblln 1y-1(

l_l =1
o0

+Zv"< )(men IPRIEED I 1(z>)} :

[[_
Brafl and Férster ([2], Lemma 1) proved the inequality

2
7!'(# + l)(y +3)(“ +2n—1) 2 ”b#”w’

(4.47) By =

and that ([2], eq. (29))

T{(p+1)/2
(4.48) Zﬂgﬂl(n n < Zﬁg+2l w(n DT(n _(1+(#+1))/2)-

Inserting these bounds in (2.5), we obtain

|Kn(RSC, )]

1 i r2 1, IQ/2) 1
S2_7r aCr W (r2 = 1)(n —1)2n-1 {r_"(F(n —1/2) + (n— 1)!)
(4.49) I'((n-1)/2) 1 I(n-1)

T((3n -3)/2) 1T (2n-2)
n-2
+ Z i( T((n— 1+ p)/2) 4 L((n—1-p)/2) )}dz.

T((3n —3+p)/2)  T((3n—3-—p)/2)
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Let 7, =T((n—1+p)/2)/T((3n —3+ )/2) , then we can show that the sequence of the
values v,/vy4-1 is monotonely increasing with limit 1 as g — oo. Hence, the sequence
(7u) is decreasing. We can also show that, defining 6, = r7#T'((n — 1 — p)/2)/T((3n —
3 - ;t)/2) , the sequence (6;,6,,_2/6‘2‘_1) is monotonely decreasing with limit 1 as y, is
decreasing to —oo , suchthat 1 < 6“6”_2/612‘_1 < (6#+6#_2)2/463_1 yields the convexity

of the sequence (6,). We therefore have

(4.50) buS —Ebua+

n—-2-p.
ép-
—9 0

The lemma now directly follows, and Theorem 3 is an immediate consequence of the lemma
and Stirling’s formula. O

Proof of Theorem 5: Let the constant on the right-hand side of (3.13) be less than
1/2. Using the notation of Theorem 4 and 5, we have

2" Inlpn(RSC, 2) > |RSC[Tnll = [[Tn — T2l

1 z)— T
=|/_1W(z)—T"( )_1 _T’;zz( ) o)
1

= §| /_: v(t)( cosnt — cos(n — 2)t) dt|.

(4.51)

v is integrable and even, such that the sine coefficients of the Fourier series equal zero
while the cosine coefficients a, tend to zero. The assumption is equivalent with

(4.52) |[an — apn—2| <c-¢" for all n

with appropriate constants ¢ and g < 1. This implies

oo

lanl = ) (an42k — Gntaks2)]
k=0
[= o]

(4.53) <Y lans2ks2 — npzel
k=0

hasd n+2
c .
< § :C‘ qn+2k+2 q9
k:o

1-¢2°
This estimate of the Fourier coefficients implies that v is analytic.

If we assume the analyticity of v, we obtain an estimate |an| < d-r" with r < 1
for all n and thus

(4.54) lop—14k — Gn_1-k| < 281K k=12 . n—-1.
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We can therefore estimate the error constant in the same way as in the proof of Theo-
rem 4. O

Acknowledgement: I am grateful to the referee for his helpful comments.
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ON THE GENERAL ASYMPTOTIC EXPANSIONS OF H,"-TRANSFORM AND
RELATED BESSEL TRANSFORMS

Hui-Hui Dai
Received

Abstract Theorems are established to give the asymptotic expansions of H,'" -
transforms and related Bessel transforms of functions which have general
asymptotic expansions near the origin. The results are thus the extensions to those
of the existing literature (e.g. Wong 1976, Soni 1982 and Soni&Soni 1985) which
dealt with the cases that the functions have power expansions near the origin. Our
approach uses a lemma proved in an earlier paper (Dai 1992) on the general
asymptotic expansions of K, - transforms and adopts a novel method to overcome
divergent integrals.

AMS subject classifications: 41A60, 44A15, 33A40.

1.Introduction
Olver (1974) obtained a formula for the asymptotic expansion of the Fourier transform

(1.1) F(s)= fo"e SO

when the parameter s - +oo and where the behaviour of the function f{7) near the origin is

given by an asymptotic expansion of the form

(1.2) f-Y bt t=0*
n=0

where 0 < N < 1. The method adopted by Olver entails writing
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N-1
(1.3) =Y bt + fUn)
=0

As the individual terms on the right hand side of (1.3) do not possess Fourier transforms, this
equation is first multiplied by e, and then, Fourier transform is taken for each side of the
equation. The summability factor e evades the appearance of divergent integrals. The parameter
€ is positive and later made to tend to zero. By this procedure, and by treating the herein
appeared Fourier transform of e !fy() by integrating by parts N times. the desired asymptotic
expansion of F(s} can be obtained.

Olver’s method was consequently adopted by Wong (1976) to obtain the asymptotic
expansion of the Hankel transform

(1.4) 15)= fo"Jv(szmt)dt, PRy

by introducing the summability factor e"’? where the behaviour of f{r) near to the origin is given
by (1.2). Also see the paper by Soni and Soni (1985) which gave a detailed discussion of the
conditions under which the summability methods applicable to this class of problems. Another
method in connection with the asymptotic expansion of Hankel transforms was given by Soni,
which is an extension of the technique due to Handelsman and Lew (1969) by using the Parseval
relation for the Mellin transform. For details, we refer to Soni (1982).

In all above-mentioned methods, the function is assumed to have an algebraic power
expansion near the origin. However, in many practical cases (for example, see Naylor 1990),

the form of the function near ¢ = 0 is normally given by the general asymptotic expansion

(1.5) f0-Y a,b,0 , t-0
n=0

where {$,(¢)} is an asymptotic sequence. If ¢,(r) can not in tum be expanded in power series,
generally speaking, neither Olver’s method or Soni’s method is applicable. Even if ¢,(f) can be

expanded in a power series

(1.6) 0= b t"*, t=0"
n=0

and then the above-mentioned methods are applicable, the resulting expansions of integral

transforms would be expressed in terms of coefficients which are related to a, and b, by
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somewhat complicated formulas. Thus it would be desirable to obtain expansions involving only
coefficients a,.

In a previous paper (Dai and Naylor 1992), we have obtained the asymptotic expansion
of the Fourier transform F(s) when the parameter s = + o and where the behaviour of the
function f{z) near the origin is given by (1.5). In this paper we shall give the asymptotic

expansions of the following Bessel transforms

fo “H (ot fO’HV‘Z)(st)f(t)dt , f;yv(“)ﬂ’)d' , fo "I (stfinydt

when s > +oo.

We shall concentrate on the case of a 4,'" - transform, and the other transforms are then
treated similarly. Difficulty in this class of problems, as discussed in the above, is the
divergence of the integral herein appeared. Here, the difficulty is overcome by introducing a
factor similar to a neutralizer (c.f. (3.3)), which was first used in a earlier paper (Dai and
Naylor 1992). The H,'" - transform can then be transformed into a K, - transform. A lemma
proved in a previous paper (Dai 1992) on the general asymptotic expansions of K, - transforms
(c.f. lemma 1) is used to handle the difficuly caused by the fact that the function has a general
expansion near origin. Our method seems to be novel, and the results are extensions to those in
the existing literature.

For simplicity, we shall assume that » is real and v = 0. For v < 0, similar results can

be obtained by standard continuation formulas, given, for example, by Watson (1958, pp74-75).

2.Preliminaries
In the following, we use §,(t) to denote functions (), H. %1}, or Y, (1), and writc
2.1 v=K+u

where K = 0 is a positive integer and 0 < u < 1. We make the following assumptions:

(DThe behaviour of f{z) near the origin is given by (1.5), which is asymptotic. So that, il we

write
N-1
2.2 f0=Y a b0 + [
n=0
then

(2.3) O=0(dp®) , -0
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(i)In (U, oo) f{r) is continuous, M times differentiable and let asymptotic series for the
derivatives f, f, ..., f* are obtainable from (1.5) by successive differentiation, and

(2.4) WO=00®) , n=12,..M, -0
i) = oft’"?), 1> 0, n =0, 1, ..., M-I; and

f l-ﬂt)Qp(st)dt , f l'j""(t)t"‘“ Q (st

are assumed to be uniformly convergent for s large enough for each n = 0, 1, ..., M, where p
=v-MifM<K+lorp=puifM=K+2korp=u-1ifM =K+ 2k +1, wherc k
= [ is a positive integer (see (2.1) for the definitions of K and y).

(iv){o,(+i1)}" is an asymptotic sequence; and é,(+it) (n=0,1,...,N-1) does not spiral into zero
(so that equations (2.15) and (2.16) hold). ’
(‘Herein and after, the sign + means that, the sign + should be taken if 2,(1) = H,'”(1), the sign
- should be taken if Q,(1) = H,”(1), and both signs + and - should be taken if 2,() = Y,(1)).
W (xz) =0, 1, ..., N-1} is analytic and regular in the first quarter plane except at z =
and there exists a positive constant ¢ (which may depend on N) such that

(2.5) b, (22)[<Ale| , Osargz<%, z|~+eo

(2.6) [b (zi)|<Ale”| , t=+e

where A is a positive constant.

(vi)
27 Po(0=0(%) , (2i)=0¢*) , t-0°

wherea > -1 + v =K + pu -1.

(vii)
(2.8) dN=0(¢P) , ¢ Li=0(tP), -0
2.9 D=0, oin=0e*Y , j=1,..M.

where 8 > a > K + u -1, and if further M = K + I, we further require that



Asymprotic Expansions of Bessel Transforms 23

(2.10) B>M-1+p Lif M=K+2k

@.11) B>M-p , if M=K+2k+1

where k = 0 is a positive integer.

As we allow the function f{t) to have a general asymptotic expansion near the origin, it
is necessary to impose the additional conditions (iv) to (vii) on ¢,(t). But we would point out that
these further conditions are automatically satisfied for a large class of functions.

To prove our main results presented in sections 3 and 4, we require the following three
lemmas.

Lemma 1 Suppose that real functions g(r) and Ai(r) have K, - transforins

(2.12) G(s)= fo.l(v(st)g(t)dt

@.13) H(s)=[ K (sDh(e)dt

for sufficiently large s, and hi(r}) > O for 0 < t < 1,, where 1, is a positive constant. Then, H(s)
> 0 for sufficiently large s, and

(2.14) l:x_-nM sl;n‘g—(t)l-
sevm H(ES) o0 h()

This lemma is a special case of a lemma given in a previous work (Dai 1992), and for
proof, we refer to that paper.
Lemma 2 {®,(s)} (0 < n < N- I) is an asymptotic sequence as s » + oo, where $,'(s) denotes
the K, - transform of &,(ir).
Proof

From the assumptions listed above it is easy to see that the K, - transform for ¢,(ir)
exists. Noting that Reé, (iz) and Im¢,(it) is continuous for ¢ > 0and we can put factors +1 and
+i into a, in (1.5) (also see assumption (iv)), we may assume that

(2.15) Red (i)>0 for O<t<t,

and
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(2.16) lim-——| m¢"(l.t)| <1
-0 Red (it)

Then, we have
.17 |$,(it)| sBRed (i) , t-0°
where B is a positive constant. For a positive 5, we have

@.18) |91(8) | 2Re®}(s)= [ K (s0YRed (it

From Lemma 1, we know that Red/(s) > 0, using (2.17) and (2.18). we have

— |0, ()| = 1@, =600 =,
lim <lim slim <lim =

(o] Rt oo Rebi (0 o Ly gy

0

Thus
@, ,(5)=0(P}(s))

and {,'(s)} (n = 0, 1, ..., N-1) is an asymptotic sequence.
Lemma 3 {®,(s)} (0 < n < N-1) is an asymptotic sequence as § > +oo, where {b, "(s)}
denotes the K, - transform of ¢,(-it).

The proof of this lemma is very similar to that of lemma 2, and we omit the details.
@

(3]

3. The asymptotic expansions for IL - transforms, I1 "-transforms and Y -transforms

Theorem 1 Let the functions f{t), ¢,(1) satisty the conditions enumerated in the section 2 (in

present case, Q,(t) = H,"(1), and for the sign +, we only take the sign +), then

Som N1 ) )
@. F($)= fONH‘f“(sr)ﬂt)dF%e 2 Y a, @) + o(Py () + O, s-ew
n=0
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If further ¢ ,(it) ~ C,*%’, t > 0%, where C, and M, < M are constants, then

—ivn N-1 . .
32) F@=2e 2" T a,00(0) + o(@} i), 5=+
n=0

We point out that, for the formula (3.1) to be effective one or more terms of the series
appeared in (3.1) must dominate the Ofs™) term. Alternatively, as in the second part of the
above theorem, we make a suitable assumption concerning the magnitude of the function ¢,,(it)
for small value of ¢, then magnitude of the O(s™) term can be related to that of the other terms.
Proof

Consider the function

N-1
3.3) g0=(1-e " Y a b0
n=0

where b > ¢ (for the definition of ¢ see assumption (v)) and M, > 0 is an integer taken as large
as desired. We then write

N-1
3.4) =300, - 80 + /(0 + 80)
=G@®) + L()
where
N-1
G(®=Y a0 - g®
3.5) o
=Y a0, - 1-e™M" T a 6,0
n=0 n=0
Li)=f (0 + g(®)
(3.6)

N-1
f ) + (1-e " T a.4,0
n=0
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$,(0=0(e®) , t-+
$0=00") , -0°

it follows that

3.7 G(t)=0(e © ) | t-te

3.8) G@)=0(*), t~ 0"

Thus the A" - transform of G(r) exists. Since L(1) = f{1) - G(), the H* - transform of L)
also exists. So we can write

F(s)= fo"Hv‘"(st)f(z)dz

3.9) a .
¢ - fo HO0G@Odr + fo H(soL(t)dt

For the first integral, rotating the integration path to the upper-half imaginary axis, which is
permitted by the Cauchy’s theorem, for sufficient large s, and noting that

l —lvn -N
(3.10) Kv(z)=5m'e2 HP@e?),
we have

-—ivn -
fo“Hv“’(st)G(t)drie 2 fo K (st)Gindt
@3.11) t ;
=-g-e E Ea d>'(s) - —2-e -Emf"K (sO)g(itydt
n “ . 3l n P

The last term in (3.11) can be shown to be o(®,./(s)) by using Lemma 1. For this purpose, we
may assume that ¢,.,(it) satisfies equations (2.15), (2.16) and (2.17) with n = N -1. Then,
applying lemma 1, we have
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K (sngliydr| —
. f <lim Ig(tl)l.
Svon ¢N-l(s) t-0° Red’[v_l(u)

From equation (3.3) we have

M +a

(3.13) g(it) =O(tM‘¢0(it)) =0¢™ ), -0

and from (2.17), assumptions (iv) and (vii), we have
3.15) BRed, (iDz|d,_()]|>|dLi0)]| 0% , -0’

As M, can be taken as large as desired, the right hand side of the inequavility (3.12) equals zero,

so that

(3.16) | fo.Kv(st)g(it)dt| =0(Qy_,(5) , s+

Consequently, we have

-

—ivx N- . .
G.17) [ “HO(s)G(rdr=2e 2 a,04(5) + 0(@hy_y(5) . s~+e
° n n=0

We shall treat the second integral on the right hand side of (3.9) by integration by parts.
There are two formulas available for this purpose (Abamowitz&Stegun 1964, p361):

(3.18) HP@=(v-1z'H () - H 2@

(3.19) H® @=vz ' H @) + e A

We introduce the following functions

(3.20) L)=L(®
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(3.2 Lj(t)=%Lj_l(t) + (v —j)t"Ll._l(t) , @G=1,...,K+1)

and if M > K + 1, then

d -
(3.22) LK,Zi(z)=-ELM_l(z) + (v-K My,

M-K-1 or M2—K)

d A .
(323) Ly.aju®=Liaf® + (v-K-1y Ly » G=1es
From assumptions (i), (vii) and (3.6), it is easy to see that
(3:24) Ly»=0¢?) , -0’
From assumptions (ii) and (vii) and equations (3.6) and (3.20) to (3.23), it follows that
(3.25) L®=0¢*Y) , -0, j=1,..M

By appealling to Ritt’s Theorem, it is known that ¢,"(z) = O(e%), z = oo. Thus, from equation
(3.5), we have

(3.26) G™(0)=0(e ¢, t-+o

N .

(3.27) (=0, m=01,..M-1, t-+o
and

(3:28) L{o=f0 - GO,

from equation (3.20) to (3.23), it is easy to see that

(3.29) Li(t)=o(t"’2), j=0,1,. . M-1, t-+o

After these preparations we now can evaluate the second integral on the right hand side
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of equation (3.9). We have

(3.30) fo"L(:)Hj"(sr)d:=lim fo “LinH(st)dt

Using equation (3.18) and integrating by parts once, it follows that

3.31) [TLOH e LhimtyH® 502 + Lim [ L OH® sty
S

a-o Qoo

Noting that
i ——lvx—ln)
(3.32) HOQ-]2e 2747 | 7w,
nz

(3.33) HO@--irwidy™, z-0,
n 2

and from the asymptotic properties of L;(1) (see equations (3.24), (3.25) and (3.29)), it easy to
see that the integrated term vanishes. If M < K + I, we shall continue this procedure M - /
times (all the integrated terms shall vanish), then

- Lo o [
(3.39) /. L(t)Hv“)(st)dt=(;)“ lim [ °LiA0H, (st

wherep = v-M (forM < K+ I).If M > K + 1, we use above procedure K + I times, i.c.

we have

fo “LoHsnde=(Ly%* lim fo"LK,l(t)Hf‘_)K_l(st)dt
(3.35) i -,
¢ Lkt
() im fo Ly, (OH, _ (st)dt
In the following, we shall use equations (3.19) and (3.18) in tum, and noting that all the
integrated terms vanish as g satisfies (2.10) and (2.11), we have
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= 1 . @
(3.36) fo L(t)Hv“)(st)dt=(;)” lal.l’il fo LAOH(st)dt

wherep = pif M = K+ 2korp =pu-1ifM =K+ 2k + 1% = 1isa positive integer).

Now we wish to show that

J L A0H, st

exists. We write

(3.37) fo "L, (OH, (st)dt= fo 'L OH (st)dt + fl.LM(t)H;l)(st)dt

By substituting (3.28) into (3.20) to (3.23), it can be seen that

M M
(3.38) L0=Y, d "M - ¥ dr M6
n=0 =0

where d, are constant coefficients. Substituting (3.38) into (3.40), we have

M
[TLion od=[ L0 snde+ Y d, [ MO, st
(3.39) v i
-"ZO: d, f MG ®)H,"(st)de

From the asymptotic properties of G"'(1) (see (3.26)) and L,,(t) (see (3.25)), and assumption (iii),
it is easy to see that all the integrals on the right hand side of (3.39) exists. Thus

JLAOH, 6t

exists. Consequently, from (3.36) (or (3.34)), we have

(3.40) fo-L(t)H‘f”(st)dt=(l/s)”fo "L OH(s0dt=0(s ™) , s+

Combining equations (3.40), (3.17) and (3.9) gives equation (3.1).
For the second part of theorem 1, we only require to prove that O(s ) = o(®',,,(5)). For
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this purpose we may assume that ¢, ,(it)satisfies equations (2.15), (2.16) and (2.17) with n =
N -1. Applying lemma 1, and noting that ¢ ,,(it) ~ C,*', M, < M,we have

— |foqu(St)tM_ldt| —U:Kv(ﬂ)tu-ldﬂ — M —_ M-
lim <lim i

‘_ , <lim _<lim -0
w1l e Rt oo Reb@ e Ly )

- M-l a2 Ml o1y, 1
foKv(st)t de=24 %5 MD( M- WD M- v)

it follows that
Os M)=0(®},_,(5)).

This completes the proof of the second pant of theorem 1.
By noting that
(.41 Kv(z)=——;1te_i HPe 2y,

it is easy to see that we can establish the similar results for the asymptotic expansions of H," -
transforms. This is consequently the following theorem:
Theorem 2 Let the functions f{t) and ¢,(1)satisfy the conditions enumerated in section 2 (in
present case, 9,(t) = H,”(1), and for the sign +, we only take the sign -), then

iy N-1

(342) Fys)= fo"'ﬁv‘”(.w)ﬂz)a!z=3eE T a,8,() + o(B i) + O™ | s=+o
T =0

If further ¢y, (-it) ~ C %', t = 0* , where C,and M, < M are constants, then
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—iv1r N-1 N .
(.43) Fio)=2e? Y a,®(s) + o(@;(s) , 5=+
n n=0

To prove this theorem we write

(3.44) Fys)= fo’Hj”(sz)G(t)dz + fo'H,fZ)(st)L(t)dt

For the first integral on the right hand side of (3.44), by rotating the integration path to the
lower-half imaginary axis, it can be shown that

N-1
(3.45) [THPe0G0d-27" Y 0,0756) + o(@y(s) o 5=+
b1

n=0

For the second integral on the right hand side of (3.44), by integrating by parts, it can be shown
that

(3.46) [TLORP$d=(Us [ L O, (s0dt=06) , 5=+

The detailed procedure used to derive (3.45) and (3.46) is very similar to that used to derive
(3.17) and (3.40), we thus omit the details. Combining (3.44), (3.45) and (3.46) gives (3.42).
The second part of theorem 2 can be closely proved by the method used to prove the second part
of theorem 1.

Noting that

(3.47) Yv(z)=-é(Hfl)(z)-Hfz)(Z))

We see that the asymptotic expansions of Y, - transforms can be obtained by combining the
results of theorem 1 and theorem 2. However, as there are both A"’ - transforms and H,” -
involved, we have to impose conditions on both ¢,(it) and ¢,(-it).

Theorem 3 Let the function f{t) and ¢,(z) satisfy the conditions enumerated in section 2 (in

present case, Q1) = Y, (1), and for the sign +, we take both the sign + and the sign -), then
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: -ivnN'l . ; ivn N-1 .
Fs)=], -Yv(st)ﬂt)dt-:—ie 2 gantb:,(s)h:;e’ §an¢;'(s)
+ 0o(Dy() + (BN (5) + Ols™), s=+e0

(3.48)

If further ¢y, (it) ~ C,*6' or ¢y, (-it) ~ CF'¥, 1 - 0%, where C;, C,, M, < Mand M, < M

are constants, then

. _ivN-t . A N1 v
F(s)=-te 2"V g @' (s)+Le? ad'(s
(3.49) 5(8) - ,,Z,;""()n g;,,,.()

+ 0(Py_ () + o(Ry.\(5) , S~+e

To prove this theorem we write

(3.50) Fy)=[ ¥ (s0R0dt= -é fo-Hv“)(st)G(t)dné [THP 06w 7Y (snLvds

The first two integrals on the right hand side of (3.50) have been evaluated previously (see
(3.17) and (3.45)). The last integral can be treated by the same method used to handle the last
integral on the right hand side of (3.9). The second part of theorem 3 can be closely proved by
the method used to prove the second part of theorem 1. Here, we omit the details.

4. The asymptotic expansions of J, - transforms

The asymptotic expansions of J, - transforms (Hankel transforms) can be obtained

similarly by noting that

@.1) J,(z)=%(H,f"(z)+Hv(2)(z)).
However,
(z/2)
4. ~=2
,( 2) J,( T(v D z~0

which is different from the asymptotic properties of H"() (= O(z"), z - 0) and H,?(z)
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(= O(z"), z— 3J). Consequently, the condition imposed on f{t) and ¢,(t) are somewhat different.
We modify the assumptions enumerated in section 2 as follows:

(i), (i), (iv), (v) and (vi) are same as those for Y, - transforms.

(iii)f™”(t) = o(t"?), t = o, n=0, 1, ..., M-1,; and

[Tossode, [0, ot

are assumed to be uniformly convergent for s large enough foreachn = 0, 1, ..., M.

(vii)

@43) P0=00% , ¢ (2in=0(*, -0
(4.4) oQw=0¢*Y , ePin=0¢*Y , j=1,..M

where 8 > a.

Theorem 4 Let the functions f{z) and ¢,(2) satisfy the conditions enumerated above, then

ivnN-l R 1 —i\'n N-1 .
2 Ya,@+r—e? Y a,®,'s)
n= n n=0

Fy(o)=[ I, (sfdr= %e

+ o(Dyy(8) + o(Dy () + O™, s=+e

4.5)

If further ¢y, (it) ~ C'6" or ¢y (-ir) ~ CL'¥, 1 > 0%, where C;, Co,, M, < Mand M, < M

are constants, then

1 -—ivnN'l . 1 i\' N-1 i
= — 2 ¢ +—_ 2 N
“6) F(s) - e ..);«:, a,®,(s) - e "Z:{: a,®,'(s)
+ 0Dy y(9) + o(Dy () , s=+e
Proof

We write
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fo “J (sOfryde= fO-Jv(st)G(t)dt + fo".lv (st)L(p)dt

4.7 ) . .
@n =% fo HO(st)Gydr + % fo HP(s0)Gryde + fo J (st)L(o)dt

where G(t) and L(1) are defined by (3.5) and (3.6). The first two integrals on the right hand side
of (4.7) have been evaluated before (see (3.17) and (3.45)). To evaluated the last integral, we
introduce the following functions defined by:

4.8 Py®)=L()=A1)-G()

4.9) Pj(r)=-g;Pj_l(z) F IR, jelM.

It can be seen that
4.10) Py(0)=0(,())=0(t %, t-0°

From assumptions (ii) and (vii) and equations (3.6), (4.8) and (4.9), it follows that
@.11) P=0¢*y, j=1,..M.

By substituting (4.8) into (4.9), we have
i i
“4.12) P=Y wpt" (0 - Y wpt" G0 , j=1,.M.
n=0 n=0

where w,/ are constant coefficients. From assumption (ii) and equation (3.26), it can be seen that

" @4.13) P{y=o(t™?) , t=te, j=0,1,.,M-1

Now we can treat the third integral on the right hand side of (4.7). We write

(4.14) [ 3 Gstde=tim [ °J ()Lt

a- s+

Using the formula
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4.15) J@:%JM(Z) Hv+D)zV,,@)

and integrating by parts once, we have

(4.16) [ I (soLdr=lim

a-tes

1 a .. a
SLOJ, 605 lim fo PV, (st)dt .

- b

Noting that

@.17) T @~ Zeose-Lvn-Lay, 2o, |argel<n
nz 2 4

and using equations (4.2), (4.10) and (4.13), it can be seen that the integrated term vanishes.
Continuing this procedure M-1 times (all the integrated terms vanish), we obtain

(4.18) f;L(t)Jv(st)dF(i)M lim fo P H (st)dt

a~ s+

It can be shown that

[P0, fstrds
exists. Indeed, by using equation (4.12), we have

M
[Py, stde=[ Py, (s0dt+ T o} [ MO, (st)dt
(4.19) ’ ° T

M
Yol f] MG O (st)dt
n=0

By assumption (iii) (in section 4) and the asymptotic properties of P,,(1) and G™(1), it is casy to
see that all the integrals on the right hand side of (4.19) exists. Thus
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(4.20) J I OL@dt=Us* [ TP, (st)d=O(s ) , s+

Combining equations (4.7), (4.20), (3.17) and (3.45) gives equation (4.5).

For the second part of theorem 4, we only require to prove that s™ = o(®,,'(s)) or s
= o(®,.,'(s)). The proof is very similar to that of the second part of theorem {. We omit the
details here.

asJ,(t) = O@) (v = 0), t » 0. What is actually required is that « + v > -1. In practice we
could make certain modifications to include the case @ + » > -I. For instance, we may
introduce two functions f,(z) and f,(t) and write

“4.21) O AU AU

such that f,(z) satisfies all the requirement of theorem 4 and the J, - transform of f3(2) exists and
can be explicitly evaluated. Then

(4.22) Joa(soRod=[ 71 (sf @de+ [T (s odr

By applying theorem 4 to the J, - transform of fj(t) we can consequently obtain the asymptotic
expansion of the J, - transform of f{t). _
Example The asymptotic expansions of the K, -, H” -, ¥, - and J, - transform of the
following function

()H " - transform case
We have

VY - _ b _
f(t)=t(l 9 ¥ O Y=Y 0,0 . 10"

+)* n=0 n=0

where
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¢,(O=Y, (™" .

We note that, due to the asymptotic behaviour of Y,(1), ¢,(1) cannot be expanded in the form of
(1.6), thus, the methods in literature (Wong 1976, Soni 1982) are not applicable to this example.
Here we apply our results.

It is easy to check that all the conditions of theorem 1 are satisfied (we take M = N =
2k+1 (k =1 is an integer) first, and then let & tend to infinity). So we have

[Fou s r)dt-—z‘z( ML) 10(@s)) . 5=+

where

my‘l

.(9)=[ "9,G0K, (st)dt——e f "V (DK (st)de + —e I [T R @K ot

In obtaining the above equation, use has been made of the following relation

Yl(it)=—Il(t)+i%Kl(t) :

Using the fomulas given by Oberhettinger (1974, p124), we have

_neyel
[T oK =2 11‘("””3) = D= 2 p g€ +l)
T2
+y+] +y+3 +y-1 s B 241
[ K O (sde=n P2 LN N s o1 2 p, P (D
0 2 2 3 2s
Where p'(s) is the Legendre function. Thus, letting 4 tend to infinity, we have
t Y L _neysl
[ URLCMTI ):( Mg’ 2 ("*Y*3)r("*Y*‘)( 7 opl Lt
° (140 zptC T
it 1 3 -1 R |
M2mve T DI s T p, =y

2 2 T 2
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as s —> + oo,
(i)H,"”? - transform case

Applying theorem 2, we have
[P P H sty - 2’2 ), s+
T pe0
where

A'.noy-l

-l‘"—wx - L P
0,(5)=[ 0 (-ivK,(sde=-e 2 [ OK (st - %e [T R K (st

Using the above-mentioned formula given by Oberhettinger (1974), we have

N2 G o\ - A +3 n+y+1 - ‘*l
fo(l l)”’(t)dt Y Eherre T TN p»w(
> 1

ney+l _nsy n+y

-2 = -i -— 2
LY Gharre 2 r("***‘)r("”*% L Lt 2p, 2 (2,
n3? .0 2 3 2s

ass—> + oo,
(iii)Y, - transform case
From theorem 3, we have

[0y s L5 (h0l-13 (M), seee

0 (l +t)” T p-0 T n=0

Using the above-obtained results, we have

A 1(t) Pame n+-y n+y+3 n+y+1 2 '"“2“1 -1 s2+1
[—= (z)d:~—2(,)2" sin(Z2Y myr( 22X 2 Xs2-1) 2 p R

noye1(
° (14 R
1+y ney+lyn ney 43, ne y 1 e AL
L e 2_ 2 2,
mz(u )2 eos( = mI(——)N(— ) )s?-1) Py )

as§ - + oo,
(iv)/, - transform case
From theorem 4, and using the above-obtained results, we have
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'Y (D - n+ y n+y+3 n+y+1 2 m;ﬂ -1 s2+1
f J (s t)dt~——z( 12" *Yeos(——m)[(——)'(———)(s*-1) P pya(=—)
0 (1+) 2 S° ‘l
3 1 I - st

+y + +
e V )21 2p, ? (L
2 3 2S

n+y+l

")2"‘*sm(”+Y T( )T( ).

as § > + oo,
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OSCILLATORY BEHAVIOUR OF SOLUTIONS
OF COUPLED HYPERBOLIC DIFFERENTIAL EQUATIONS
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Abstract: Sufficient conditions have been obtained for oscillation of all solutions of a class
of coupled hyperbolic differential equations of neutral type.

Subject Classification: (AMS 1991)

1. Oscillatory behaviour of solutions of hyperbolic differential equations of neutral type
has been studied by several authors in recent years (see [2, 4, 5, 8, 9] and the references
therein). As coupled hyperbolic equations occur in many mathematical models in physics
(see [6]), it seems interesting to study the oscillation of solutions of such equations. It
appears to the present authors that the study of oscillatory behaviour of solutions of cou-
pled hyperbolic differential equations of neutral type has not been undertaken before. It
is interesting to note that the present study is applicable to a class of coupled nonlin-
ear Klein—Gordon equations ([3, 6]) which describe the motion of charged mesons in an
electromagnetic field.

We consider coupled hyperbolic differential equations of neutral type of the form

ue(z,t) + 61 ue(z,t — p1) + 71 ue(z,t — 61)
— [y Au(z, t) + azAu(z,t — 1) + azAv(z,t) + agAv(z,t ~ 13)]
(1) + ai(z, t,u(z, t),u(z,t — 01),v(z, t),v(z,t —a2)) = fi(z,t)
and
vie(z,t) + 62 vuu(z,t — p2) + 72 ve(2,t — 62)
= [B1Au(z,t) + B2Bu(z,t — 73) + B3lv(z,t) + fslv(z,t — 74)]
(2) + ca(z, t,u(z, t),u(z,t — 03),v(z, t),v(z,t — 04)) = fa(z,t)

(z,t) € @ := Q x (0,00), where  is a bounded domain in R® with smooth boundary



44 Parhi-Kirane
T := 0% and A is the Laplacian in R", with boundary conditions

%S:th and ‘—92=¢,/12 on T x(0,00)

(B1) o

o

Ou
(B2) =—+m(z,t)u=1; and E»

3 + p2(z,t) v=19; on T x(0,00)

(Bs) u=¢; and v=4¢; on T x(0,00),

where 1,12, %, and 1, are real-valued continuous functions on I' x (0, 00), 1 and pg are
non-negative continuous functions on I' x (0,00) and v denotes the unit exterior normal
vector to I.

A pair of functions (u(z,t), v(z,t)) such that each of « and v € C*( x (—my,

©0)) N CY( x (—mg,00)) is said to be a solution of the problem (1,2), (B;), ¢ = 1,2,3,
if the equations (1) and (2) and the boundary conditions (B;), ¢ = 1,2,3, are satisfied
simultaneously, where m; = max{pi, p2, 71, 72,73, Ta} and me = max{o1, 02,03, 04,01, 0;}.
A real-valued continuous function w(z,t) in @ is said to oscillate in @ if for every tq > 0
there exists a point (z1,t;) € Q¢ = © X (#,00) such that w(zy,t;) = 0. A solution
(u(z,t),v(z,t)) of the problem (1,2), (B;), i = 1,2,3, is said to oscillate in Q if u(z,t)
or v(z,t) oscillates in Q. It is said to oscillate strongly in @ if each of u(z,t) and v(z,t)
oscillates in Q.

The following assumptions are made for the work in this paper:

(A1) alz,t,61,8&,m,n2) and ca(z, t,€1,62,m, 72) are real-valued continuous functions
in Q x IR* such that

. >0 if £ and £ € (0,00)
@) c1(z,t, 61,2, 71, 172) { <0 if € and £ € (—00,0)
. >0 if n and 72 € (0,00)
(ll) c?(thv Elvf%”ly”'b’) { < 0 if m and N2 € (_..00,0)

(A2) fi(z,t) and fo(z,t) are real-valued continuous functions in Q.

(A3) a2, a3, Qyq, ﬂ‘h 611 62) 1,72, P15 P2, 911 0% 01,02,03,04,71,72,73,7T4 are non-nega-—
tive constants, (3, 8, are non—positive constants, a,, J3 are positive constants.

(A4) az,as, a4, B, P2, By 61,62, 71,720 p1, 02, 61,82, 01,02,03,04, 71, T2, T3, T4 are non-
negative constants, a,, J3 are postive constants.

(As) Iy = ma-x{Pl,sz 01,62,71,79,73,74,01,09, 03,04}-
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It is well-known (see [1]) that the first eigenvalue A; of the eigenvalue problem
—Aw = M in @, w = 0 on 0N is positive and the associated eigenfunction ¢(z) is of
constant sign in § and hence may be chosen positive in Q. We shall assume:

(i) (@1 + B3)? 2 41 B3 — asfh),
(ii) @183 > Pras
which ensures the total hyperbolicity of Egs. (1) and (2) (see {7]).

We use the following notations in the sequel: For u and v € C?*(Q) N C}(Q), we

denote
Uu@) = / u(z,t)dz, t>0, V(t)= / v(z,t)dx, t>0
Q Q
Ut) = / o(z) u(z,t)dz, t>0, V()= / o(z) v(z,t)dz, t>0.
Q Q

Further we denote

sz.(t):/ Yz, t)ds, i=1,2, t>0
\I/(t)—/zp( 1) 22 6“’(”‘) s, i=1,2, t>0
Fit) = / fi(z,t)dz, i=1,2, t>0
Q
F;(t):/np(z) fiz,t)de, i=1,2, t>0.
Q
We obtain the following results in this work.

THEOREM 1 Suppose that (41),(A3),(A4,), (A4s) hold. If

—lto /: (t = s)[Fi(s) + a1¥1(s) + aa¥a(s — 71) + a3 Va2(s) + g ¥a(s — 12)]ds
() =-oo,

liminf >

and
¢
liin sup jto / (t = 8)[F1(s) + a1¥1(s) + aa¥1(s — 1) + a3 ¥a(s) + ag Ua(s — m)]ds
—00 to
(HZ) =,
or, if
1 t
lm_lmf o / (t — 3)[Fa(s) + B1¥1(3) + B2¥1(s — 73) + B3Wa(s) + B4 Va(s — 74)]ds
) —_ to

(H3) = =00,

and
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t
lim sup : lto / (t = 8)[Fa(s) + B1¥1(s) + B2W1(s — 73) + BaTa(s) + BaVWa(s — m4))ds
t—00 - to
(H4) =00,

for any ty > 0, then all solutions of the problem (1,2), (B;) oscillate in @.

THEOREM 11 Suppose that (A1),(Az),(A4),(As),(Hi) — (Hy) hold. Then all solu-
tions of the problem (1,2), (B,) oscillate strongly in Q.

THEOREM III Let the conditions (A,),(Az2), (A3) and (A4s) be satisfied. If (H;) —
(H4) hold, then all solutions of the problem (1,2), (Bz) oscillate in Q.

THEOREM IV Let (4,),(Az),(A4s) and (A4s) hold. If

¢ .
liminf ! / (t — 8)[Fi(s) — a1 ¥1(s) — ap®1(s — 71) — az¥,(s) — ag ¥y(s — 72)]ds
t—o0 t—to to
= —00,
1 ¢ - ~ ~ 5 =
litrgirolf r— / (t — 8)[Fa(s) — By¥1(s) — B2 W1(s — 73) — BsWa(s) — Ba¥a(s — 74))ds
to
=—00,
t
HI‘TISUP t—to (t- 3)[1:_'1(3) - al‘i’l(s) - az‘i’l(s -7) - a;,‘ilg(s) - 014‘1’2(3 — Tp))ds
—00 to
=00,
and
1 t - - = - -
lim sup o / (t — s)[Fa(s) — B1¥1(s) — B2W1(s — 73) — PB3W2(s) — BaV2o(s — 74))ds
t—oo — 0 Jyy

=0,

for any to > 0, then all solutions of the problem (1,2), (B3) oscillate in Q.

2. This section deals with the formulation of the problem. We need the following
lemmas in the sequel.

LEMMA 2.1, Suppose that (A41)(7),(Az),(A4),(A4s) are satisfied. If (u(z,t),v(z,t))
is a solution of the problem (1,2), (B;) such that u(z,t) > 0 in Q,, for some tg > 0, then
the function U(t) satisfies the differential inequality of neutral type

V'O + &y (t—p1)+m y(E-61)
(3) S Fl(t) + al‘I'l(t) + az\I’l(t - T]) + a:;‘I’g(t) + 04\1’2(t - T2)

fort > to + Tp-
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Proof. Let t > to + To. Integrating (1) with respect to z over the domain 2 we obtain
U"(t)+ 6, U"(t = p1) +m U'(t—61)
<FA@{)+a /ﬂ Au(z,t)dz + a2 /Q Au(z,t — 1y)dz

+ag / Ao(z, t)dz + ay / Av(z,t - 12)dz .
[v] (1]

Green’s formula yields

Ou
/ﬂAu(z,t)d:t = /I‘ % ds = /Ft,bl(z,t)ds = ¥,(t)
and

/‘;Au(:r,t-—rl)d.t:/l:é%(z,t——‘r,)d.s:A¢1(z,t—rl)ds=wl(t—rl).

Thus we have

U')+6: U"t—p1)+m U'(t - 6y)
S Fi(t) + oy Ua(t) +az Uit — 1) + a3 ¥a(t) + ag Vot — 72)

for t > tg + Tp.

Hence the lemma is proved.

LEMMA 2.2 Let the assumptions (A,)(éi),(A2),(A4),(As) hold. If (u(z,t),v(z,t))
is a solution of the problem (1,2), (B;) such that v(z,t) > 0in @, for some ty > 0, then
the function V(t) satisfies the differential inequality of neutral type

V') +86y"(t—p2)+v2y'(t—02)
@) < Fyt) + Bi¥a(t) + Ba¥a(t — 1) + BaValt) + Bu¥a(t — 1)

for t > to + Ty.

The proof proceeds in the lines of that of Lemma 2.1 and hence is omitted.

LEMMA 2.3. Let the assumptions (A4,)(z),(Az2),(A3),(As) hold. Let (u(z,t),v(z,t))
be a solution of the problem (1,2), (B;). If u(z,t) > 0 and v(z,t) > 0 in Qq, for some
to > 0, then the function U(t) satisfies the inequality (3) for t > to + Tp. If u(z,t) < 0
and v(z,t) < 0 in @y, for some to > 0, then the function —U(t) satisfies the differential
inequality of neutral type

Y+ 6 y'(t—p1) +m y'(t—6))
(5) < —[Fi(t) + a1 W1 () + a2 W1 (t — 71) + a3 P2(t) + agVo(t — 72)]

for t > to+To.
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LEMMA 2.4. Suppose that (A1)(i7),(A2),(A3), (As) hold. Let (u(z,t),v(z,t)) be a
solution of the problem (1,2) (B;). If u(z,t) < 0 and v(z,t) > 0 in Q,, for some £, > 0,
then the function V(t) satisfies the inequality (4) for t > to + To. If u(z,t) > 0 and
v(z,t) < 0in @y, for some ¢ty > 0, then the function —V(t) satisfies the inequality

V() + 62 v"(t—p2) + 12 ¥ (t - 62)
(6) < —[Fa(t) + B1¥a(t) + B2Y1(t — 73) + BaWa(t) + Ba¥a(t — 74))]
for t > to + To.

The proof of each of the Lemmas 2.3 and 2.4 is similar to that of Lemma 2.1 and
hence is omitted.

LEMMA 2.5, Let the assumptions (A;)(i), (A42),(A43),(A4s) hold. Let (u(z,t),v(z,1))
be a solution of the problem (1,2), (B3). If u(z,t) > 0 and v(z,t) > 0 in @y, for some
to > 0, then the function U () satisfies the inequality

y't)+ 6yt —p1) + My (t-61)
(7) S Fl(t) - alli'l(t) - az‘i’l(t et Tl) - aa\i’g(t) - Oq‘i’g(t - T2)

for t > tg + Tp. If u(z,t) < 0 and v(z,t) < 0 in Q,, for some ty > 0, then the function
—U(t) satisfies the inequality

')+ 6 y"(t—p1) +m ¥ (t - 61)
(8) < —[Fi(t) — oy 1 (t) — ap ¥y (t — 71) — a3 ¥a(t) — g ¥a(t — 72)]

for t > tg + To.

Proof. Let ¢ > to + Tp. Multiplying (1) through by ¢(z) and integrating the resulting
identity with respect to z over the domain 2, we obtain

U"(t)+ 6, U"(t —p1)+7 U'(t - 6y)
Sf’l(t)+a1/ o(z) Au(z,t)d:c+ag/ o(z) Au(z,t — 7)dz
Q Q

+ 03/‘;99(.1:) Av(z,t)dr +a4/n<,a(z) Av(z,t — 12)dz .

Applying Green’s formula we get

_ A 4
/Qgp(.t) Au(z,t)dr = —/Fl,bl(.r,t) B ds — /\I/Qu(:c,t) o(z)dz
= —0,(t) -\ U(t)

and
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/ ¢(z) Au(z,t — 1y )dz =-—/$1(z,t -7) Z—¢ ds -\ / u(z,t — 1) p(z)dz
Q r v Q
= _\.Pl(t - T1) - /\1 U(t - Tl) .

Thus we have

U"(t)+ 6, U"(t — p1) +m U'(t - 6)

< Fl(t) - o‘l‘i’l(t) = az‘i’l(t -n)- (13‘1’2(t) - aﬂi/g(t —T2).
Thus the first part of the lemma is proved. The proof of the second part of the lemma
proceeds as above.

Hence the lemma is proved.

LEMMA 2.6. Suppose that the conditions (A;)(i1), (A2),(As) and (A4s) are satisfied.
Let (u(z,t),v(z,t)) be a solution of the problem (1,2), (B3). If u(z,t) < 0 and v(z,t) > 0
in Qq, for some to > 0, then the function V() satisfies the inequality
V') +6y"(t—p)+ 12 ¥ (t - 62)
(9) < By(t) — B1¥1(t) — Bali(t — 75) — Ba¥a(t) — BaTa(t — 1)
for t > to + Tp. If u(z,t) > 0 and v(z,t) < 0 in Q,, for some tq > 0, then the function
—V(t) satisfies the inequality
v() + 62 y"(t — p2) + 12 y'(t - 82)
(10) < —[Fy(t) - Br¥a(t) — B2¥a(t — 73) — Baba(t) — BaWa(t — 7))
for t > to + Tp.
The proof is similar to that of Lemma 2.5 and hence is omitted.
THEOREM 2.7. Let the conditions (A;),(A2),(A4),(As) hold. If the differential

inequalities (3) and (5) or if the differential inequalities (4) and (6) do not admit positive
solutions for large t, then all solutions of the problem (1,2}, (B;) oscillate in Q.

Proof. Let (u(z,t),v(z,t)) be a solution of the problem (1,2), (B;) such that it does
not oscillate in Q. Then there exists a to > 0 such that u(z,t) # 0 and v(z,t) # 0 in Q4.

Suppose that the differential inequalities (3) and (5) do not admit positive so-
lutions for large t. Clearly, u(z,t) # 0 in Q,, implies that u(z,t) > 0 or < 0 in Q. If
u(z,t) > 0 in Qy,, then U(t) is a positive solution of (3) for ¢ > 5 + Ty by Lemma 2.1, a
contradiction. If u(z,t) < 0in @Qy,, then we set 4(z,t) = —u(z,t) for (z,t) € Q. Hence
i(z,t) > 0in @, and (i(z,t),v(z,t)) is a solution of the problem

uy(z,t) + 6y up(z,t — p1) + 71 ulz,t —6,)
— [a1Au(z, 1) + azAu(z,t — 1) — azAv(z,t) — agAv(z,t — 13)]
- C](.’l:,t, —u(z,t), _u(x’t - 01),v(z,t), ’U(:t,t - ‘72)) = _fl(zvt)

and
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ve(z,t) + 83 ve(z,t — p2) + 72 ve(z,t - 63)
— [~B1Au(z,t) — BrAu(z,t — 13) + B3Av(z,t) + PyAv(z,t — 74)]
+ eo(z,t, —u(z, t), —u(z,t — 03),v(z,t),v(z,t — 04)) = fo(z,t)

(z,t) € Q with boundary conditions

Ou A
E_._gpl and 5;_1/)2 on T x(0,00).

Proceeding as in Lemma 2.1 one may show that U(t) is a positive solution of (5), where

(11) fJ(t):/ﬂa(z,t)dx, t>0,

a contradiction.

If the differential inequalities (4) and (6) do not admit positive solutions for
large ¢, then we proceed as above considering v(z,t) # 0 in Q¢ to arrive at necessary
contradictions.

Hence the theorem is proved.

THEOREM 2.8. Let the conditions (4;),(Az),(A4),(As) hold. Suppose that none
of the inequalities (3), (4), (5) and (6) admit a positive solution for large t. Then all
solutions of the problem (1,2), (B,) oscillate strongly in Q.

Proof. Assume the contrary. So there exists a solution (u(z,t), v(z,t)) of the problem
(1,2), (B;) which does not oscillate strongly in @. Thus u(z,t) or v(z,t) does not oscillate
in Q. If u(z,t) does not oscillate in @, then there exists a tg > 0 such that u(z,t) > 0 or
< 0in Q. If u(z,t) > 0in Qy,, then from Lemma 2.1 it follows that U(t) is a positive
solution of (3), a contradiction. If u(z,t) < 0in Q4,, then setting @(z,t) = —u(z,t) and
proceeding as in Lemma 2.1 it may be shown that U(t), given by (11), is a positive solution
of (5), a contradiction. Similar contradictions may be obtained with the help of Lemma
2.2 if v(z,t) does not oscillate in Q.

Thus the proof of the theorem is complete.

THEOREM 2.9. Let the assumptions (A, ), (Az2),(As3),(A4s) hold. If the inequalities
(3), (4), (5) and (6) do not admit positive solutions for large ¢ then every solution of the
problem (1,2), (B2) oscillates in Q.

Proof. If possible, suppose that (u(z,t),v(z,t)) is a solution of the problem (1,2),
(B2) which does not oscillate in . So there exists a g > 0 such that u(z,t) # 0 and
v(z,t) £ 0in Q. If u(z,t) > 0 and v(z,t) > 0 in Qy,, then U(t) is a positive solution of
(3) for t > to + To by Lemma 2.3, a contradiction. If u(z,t) > 0 and v(z,t) < 0in Q,,,
then —V(t) is a positive solution of (6) for t > t5 + Ty by Lemma 2.4, a contradiction. If
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u(z,t) < 0 and v(z,t) > 0 in Q4 , then from Lemma 2.4 it follows that V'(t) is a positive
solution of (4) for t > ¢y + T}, a contradiction. If u(z,t) < 0 and v(z,t) < 0 in Q,,, then
from Lemma 2.3 we conclude that —U(%) is a positive solution of (5) for t > tq + T, a
contradiction.

Thus the theorem is proved.

THEOREM 2.10. Suppose that (A1),(Az),(As),(As) hold. If the inequalities (7),
(8), (9), (10) do not admit postive solutions for large ¢, then every solution of the problem
(1,2), (Bj3) oscillates in Q.

The proof follows from Lemmas 2.5 and 2.6.

3. In this section we obtain sufficient conditions so that differential inequality of neutral
type
(12) Y+ Myt - p)+ A y'(t-6) <g(2),

where A; > 0,A; 2 0,p> 0,8 > 0 and ¢g(t) is a real-valued continuous function on (0, co),
does not admit a postive solution for large t. We also prove Theorems I-IV.

LEMMA 3.1. If

liminf 1
t—oo t— to

t
/ (t—3) g(s)ds = -0

to
for every ty > 0, then (12) does not admit a positive solution for large t.

Proof. If possible, let y(t) be a solution of (12) such that y(t) > 0 for t > t5 > 0.
Integrating (12) from ¢; to ¢, where ¢t > t; > to + max{p, 8}, we obtain

YO+ y(t-p)<y®)+ M y'({E—p)+ A y(t - 0)

t
<q +/ g(s)ds ,
ty
where c; is a constant. Further integration from ¢; to ¢ yields
. t
0<ut)+ A ult-p) <crtalt-t)+ [ (-9 gs)s,
i
where ¢; is a constant. Thus
.. 1
0 <liminf ——- [y(t) + M y(t = p)] < ~0,
oo t—1

a contradiction. Hence the lemma is proved.

Proof of Theorem 1. It follows from Lemma 3.1 and Theorem 2.7.
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Proof of Theorem II. It follows from Lemma 3.1 and Theorem 2.8.
Proof of Theorem III. It follows from Lemma 3.1 and Theorem 2.9.
Proof of Theorem IV. It follows from Lemma 3.1 and Theorem 2.10.

Remark. We may note that Theorems I-IV are applicable to nonlinear Klein—Gordon

equations
uy —Au+tau+g?0vZu=0

vy —Av+ v+ h2uPv=0
(z,t) € @, where a,8,g and h are non-zero constants, with boundary conditions (B;),

i1 =1,2,3, given in Section 1.

The following remark is useful for our examples.

Remark. If
ltlg_:gf —/ (t—s) G(s)ds =—
then
1 t
lim inf / (t—s) G(s) ds= —oco0 for any large tp >0.
t—+oo0 t - to to

Indeed, for large to > 0, we can write
1 t 1 t 1 to
—/ (t —s) G(s) ds=—-—-/ (t-3) G(s) ds——/ (t—s) G(s)ds =
t—10 Jy, t—1to Jo t—1ty Jo

o 'l/t(t_s)c(s)ds—# “(t~5) G(s) ds
Tt—t tJ, t—to Jo '

We may notice that

1 to
!l+°° t—_—t-— (t —3)G(s)ds= / G(s) ds ,
and
11!
ltu_n.+1{‘1£ r—y / (t—s) G(s) ds = hl_lgl;f t—to ;/0 (t—s) G(s) ds = —o0
since
1 t
>0 and liminf —/ (t—s)G(s) ds = —c0
t—1o t—+oo t fg
Thus

t
—o0 = liminf lt / (t—3) G(s)ds=
0

t—+o00 — 1y

= liminf {ﬁ /t:(t —5) G(s) ds + ﬁ /:o(t — 5) G(s) ds}

t—+o0

2 liminf
t—+00

1 ‘ .. 1 to
t—to '/to(t—s) G(s) ds+1:‘§l?£ t_——to/; (t —3) G(s) ds .
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The following examples illustrate our results.
Example 1. Consider the problem
1
ugel(z,t) + 3 uge(z,t — 7) + uy(z,t — 7)

- [Au(z,t) + Au(z,t — 7) + Av(z,t) + Av (m,t - %)]
+ u(z,t) + u(z,t — )
=2(e”"—1) e'sintsinz + (2 — 3¢ ™) e’ costsinz
(13) +e'sintcosz — e~ e costcosz
and
vu(z,t) + % vn(:v,tl— ) + vz, t — )
- [Au(:z:,t) + Au(z,t — 1)+ Av(z,t) + Av (dr,t - g)]

+o(z,t)+v (a:,t - g)
=21—e"—e ¥)elcostcosz +(2—e ™) e'sintcosz
(14) +(1—e™ efcostsine
(z,t) € (0, ) with boundary conditions
—u;(0,1) = u (m,t) = —e’cost

and
(15) —v:(0,t) = vy(m,t) =0.
Thus Q = (0,7),¥1(z,t) = —e’cost and ¥,(z,t) = 0. Consequently, ¥;(t) = —2¢*cost
and ¥,(t) =0,t > 0. Further,

R = '/o,r fi(z,t)dz

=d4(e""—1) e'sint +2(2 - 3e™™) e’ cost

and

F(t) = A" fa(z,t)dz = 2(1 — e~ ™) e'cost .
Thus

L(t) = %/o (t = $)[Fi(s) + U1(s) + U1(s — m)]ds
= -1-/;(t —s)[4(e ™ —1)e’sins +2(1 —2e™™) e’ cos s]ds
=2(e~"-1) % (141t — e'cost)

+(1-2¢77) %- (—t +€e'sint)

and
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L(t) = %./o (t—3)[Fa(s) + Pi(s)+ ¥y(s —m)]ds =0

Clearly, hmmf Ii(t) = —oo and hm nsup Ii(t) = co. From Theorem I it follows that

all solutlons of the problem (13 14), (15) oscillate in (0,7) x (0,00). In particular,
(u(z,t),v(z,t)) = (e* costsinz, e!sint cos z) is an oscillatory solution of the problem.

Example 2. Consider the problem

uu(l‘, t) + U“(I,t -— 7f) + Ue (.’l’,t - %)
— [Au(z,t) + Au(z,t — ®) + Av(z,t) + Av(z,t — 27)]
¢ t— o
+u(z,t)+u (z, —5)
=2 (—1 +e T4 e"g') e'sintsinz

(16) + (2+e_§ —e_") e‘costsinz+2(t—1r)sinz
and
T
’U“(l,t) + v (.’L‘,t - 5) + vy (l‘,t - 21()
- [—Au(z,t) — Au(z,t — 7) + Av(z,t) + Av (:c,t - —725)]
+v(z,t) + v (z,t —2m)

2-57\ . . . ¢ .

17) = 5 sinz +4tsinz+{(e”" — 1) e’ costsinz

(x,t) € (0,7) x (0,00) with boundary conditions

(18) u=0 and v=0 on {0,7} x(0,00).

Thus @ = (0, 7), $1(z,t) = 0 and P»(z,t) = 0. Consequently, ¥,(t) = 0 and ¥,(t) =

t > 0. Here ¢(z) = sinz and A; = 1. Hence

F(t)= /0" fi(z,t)sinz dz

=a, e'sint + a; e' cost + wt —

where
ay=7(-1+e"+e ¥), a= % (2+eF-e™)

and
Fy(t) =/ J2(z,t)sinz dz

=(2- 57r) +27rt+ (e7™ —1) e’ cost .

0 for



Oscillation for coupled hyperbolic equations 55

Thus
1 [ -
Il(t) = ?/ (t— 8) Fl(s)ds
0
t
= -;—t [al(e" +t et 4 cost) + az(—t e +sint)
+ % 3 et _ x? 42 e-—t]
and
_ etrT 5 _ T2 -t
L(t) =5 [3t e H(2-br) g e
+(e7*-1) % (—tet+ sint)] .
Clearly, li‘minf Ii(t) = —oo, limsup ©L{t) = oo, litminf I(t) = —oo and limsup I(t) =
— 00 t—oo —oc t—o0

00. Hence by Theorem IV all solutions of the problem oscillate in (0,7) x (0,00). In
particular, (u(z,t),v(z,t)) = (¢’ costsinz,¢sinz) is an oscillatory solution of the problem.
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Abstract _
This note gives a simple set of necessary and sufficient conditions for | N, p, |x and | C,a, 7 |k

to be translative.
1991 Mathematics Subject Classification 40F05.

1 Introduction _
We shall be concerned with two absolute summability methods | N, p, |x and | C, e, v |&

defined as follows. Let 37>  a, be a given infinite series with sequence of n-th partial sums
(8n)n>0- Let p = (pn)n>0 be a sequence of positive numbers with

n
Pn=§ pr — 00 as n — 00,

r=0

and define A2 by the identity

f: A% = (1— )L,

n=0

The sequence to sequence transformations given by

) =5 D ops:

r=0
(2) op = L i Als
n A: = n—rvr

define the (N, p,) and (C, @) means, respectively, of the sequence (s.) . The series 3.2 a,,
is said to be summable | N, p, | where k > 1, if (see [3])

oo P k-1
3) 2(p—") | tn— tar |F < 00

n=1

1Professor Kuttner died 2nd Jan. 1992 before Section 3 was completed.
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and summable | C, a, v |¢ where a > —1,7 is any real number and ¥ > 1, if (see [6])

e o)
4) Skl oz - o2, < oo

n=1

We call | N, py |x left translative if the summability | N, p, |« of the series 2 . a, implies
the summability | N,p, |x of the series Y- a,_; where a_; = 0. | N,p, |& is called
right translative if the converse holds, and translative if it is both left and right translative.
Translativity of | C,a,~ |x is defined similarly.

The purpose of this paper is to use some recent results of Bor and Thorpe (see [4],[5])
to obtain simple necessary and sufficient conditions on (p,) for | N, p, |+ to be translative.
This extends the results of Al-Madi in [1] to the case k > 1. In the final section we use some
recent results of Bennett in [2] to investigate the translativity properties of | C, a, v i -

2 Weighted mean methods

Let (3.)n30 denote the n-th partial sum of the series Z;’:’:o @,-1, so that 3, = s, where
s-1 = 0. Let {(un)np0 be the (N, pny1) transform of (sp)nzo and (£)nzo be the (N, pn) of
(Sn)n>0. From the definitions we have

-1

(5) = Zprsr = ;n }:prﬂsn

=

(6) Un Z Pr418r = n+l {'H'l .

n+1 - n+l = Po
We use the following lemma. -
Limma The sequence (3p)nz0 is summable | N, p, |« if and only if (3,)np0 is summable
' Na Prn1 Ik'
Proof From (6) above we get that
Pn+l

i ) fnPoPnH
Pn-H — Po

(b =) = (Pn+1 - Po)(Pn '—Po).

Assume that (3,).50 is summable | N,pn |x. By Minkowski’s inequality it is sufficient to
prove that

oo 1= k-1 P + k
n n - -
™) S (Bm) (G i, -h) <o

el Pny1

Up — Up—1 =

and that

® S (fmm)™ (bl ) <

n=1

By the assumption, we know that

oo P + k-1 .
9 n_) 1 1 -1 < 00.
©) () 1t

Taking the limit of the ratio of the terms in the series (7) and (9), since Pot1/(Pat1 — po) —
00 as n — 00, we see that (7) is equivalent to (9) and so (7) holds.
Similarly, (8) holds if and only if

w $ (P (Bl
pn+1 Pn+l Pn )

n=1
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By writing , = 3°"_, b, we see that (9) is equivalent to

00 P k-1 —
(11) (—") | b, {F< 00.

To show that (10) holds consider

8

Prn+1 |Z |k
~ Poy1 P

IA

" k
Pr+1 i
i PR (Z | |>

r=0

-

n=

Ms

n=1 r=0

by Holder’s inequality where % +5=1,

_Pnt1 1—k k
PP, Zp |5, |

n=1 r=0
oo o
- 1 1
1-k k
- YAEE Y (5o)
r=0 n=maz(l,r) P Pn+1
1-k 17 |k n k-1
P bl P, Tk L
= — _ b IF —
Pl + Z Dr I | Prk <o

r=1
by (11), since P, > po for r > 1.

Conversely, we have

- - Py PoPr+1
tap1 —tn=(1— — Up_ -1
+1 n < Pn+l) (un U 1)+ P P+1u

Assuming that (sn)n3o0 is summable | ¥, pa41 |« we know that

(12) i (Pn+l _po)k_l | tn = tnoy [F< 00
- n n—1
n=1 DPn+1

so that by Minkowski’s inequality, it is sufficient to prove that

> (22)7 ((1- ) )
13 —_ 1- n — Up_ < 00,
(13) > (B N L)

n=1

and that

oo P L k-1 Pt k
14 It ) ( ind ne ) < o0.
(14 n2=; (Pu+1 PP | unt | *

As before, since P, — oo as n — 00, we see that (13) follows from (12).
To show that (14) holds, let un = 3°7_ b, and write (14) as

oo n-1
Pn+1 ’ k pn+l
Bapr il S 250w (Z 5, ')

n=1 =1 r=0

IA

n=1 r=0

KE o
(i) e

)

P n-1 k/K n-1
n+1 -k k
2ot () (Eotin

)
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by Holder's inequality where ; + & =1,

Pn+1 '
Woanollh S Bzt b
r=0

b, ¥ Prt1
Epr-i-l | | Pn+an

r=0 n=r+1

i (Pr+1)k-l b, [* 1
r Pk

=0 \Prt1 r+1

k-1
< "“) b, |*< o0
= PE z (P +1 ad

r=0

IA

by (12). Hence the result.

For two summability methods A,B we write A = B if every series summable A is also
summable B.
Theorem 1 (a )N, Pals is left translative if and only if f | N.pn =] A N, Pas1 |x-

(b) | N,pn |& is right translative if and only if | N, poty [¢=>| N, pn &-
Proof (a) Assume that | N. /,Pn |k is left translative and that (s»)n30 is summable | / N,pa s
Then (s,.),.>o is summable | N, p, | and so by the lemma (sn)n>0 is summable | N, Pus1 Ik
e | N,on 6= N, pas1 e _
Conversely, if (84)n>0 is summable | N,p, |¢ then by assumption it is summable
| N,pn+1 |x and so by the lemma (3n)n0 is summable | N,p, |5 i.e. | N,pa |4 is left

translative. =~ . .
(b) This is similar to (a) and so is omitted.

Theorem 2 | N,p. |k is translative if and only if

Pr+1 Pn Pn Pr+1

— = —= d == —].

Pn-H O(Pn) o Pn O(Pn+l)
Proof From Theorem 1, | N,p, |z is translative if and only if | N,p, |s is equivalent to
| N, Pnt1 |4 The result now follows from Theorem 2 in [5] and the fact that Poyy ~ Poyy—Po
smceP — 00 as n — 00.

3 Cesaro Methods If 7& denotes the n-th (C, a)mean of the sequence (na, )0 then using
the well known identity 7% = n(e2 — ¢2_,) (see [6]), (4) is equivalent to

o0

(15) an"_l | 7% |F< oo.

n=1

Thus, if 72 denotes the n-th (C,a)mean of the sequence (nan—i)nyo where a_; = 0, then
| Cya,y |,, is left translative if (15) implies that

o0
Zn’”_l | 7o |"< 0o

n=1

and right translative if the converse holds. The following simple examples show that some
restriction on < is necessary for | C,a,v |¢ to be translative. The series 14+0+ 0+ ---
is summable | C,a,v |¢ for « > —1 and all real v since 77 = 0 for all n > 0. However
the series 0 + 1+ 0+ 0+ -+ is not summable | C,a,v |; for any ¥ > 1 and a # 0 since

= A2~} /A2. Thus for left translativity we need that v < 1 if a # 0. In a similar way we
see that the series Y >0 - a, where a, = A;*!'/(n +1) has 7¢ = 0 for n > 1 so that the

n=0
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series 0 + ag + a; + - - - is summable | C, a,4 |, for a > —1 and all real 4. Using the identity
(a+ 1Ao7 = —(n + 1)A;37? we can check that 3°°°  a,, is not summable | C,a,7 |4 for
any v > 1 and o # 0. Thus for right translativity we also need that v < 1 if a # 0 We now
show that these necessary conditions for translativity are also sufficient.

Theorem 3 | C,a, | is translative if either (i) & = 0 and + is any real number, or (ii)
a>-land y<1.

Proof Clearly | C,0,7 | is translative for all values of 7. We now assume a # 0 and that
(15) holds. For n > 1

n

= Ala Z Al e,y = A Z A2l (r+ Da,

" r=0 n =0
Aﬂ
Ao Tn-1 + § :A
ﬂ ﬂ r=0
and so we get the relation
A Al
?a _ n—1 Ta + n-1 _a-1
n = o n—1 Aa “n—l°
ATI Aﬂ

Using Minkowski’s inequality if £ > 1 and trivially if k = 1, we see that | C,a,v |i is left
translative if and only if (15) implies that

o0
Zn""""l | 627! |*< oo.
n=1

Expressing 027! in terms of 72 we get that, forn > 1,

r —o-1 g4a. o
AT AT

l n
a-1 __ a-1 T
oy = @t 3 E A, E "
n r=1

d=1
n n a—-1 g~-a-1
b ATy
Aa-1 r )
n d=1 r=d

If we write this transformation in the form

Az!
n y-1-1/k ja—1 _ ~y—1-1/k —l/k u
P o, Tt ap + dE_ b,,d—Aad'V

and assume that v < 1, we see that | C, a, v [ is left translative if B : ¥ — [* where

' d —y+o+1/k n A::,I.A—_a_l
(16) bod = (_) Ae Ay
n ot r
for 1 < d £ n and b,y = 0 otherwise. We now assume that « > 0 and use the identity (see
p- 419 of (8] for a similar argument)

——

ZA"-‘A::,; _ ZA" A Z (d- r)A::‘A,_d

r=d r=d r=d
-1 a-1g-o
An—d g A Ar—d 1
d d r
r=d+1
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The proof now splits into two cases, « integral or not. If « is an integer we repeat this
argument a further (a — 1) times to get the identity

VASDIATYTY Kala-1)...(a-s+1) ,,
(17) X:; ; ‘Zo: Jd+1).. (d4s) e
where a(a — 1)...(a — s+ 1) is defined to be 1 if s = 0. Putting this back in (16) we see
that a sufficient condition for | C, cv, v |i to be left translative is that for each integer s where
0<s<a, BW:* ¥ where

(18) o (AT AT,
nd n dd+1)...(d+s)

If e is positive and K < a < K + 1 for some integer K then we proceed as above to obtain
(16) and the identity (17) is replaced by

n - —- K-
ZA"_}Ar_dl _ zfa(a—l)...(a—s-‘-l)A:_—;_'_}_
=~ r e dd+1)...(d+s)

ola=1)...(a—K+1) < Af'.:}A:ftK—l
(19) ( ). )Z d-K

dd+1).. (d+ K -1 r

)
r=d+K

if K > 0 and we regard (19) as trivial if K = 0. The first term on the RHS of (19) is of the
form of (17) when K > 0. For the second term in (19) we use the inequality

| | < AT AT
r=d+K r d + K r=d+K
1 am _
= H—K@An-;\'-d - AR ),
since —2 < —a+ K —1 < -1, so that A;"’*K" < 0 for m > 1. In this case we see that
a sufficient condition for | C,a,v |x to be left translative is that for each integer s where
0<s<K,B®:i 5 [*and that C:l* — I* where

d —v+a+1/k Aa:;\’-d
(20) Cnd = (Z) D). A+ K)

In both cases, if s = 0 then B is a diagonal matrix with b,, = 1/n so it clearly maps I* to
I

Suppose that k = 1. Then B® : I — Iif and only if 322, | b%) | = O(1). In what
follows we use M to denote a constant {that may be different at each occurrence.) Thus, for
1< s <]a],

Z I bg‘) I < Md-Tte-s Zn'y-a—l(n _ d)a-l
n=1 n=d
2d 00
< Md e (Z W m—dp 4+ S o (- d)"‘)
n=d n=2d+1
2d 00
= d-rta-s (O(Gry—a-l) Z(n _ d)s-l + 0(1) z n‘v—a+s—2)
n=d n=2d+1

d_.y.,_a_, (O(dry—a+s—1) + O(d'y—a+s—l)) = O(d—l)
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since ¥ — a4+ s — 2 < —1. This gives the result for the integer case. For non-integer a we
also need to consider the matrix C. Now

E | Caa | < Md™7" KZm—“ Y(n—d+1)*"

n=d

and splitting the sum up in exactly the same way as the previous case we get

3l ens | = 0@ =1 = 0(1)

n=1
sincea < K +1
If k > 1 we use the estimates, for 1 < s < [a] and 1 < d < n/2,

AL < Mnt | ATTL L < MpoT?

, n—s—d
which give
b'(:‘) < Md-re-s—1+1/k y-ata-1-1/k
Cog < Md-rHo-K=141/kpy-1-1/k
for 1 £d < nf2. In the range n/2 < d < n, we have the estimates

(s) (n - d)’_l
by < M_—n’*'_‘—
(n—d+ 1)1
cnd < MT
Since all the terms are non-negative we have that for 1 <d <n,1 < s < |[q]
(21) bs.’d) S M (d-'y+a—s—l+l/kn'y-a+s-1-l/k + (Tl _ d)s—ln-a—l) ,

(22) Cng S M (&7 KRk r1otk g (n — d 1))

The first term on the RHS of (21) and (22) is a factorable matrix of the form @,y = n~%d~Y
(see p. 413 of [2].) In this paper, Bennett gives necessary and sufficient conditions for such
a matrix to map [* to I*. By Corollary 8 of [2] we see that the first term of (21) maps I* to I*
provided that —y+a —s+ 1+ 1/k > 1/k, and the first term of (22) maps I* to I* provided
that —y 4+ 1+ 1/k > 1/k. Both these conditions hold since ¥ < 1 and s < [a].

In order to deal with the second term in (21) and (22) we use Hardy’s inequality for
Cesaro methods (see example (2) on p.275 of [7].) Suppose that (z4)a»1 € I*. Then, from

(21)
1k 1k
-k n —d)*"z Ay =4
Ergei=r)” < w(S 5%
o 1/k
(g
d=1

by Hardy’s inequality for (C, s). Similarly, from (22)

<E plo=K-1)k Z (n—d+1)"'zy "d+ 1)" 'Ta | )

n=1

IA

J(EE=e)

n=1 Ld=1

0o 1/k
M (Z | zd Ik)
d=1

IA
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by Hardy’s inequality for (C,«). Putting these together we see that B®) and C map I* to
*, and so | C,a, 7 |4 is left translative if a > 0 and v < 1.
In the remaining case, where —1 < a < 0, we use the identity

n a—1 g4—a—1 n—1 —a-1
§ : Aﬂ—TAr—d _ n d + E E : n—l rAr d
r n n ’

r=d r=d

so that (16) becomes

AL Py L ,A;f-l
(23) bog = (;) + ;z 1- .

=d

If k =1 then since AZ, > 0 for z = a, —a — 1, we have

bl = tlagaen 3 pmena§ A A
n=1

n=d+1 r=d

— 1 —+a+1°°A:—ad-l = —a-2 pa
= E+Ia|d7 Z—T—Zn‘y Anrl

r=d n=r+1
1 Ao
= E+|a|d"’+°+‘z =4 o)
r=d

— l —v+o+1 —a—2Y __ l
= g+d o= =0(5},

so that B:l —l.
If £ > 1 then'in order to show that B : I* — [¥ it is sufficient to show that E : IF — I¥,
where ;
n A—a
2 d = d—1+a+1/k 7—a-—1—1/k§ : n—f r—d
( ) o " r=d r

for 1 <d < n and ens = 0 otherwise. In the range n/2 < d < n, we use the estimate
M
0 S €nd S e
n
If 1 < d <n/2 then we claim that
Aa A—a 1
0< z Tnrtred < Mne.

To see this, let A be chosen so that 1/2 < A < 1. Then

[An] —a=1 [An] —a-1
Az rAr d a A —d
< — < — ==
0 - < M(r(1-X)") .
r=d r=d
o0 A-a—l
< Mn® Lr-d
- " ; r—d+1

Mn®Y | A5G 1= O(n°),

r=d

IA
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since Y oo 0 A7®"2 = 0. Also

0< 2": A AT oy L mm 1z 2": A
< - = An i
r=[An]+1 .

1 o
= 0(;)=0(n").

Hence, putting this in (24), if 1 < d < n/2 then
0 < epg < Md-v+o+\kpy=1-1/k
so that, if 1 <d <n,
0<eq<M (d—‘y+a+1/kn'y—l—l/k +n?).

Thus by Corollary 8 in [2], we see that E : I* — I* provided that —y + 14 1/k > 1/k and
y-—a—-1/k—~y+1+1/k > 1. Thus | C,a,v | is left translative if (ii) holds.

For right translativity we need to express o2~! in terms of 72. Assuming that a # 0 we
get
1 n+l n Aa—lA—a—l
-l = Y7949 TnorPrdit
Tn T Ag-1 ZT"A"' E r+1
d=1 r=d-1

and so | C,a,7 | is right translative if F : I¥ — I¥ where

-v+o+l/k n -1 g—a—-
f d= i ” ! ______Az':A"fd"'ll
" n r+1

r=d-1

From (16) we see that for n,d > 1,

n +l —y+a+l/k
fnd"_-( n ) bn+1,d

and so from the results proved above for B we have that F : I¥ — [*, Hence the result.
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