Home Energy Efficient Wide Bandgap Semiconductor SiC Based Electric Vehicle and their Applications
Article
Licensed
Unlicensed Requires Authentication

Energy Efficient Wide Bandgap Semiconductor SiC Based Electric Vehicle and their Applications

  • Thirumalai Subhashini

    Ms. T. Subhashini, M.E, P. G.E. S.M, (Ph.D.), received her B.E degree in the department of Electrical and Electronics Engineering and M.E degree in Power Electronics & Drives both degrees affiliated college under Anna University Chennai, She is pursuing PhD at Department of Electrical and Electronics Engineering, Sathyabama institute of science and technology, Chennai, India. Having teaching experience of 12years, she did project in IGCAR under vibration monitoring in fuel test pin. Currently working as Associate professor VELS Institute of Science and Advanced Technology-School of Maritime, Chennai. Her area of interest power semiconductor, Wide bandgap, Renewable energy, power converters, Electrical Vehicle. Published papers in international journals under topics such as VFD ,SiC based controllers, general education system, Impacts of human element, Sagarmala, wide bandgap, EV.

    EMAIL logo
    , Mohandoss Kavitha

    Dr. M. Kavitha earned her B.E degree in Electrical and Electronics Engineering from Bharathi University, Coimbatore, and her M.E degree in Power Systems Engineering from Anna University, Chennai. She completed her PhD at Sathyabama Institute of Science and Technology. Currently, Dr. Kavitha serves in the Department of Electrical and Electronics Engineering at Sathyabama Institute of Science and Technology, Chennai. Her research interests include Renewable Energy and Power Converters. She has a robust publication record encompassing topics such as DC-DC converters, and Communication devices in various international journals and conferences. She has published over 15 papers in international journals and presented 30 papers at international conferences.

    and Thirumalai Manikandan

    Mr.T. Manikandan,M. E. Received his B.E degree in Mechanical Engineering from DMI College of Engineering and his M.E degree in Design Engineering from Madurai Anna University, Madurai. Currently working in Valeo India Private Limited, Chennai. Proficient in the area of Linear, Non-Linear (geometric, Contact, Material), Buckling, Dynamic analysis CAE-ANSYS Workbench17.1, ANSYS-fluent17, BAQUS6.10, HYPERMESH14.0, SOLIDWORKS SIMULATIONS 16.0.

Published/Copyright: September 16, 2025

Abstract

The solutions of environmentally friendly and sustainable energy transport is very important. In this atmosphere, development of EV technology with WBG Semiconductor has proven large performance. This article proposes Wide Band Gap (WBG) power semiconductor devices in Electric Vehicle (EV), WBG power electronics system has a huge potential to increase EV efficiency, improved mileage, reliability, less weight, less space, High switching frequency, cost reduction, Boosting power density. However, this adoption is still challenging in packaging and power conversion design. In the past few decades, power electronics WBG devices have been the most significant revolution in EVs. This paper concentrates on future trends in different areas for efficient electric vehicles and progress using WBG materials to overcome the obstacles.

Abstract

Die Lösungen für umweltfreundlichen und nachhaltigen Energietransport sind von großer Bedeutung. In diesem Zusammenhang hat die Entwicklung der Elektromobilität mit Wide-Bandgap-Halbleitern (WBG) eine hohe Leistungsfähigkeit bewiesen. Dieser Artikel schlägt den Einsatz von Wide-Bandgap-Leistungshalbleiterbauelementen in Elektrofahrzeugen (EV) vor. WBG-Leistungselektroniksysteme besitzen ein enormes Potenzial zur Steigerung der Effizienz von Elektrofahrzeugen, zur Verbesserung der Reichweite, Zuverlässigkeit, Gewichts- und Platzreduktion, zur Erhöhung der Schaltfrequenz, zur Senkung der Kosten und zur Steigerung der Leistungsdichte. Dennoch stellt die Integration dieser Technologie weiterhin eine Herausforderung in Bezug auf Gehäusetechnik und die Auslegung der Leistungsverarbeitung dar. In den letzten Jahrzehnten haben WBG-Bauelemente die bedeutendste Revolution in der Leistungselektronik von Elektrofahrzeugen ausgelöst. Diese Arbeit konzentriert sich auf zukünftige Trends in verschiedenen Bereichen für effiziente Elektrofahrzeuge und auf Fortschritte durch den Einsatz von WBG-Materialien zur Überwindung bestehender Hürden.


Note

This article is peer reviewed by the members of the ZWF Advisory Board.


About the authors

Thirumalai Subhashini

Ms. T. Subhashini, M.E, P. G.E. S.M, (Ph.D.), received her B.E degree in the department of Electrical and Electronics Engineering and M.E degree in Power Electronics & Drives both degrees affiliated college under Anna University Chennai, She is pursuing PhD at Department of Electrical and Electronics Engineering, Sathyabama institute of science and technology, Chennai, India. Having teaching experience of 12years, she did project in IGCAR under vibration monitoring in fuel test pin. Currently working as Associate professor VELS Institute of Science and Advanced Technology-School of Maritime, Chennai. Her area of interest power semiconductor, Wide bandgap, Renewable energy, power converters, Electrical Vehicle. Published papers in international journals under topics such as VFD ,SiC based controllers, general education system, Impacts of human element, Sagarmala, wide bandgap, EV.

Dr. Mohandoss Kavitha

Dr. M. Kavitha earned her B.E degree in Electrical and Electronics Engineering from Bharathi University, Coimbatore, and her M.E degree in Power Systems Engineering from Anna University, Chennai. She completed her PhD at Sathyabama Institute of Science and Technology. Currently, Dr. Kavitha serves in the Department of Electrical and Electronics Engineering at Sathyabama Institute of Science and Technology, Chennai. Her research interests include Renewable Energy and Power Converters. She has a robust publication record encompassing topics such as DC-DC converters, and Communication devices in various international journals and conferences. She has published over 15 papers in international journals and presented 30 papers at international conferences.

Thirumalai Manikandan

Mr.T. Manikandan,M. E. Received his B.E degree in Mechanical Engineering from DMI College of Engineering and his M.E degree in Design Engineering from Madurai Anna University, Madurai. Currently working in Valeo India Private Limited, Chennai. Proficient in the area of Linear, Non-Linear (geometric, Contact, Material), Buckling, Dynamic analysis CAE-ANSYS Workbench17.1, ANSYS-fluent17, BAQUS6.10, HYPERMESH14.0, SOLIDWORKS SIMULATIONS 16.0.

Declaration

The authors declare that they have no known competing financial interests or person relationships that could have appeared to influence the work reported in this paper.

Abbreviations and Acronyms

EVs Electric Vehicles
WBG Wide Bandgap
SiC Silicon Carbide
PWM Pulse Width Modulation
AC Alternating Current
DC Direct Current
BLDC Brush Less DC motor
PMSM Permanent Magnet Synchronous Motor
AIN Aluminium Nitrate
AIGaN Aluminium Gallium Nitrate
Ga2O3 Gallium Oxide
ICE Internal Combustion Engine
EDV Electrical Drive Vehicle
PM Power Module
IPM Intelligent Power Module
MOSFET Metal Oxide sSemiconductor Field Effect Transistor

References

1 Sakthi Suriya Raj J S; Sivaraman P.; Ponnusamy, P.; Matheswaran, A.: Wide Band Gap Semiconductor Material for Electric Vehicle Charger. Materials Today: Proceedings 45 (2021), pp. 852-856 DOI:10.1016/j.matpr.2020.02.91610.1016/j.matpr.2020.02.916Search in Google Scholar

2 Prasad, B. R. V.; Geethanjali, M.; Sonia, M.; Ganeesh, S.; Sai Krishna, P.: Solar Wireless Electric Vehicle Charging System. IJSREM 6 (2022) 6 DOI:10.55041/IJSREM1444910.55041/IJSREM14449Search in Google Scholar

3 Saha, J.; Kumar, N.; Panda, S. K.: A Futuristic Silicon-Carbide (SiC) Based Electric-Vehicle Fast Charging/discharging (FC/dC) Station. IEEE Journal of Emerging and Selected Topics in Power Electronics (2022) DOI:10.1109/JESTPE.2022.322341710.1109/JESTPE.2022.3223417Search in Google Scholar

4 Zhang, C.; Srdic, S.; Lukic, S.; Sun, K.; Wang, J.; Burgos, R.: A Sic-based Liquid-cooled Electric Vehicle Traction Inverter Operating at High Ambient Temperature. CPSS Transactions on Power Electronics and Applications 7 (2022) 2, pp. 160-175 DOI:10.24295/CPSSTPEA.2022.0001510.24295/CPSSTPEA.2022.00015Search in Google Scholar

5 Singh, P.; Sivapriya, J. et al.: Solar Wireless Electric Vehicle Charging System. European Chemical Bulletin (2023)Search in Google Scholar

6 Yadlapalli, R. T.; Kotapati, A.; Kandipati, R.; Koritala, C. S.: A Review on Energy Efficient Technologies for Electric Vehicle Applications. Journal of Energy Storage 50 (2022), 104212 DOI:10.1016/j.est.2022.10421210.1016/j.est.2022.104212Search in Google Scholar

7 Hamill, D. C.: Class DE Inverters and Rectifiers for DC-DC Conversion. In: PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, vol. 1, IEEE, 1996, pp. 854-860 DOI:10.1109/PESC.1996.54868110.1109/PESC.1996.548681Search in Google Scholar

8 Martínez-Lao, J.; Montoya, F. G.; Montoya, M. G.; Manzano-Agugliaro, F.: Electric Vehicles in Spain: An Overview of Charging Systems. Renewable and Sustainable Energy Reviews 77 (2017), pp. 970-983 DOI:10.1016/j.rser.2016.11.23910.1016/j.rser.2016.11.239Search in Google Scholar

9 Ronanki, D.; Williamson, S. S.: Modular Multilevel Converters for Transportation Electrification: Challenges and Opportunities IEEE Transactions on Transportation Electrification 4 (2018) 2, pp. 399-407 DOI:10.1109/TTE.2018.279233010.1109/TTE.2018.2792330Search in Google Scholar

10 Shafiei, N.; Ordonez, M.; Tokaldani, M. A. S.; Arefifar, S. A.: PV Battery Charger Using an $ L3C $ Resonant Converter for Electric Vehicle Applications. IEEE Transactions on Transportation Electrification 4 (2018) 1, pp. 108-121 DOI:10.1109/TTE.2018.279232310.1109/TTE.2018.2792323Search in Google Scholar

11 Li, S.; Lu, S.; Mi, C. C.: Revolution of Electric Vehicle Charging Technologies Accelerated by Wide Bandgap Devices. Proceedings of the IEEE 109 (2021) 6, pp. 985-1003 DOI:10.1109/JPROC.2021.307197710.1109/JPROC.2021.3071977Search in Google Scholar

12 Zeng, Z.; Zhang, X.; Blaabjerg, F.; Chen, H.; Sun, T.: Stepwise Design Methodology and Heterogeneous Integration Routine of Aircooled SiC Inverter for Electric Vehicle. IEEE Transactions on Power Electronics 35 (2019) 4, pp. 3973-3988 DOI:10.1109/TPEL.2019.293713510.1109/TPEL.2019.2937135Search in Google Scholar

13 Zhu, J.; Kim, H.; Chen, H.; Erickson, R.; Maksimović, D.: High Efficiency SiC Traction Inverter for Electric Vehicle Applications. In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1428-1433. IEEE, 2018 DOI:10.1109/APEC.2018.834120410.1109/APEC.2018.8341204Search in Google Scholar

14 Langmaack, N.; Lippold, F.; Hu, D.; Mallwitz, R.: Analysing Efficiency and Reliability of High-Speed Drive Inverters Using Wide Band Gap Power Devices. Machines 9 (2021) 12, p. 350 DOI:10.3390/machines912035010.3390/machines9120350Search in Google Scholar

15 Martínez-Lao, J.; Montoya, F. G.; Montoya, M. G.; Manzano-Agugliaro, F.: Electric Vehicles in Spain: An Overview of Charging Systems. Renewable and Sustainable Energy Reviews 77 (2017), pp. 970-983 DOI:10.1016/j.rser.2016.11.23910.1016/j.rser.2016.11.239Search in Google Scholar

16 Subhashini, T.; Kavitha. M.: Advancements and Challenges in Wide Bandgap Semiconductor Devices for High-Efficiency Power Electronics. Suranaree Journal of Science and Technology 31(2024) 4, 010314 DOI:10.55766/sujst-2024-04-e0276610.55766/sujst-2024-04-e02766Search in Google Scholar

17 Nakano, T.; Shinagawa, N.; Yabu, M.; Ohtani, N.: Formation and Multiplication of Basal Plane Dislocations During Physical Vapor Transport Growth of 4H-SiC Crystals. Journal of Crystal Growth 516 (2019) 51-56 DOI:10.1016/j.jcrysgro.2019.03.02710.1016/j.jcrysgro.2019.03.027Search in Google Scholar

18 Jiang, D.; Wang, H.; Wang, R.; Liu, Z.; Liu, Y.; Lin, Z.; Wan, W.: Design and Experiments of Isolated Ggate Driver Using Discrete Devices for Silicon Carbide MOSFET. IET Power Electronics 16 (2023) 1, pp. 118-127 DOI:10.1049/pel2.1236810.1049/pel2.12368Search in Google Scholar

19 Huang, A. Q.: Power Semiconductor Devices for Smart Grid and Renewable Energy Systems. Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications (2019), pp. 85-152 DOI:10.1002/9781119515661.ch210.1002/9781119515661.ch2Search in Google Scholar

20 Pradhan, R.; Keshmiri, N.; Emadi, A.: Onboard Chargers for High-Voltage Electric Vehicle Powertrains: Future Trends and Challenges. IEEE Open Journal of Power Electronics 4 (2023), pp. 189-207 DOI:10.1109/OJPEL.2023.325199210.1109/OJPEL.2023.3251992Search in Google Scholar

21 Chakraborty, S. et al: Real-Life Mission Profile-oriented Lifetime Estimation of a SiC Interleaved Bidirectional HV DC/DC Converter for Electric Vehicle Drivetrains. IEEE Journal of Emerging and Selected Topics in Power Electronics 10 (2021) 5, pp. 5142-5167 DOI:10.1109/JESTPE.2021.308319810.1109/JESTPE.2021.3083198Search in Google Scholar

22 Do, T. V.; Li, K.; Trovão, J. P. F.; Boulon, L.: Reviewing of Using Wide-Bandgap Power Semiconductor Devices in Electric Vehicle Systems: From Component to System. In: 2020 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2020, pp. 1-6 DOI:10.1109/VPPC49601.2020.933085410.1109/VPPC49601.2020.9330854Search in Google Scholar

23 Van Do, T.; Trovão, J. P. F.; Li, K.; Boulon, L.: Wide-Bandgap Power Semiconductors for Electric Vehicle Systems: Challenges and Trends. IEEE Vehicular Technology Magazine 16 (2021) 4, pp. 89-98 DOI:10.1109/MVT.2021.311294310.1109/MVT.2021.3112943Search in Google Scholar

24 Abdelrahman, A.; Erdem, Z.; Attia, Y.; Youssef, M.: Performance of Wide Band Gap Devices in Electric Vehicles Converters: A Case Study Evaluation. In: 2018 20th European Conference on Power Electronics and Applications (EPE‘18 ECCE Europe). IEEE, 2018Search in Google Scholar

25 Imbruglia, A.; Gennaro, F.; Di Marco, G.: Silicon and Wide Bandgap Technologies in Automotive Power Electronics and Their Applications. Conference: 2021 AEIT International Conference on Electrical and Electronic Technologies for Automotive (2021) DOI:10.23919/AEITAUTOMOTI-VE52815.2021.966295410.23919/AEITAUTOMOTI-VE52815.2021.9662954Search in Google Scholar

26 Kumar, A.; Moradpour, M.; Losito, M.; et al.: Wide Band Gap Devices and Their Application in Power Electronics. Energies 15 (2022) 23, 9172 DOI:10.3390/en1523917210.3390/en15239172Search in Google Scholar

27 Roccaforte, F. et al.: Emerging Trends in Wide Band Gap Semiconductors (SiC and GaN) Technology for Power Devices. Microelectronic Engineering 187 (2018), pp. 66-77 DOI:10.1016/j.mee.2017.11.02110.1016/j.mee.2017.11.021Search in Google Scholar

28 Nguyen, H. V.; Lee, D.-C.; Blaabjerg, F.: A Novel SiC-based Multifunctional Onboard Battery Charger for Plug-in Electric Vehicles. IEEE Transactions on Power Electronics 36 (2020) 5, pp. 5635-5646 DOI:10.1109/TPEL.2020.302603410.1109/TPEL.2020.3026034Search in Google Scholar

29 Xue, L.; Shen, Z.; Boroyevich, D.; Mattavelli, P.; Diaz, D.: Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple. IEEE Transactions on Power Electronics 30 (2015) 12, pp. 7299-7307 DOI:10.1109/TPEL.2015.241381510.1109/TPEL.2015.2413815Search in Google Scholar

30 Anwar, S.; Zhang, W.; Wang, F.; Costinett, D. J.: Integrated DC-DC Converter Design for electric Vehicle Powertrains. Conference: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 424-431 DOI:10.1109/APEC.2016.746790710.1109/APEC.2016.7467907Search in Google Scholar

31 Moradisizkoohi, H.; Elsayad, N.; Mohammed, O. A: Experimental Demonstration of a Modular, Quasi-Resonant Bidirectional DC– DC Converter Using GaN Switches for Electric Vehicles. IEEE Transactions on Industry Applications 55 (2019) 6, pp. 7787-7803 DOI:10.1109/TIA.2019.291464810.1109/TIA.2019.2914648Search in Google Scholar

32 Arabshahi, H.: Comparison of SiC and ZnO Field Effect Transistors for High Power Applications. Modern Physics Letters B 23 (2009) 20n21, pp. 2533-2540 DOI:10.1142/S021798490902058810.1142/S0217984909020588Search in Google Scholar

33 Farrow, M. R. et al.: Heterostructures of GaN with SiC and ZnO Enhance Carrier Stability and Separation in Framework Semiconductors. Physica Status Solidi (A) 214 (2017) 4, 1600440 DOI:10.1002/pssa.20160044010.1002/pssa.201600440Search in Google Scholar

34 Xu, Y.; Yuan, X.; Ye, F.; Wang, Z.; Zhang, Y.; Diab, M.; Zhou, W.: Impact of High Switching Speed and High Switching Frequency of Wide-Bandgap Motor Drives on Electric Machines. IEEE Access (2021) DOI:10.1109/ACCESS.2021.308668010.1109/ACCESS.2021.3086680Search in Google Scholar

35 Berub, Y.; Ghazanfari, A.; Blanchette, H. F.; et al.: Explains SiC EV in Recent Advances in Wide Bandgap Devices for Automotive Industry. In: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society (2021) DOI:10.1109/IECON43393.2020.925447810.1109/IECON43393.2020.9254478Search in Google Scholar

36 Yuen, K. K.; Chung, H. S.: Use of Synchronous Modulation to Recover Energy Gained from Matching Long Cable in Inverter-Fed Motor Drives. IEEE Transactions on Power Electronics 29 (2013) 2, pp. 883-893 DOI:10.1109/TPEL.2013.225817610.1109/TPEL.2013.2258176Search in Google Scholar

37 Wang, J.; Shen, Z.; Cvetkovic, I.; et al.: Power Electronics Building Block (PEBB) Design Based on 1.7 kV SiC MOSFET Modules. Conference: 2017 IEEE Electric Ship Technologies Symposium (ESTS) (2017) DOI:10.1109/ESTS.2017.806934510.1109/ESTS.2017.8069345Search in Google Scholar

38 Wang, Z. et al.: Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs. IEEE Transactions on Power Electronics 31 (2015) 2, pp. 1555-1566 DOI:10.1109/TPEL.2015.241635810.1109/TPEL.2015.2416358Search in Google Scholar

39 Yuan, X.: Application of Silicon Carbide (SiC) Power Devices: Opportunities, Challenges and Potential Solutions. Conference: IE-CON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society (2017) DOI:10.1109/IECON.2017.821615410.1109/IECON.2017.8216154Search in Google Scholar

Published Online: 2025-09-16
Published in Print: 2025-09-20

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zwf-2025-1111/html
Scroll to top button