Home Accounting for the Unseen: Quantifying Emissions from Product Development Activities
Article
Licensed
Unlicensed Requires Authentication

Accounting for the Unseen: Quantifying Emissions from Product Development Activities

A Case Study on Variant-Rich Product Families
  • Thomas Stückler

    Dipl.-Ing. Thomas Stückler studied Production Science and Management at Graz University of Technology. He is now working as a Product Engineer.

    and Kai Rüdele

    Kai Rüdele M. Sc., studied Management and Technology at Technical University of Munich. He is a university assistant and PhD candidate at the Institute of Innovation and Industrial Management.

    EMAIL logo
Published/Copyright: September 16, 2025

Abstract

This study investigates the greenhouse gas emissions arising from product development activities. Using a case study from industry, it quantifies emissions from research and development (R & D) processes and assigns them to a product carbon footprint. The findings reveal that, although emissions caused by R & D are small in relation to the full life cycle of a product, they can – under certain conditions – affect cradle-to-gate assessments. This work advocates for more comprehensive life cycle inventories and emphasizes the need to include upstream processes usually ignored in environmental footprints.

Abstract

Diese Studie untersucht die Treibhausgasemissionen, die während der Produktentwicklung entstehen. Anhand einer Fallstudie werden die Emissionen von Forschungs- und Entwicklungsprozessen quantifiziert und der Treibhausgasbilanz (CO2-Fußabdruck) eines Produktes zugewiesen. Die Ergebnisse zeigen, dass die durch Entwicklungstätigkeiten verursachten Emissionen im Vergleich zu denen des übrigen Lebenszyklus eines Produkts gering sind, sie jedoch unter bestimmten Umständen einen nennenswerten Anteil an den firmeninternen Emissionen (Cradle-to-Gate-Betrachtung) haben können. Diese Arbeit plädiert für umfassendere Sachbilanzen und betont die Notwendigkeit, vorgelagerte Prozesse einzubeziehen, die in Umweltbilanzen normalerweise vernachlässigt werden.


Note

This article is peer reviewed by the members of the ZWF Advisory Board.



Tel.: +43 316 873-9543

About the authors

Dipl.-Ing. Thomas Stückler

Dipl.-Ing. Thomas Stückler studied Production Science and Management at Graz University of Technology. He is now working as a Product Engineer.

Kai Rüdele

Kai Rüdele M. Sc., studied Management and Technology at Technical University of Munich. He is a university assistant and PhD candidate at the Institute of Innovation and Industrial Management.

Literature

1 World Meteorological Organization: State of the Global Climate 2024 (2025). Online at https://library.wmo.int/idurl/4/69455 [Accessed on 17.04.2025]Search in Google Scholar

2 Copernicus: Global Climate Highlights 2024 (2025). Online at https://climate.copernicus.eu/sites/default/files/customuploads/GCH-2024/GCH2024-PDF-1.pdf [Accessed on 17.04.2025]Search in Google Scholar

3 Benayad, A.; Hagenauer, A.; Holm, L.: Jones, E.; Kämmerer, S.; Maher, H.; Mohaddes, K.; Santamarta, S.; Annika Zawadzki, A.: Too Hot to Think Straight, too Cold to Panic: Landing the Economic Case for Climate Action with Decision Makers (2025). Online at https://web-assets.bcg.com/a1/fc/811b182f481fbe039d51776ec172/landingthe-economic-case-for-climate-action-withdecision-makers-wo-spine-mar-2025.pdf [Accessed on 17.04.2025]Search in Google Scholar

4 Hottenroth, H.; Joa, B.; Schmidt, M.: Carbon Footprints für Produkte. Handbuch für die betriebliche Praxis kleiner und mittlerer Unternehmen. Monsenstein und Vannerdat, Münster 2013Search in Google Scholar

5 Sala, S.; Castellani, V.: The Consumer Footprint: Monitoring Sustainable Development Goal 12 with Process-based Life Cycle Assessment. Journal of Cleaner Production 240 (2019), 118050 DOI:10.1016/j.jclepro.2019.11805010.1016/j.jclepro.2019.118050Search in Google Scholar PubMed PubMed Central

6 Meinrenken, C.; Kaufman, S.; Ramesh, S.; Lackner, K.: Fast Carbon Footprinting for large Product Portfolios. Journal of Industrial Ecology 16 (2012) 5, pp. 669–679 DOI:10.1111/j.1530-9290.2012.00463.x10.1111/j.1530-9290.2012.00463.xSearch in Google Scholar

7 Navarro, A.; Puig, R.; Fullana-i-Palmer, R.: Product vs Corporate Carbon Footprint: Some Methodological Issues – A Case Study and Review on the Wine Sector. Science of the Total Environment 581–582 (2017), pp. 722–733 DOI:10.1016/j.scitotenv.2016.12.19010.1016/j.scitotenv.2016.12.190Search in Google Scholar PubMed

8 Rüdele, K.; Ramsauer, C.: Insights into Common Inputs and the Level of Completeness of Product Carbon Footprints conducted in Industry: An Online Survey [In press]Search in Google Scholar

9 Klöpffer, W.: Introducing Life Cycle Assessment and its Presentation in ‘LCA Compendium’. In: Klöpffer, W. (ed.): Background and Future Prospects in Life Cycle Assessment. Springer, Dordrecht 2014 DOI:10.1007/978-94-017-8697-3_110.1007/978-94-017-8697-3_1Search in Google Scholar

10 European Parliament & Council: Directive 2024/1760 on Corporate Sustainability Due Diligence and Amending Directive 2019/1937 and Regulation 2023/2859 (2024). Online at https://eur-lex.europa.eu/eli/dir/2024/1760/oj/eng [Accessed on 17.04.2025]Search in Google Scholar

11 European Commission: Recommendation on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations (2013). Online at https://eur-lex.europa.eu/eli/reco/2013/179/oj/eng [Accessed on 17.04.2025]Search in Google Scholar

12 European Commission: Integrated Product Policy – Building on Environmental Life-Cycle Thinking (2003). Online at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52003DC0302 [Accessed on 17.04.2025]Search in Google Scholar

13 Rödger, J.-M.; Kjær, L.; Pagoropoulos, A.: Life Cycle Costing: An Introduction. In: Life Cycle Assessment. Springer International, Cham 2017 DOI:10.1007/978-3-319-56475-3_1510.1007/978-3-319-56475-3_15Search in Google Scholar

14 Owsianiak, M.; Bjørn, A.; Bugge, H.; Carvalho, S.; Jebahar, L.; Rasmussen, J.; White, C.; Olsen, S.: Illustrative Case Study: Life Cycle Assessment of Four Window Alternatives. In: Life Cycle Assessment. Springer, Cham 2017 DOI:10.1007/978-3-319-56475-3_3910.1007/978-3-319-56475-3_39Search in Google Scholar

15 Association Française de Normalisation: BP X30-323-x. General Principles for an Environmental Communication on Mass Market Products (201x)Search in Google Scholar

16 International Organization for Standardization: ISO/TR 14049: Environmental Management – Life Cycle Assessment – Illustrative Examples on how to Apply ISO 14044 to Goal and Scope Definition and Inventory Analysis (2012). Online at https://www.iso.org/obp/ui/#iso:std:iso:tr:14049:ed-2:v1:en [Accessed on 17.04.2025]Search in Google Scholar

17 European Committee for Standardization: Sustainability of Construction Works – Assessment of Environmental Performance of Buildings – Requirements and Guidance (2024). Online unter https://standards.iteh.ai/catalog/standards/sist/2e9fa5c3-d06a-4b1c-b5e6-76352826324c/osist-pren-15978-2024?srsltid=AfmBOopYw-6BftUIT_DQ_Gb9rfKo-4AarzDQfeLkhDcmBTgs6M-FcNfrs [Accessed on 17.04.2025]Search in Google Scholar

18 Sandin, G.; Clancy, G.; Heimersson, S.; Peters, G.; Svanström, M.; ten Hoeve, M.: Making the Most of LCA in Technical Inter-Organisational R & D Projects. Journal of Cleaner Production 70 (2014), pp. 97–104 DOI:10.1016/j.jclepro. 2014. 01.09410.1016/j.jcleproSearch in Google Scholar

19 Maximurad, W.; Najmadin, S.: Analysis of Emissions from Product Development Testing Activities. Master of Science Thesis TRITA-ITM-EX 2024:287, KTH Industrial Engineering and Management, Industrial Economics and Management, Stockholm (2024). Online at https://www.diva-portal.org/smash/get/diva2:1873712/FULLTEXT01.pdf [Accessed on 17.04.2025]Search in Google Scholar

20 Lo, L.-M.; Tsai, C.; Heitbrink, W.; Dunn, K.; Topmiller, J.; Ellenbecker, M.; Particle Emissions from Laboratory Activities involving Carbon Nanotubes. Journal of Nanoparticle Research 19 (2017), 293 DOI:10.1007/s11051-017-3990-810.1007/s11051-017-3990-8Search in Google Scholar PubMed PubMed Central

21 N. N.: Physics Should Acknowledge its Environmental Impact and Act on it (Editorial). Nature Review Physics 5 (2023) 3, 133 DOI:10.1038/s42254-023-00568-110.1038/s42254-023-00568-1Search in Google Scholar

22 Sullivan, J.; Lewis, G.; Keoleian, G.; Hart, R.: Energy, Fuels, and Cost Analyses for the M1A2 Tank: A Weight Reduction Case Study. SAE Technical Paper 2020 DOI:10.4271/2020-01-01-017310.4271/2020-01-01-0173Search in Google Scholar

23 Chang, D.; Lee, C.; Chen, C.: Review of Life Cycle Assessment towards Sustainable Product Development. Journal of Cleaner Production 83 (2014), pp. 48–60 DOI:10.1016/j.jclepro.2014.07.05010.1016/j.jclepro.2014.07.050Search in Google Scholar

24 Lövdahl, J., Schulte, J., Hallstedt, S.: A Literature Review of Approaches for Assessing Product Sustainability Performance in Early Phases of the Product Innovation Process. Proceedings of NordDesign Conference (2024), pp. 730–740 DOI:10.35199/NORDDESIGN2024.7810.35199/NORDDESIGN2024.78Search in Google Scholar

25 Kiran, D. .: CIPMS – Computer-integrated Production Management System. In: Kiran, D. R.: Production Planning and Control. Butterworth-Heinemann, Oxford 2019 DOI:10.1016/B978-0-12-818364-9.00033-010.1016/B978-0-12-818364-9.00033-0Search in Google Scholar

26 Gradin, K.; Björklund, A.: The common Understanding of Simplification Approaches in published LCA Studies – A Review and Mapping. International Journal of Life Cycle Assessment 26 (2021), pp. 50–63 DOI:10.1007/s11367-020-01843-410.1007/s11367-020-01843-4Search in Google Scholar

27 Bjørn, A.; Laurent A.; Owsianiak M.; Olsen, S.: Goal Definition. In: Hauschild, M. Z. et al. (ed.): Life Cycle Assessment. Springer, Cham 2017, pp. 67–74 DOI:10.1007/978-3-319-56475-3_710.1007/978-3-319-56475-3_7Search in Google Scholar

28 European Commission: Product Environmental Footprint Category Rules Guidance. Publications Office of the European Union (2018). Online at https://eplca.jrc.ec.europa.eu/permalink/PEFCR_guidance_v6.3-2.pdf [Accessed on 17.04.2025]Search in Google Scholar

29 European Commission: Recommendation on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. Publications Office of the European Unio, 2021. Online at https://eur-lex.europa.eu/eli/reco/2021/2279/oj/eng [Accessed on 17.04.2025]Search in Google Scholar

30 Damiani, M.; Ferrara, N.; Ardente, F.: Understanding Product Environmental Footprint and Organisation Environmental Footprint Methods. Publications Office of the European Union, 2022 DOI:10.2760/1156410.2760/11564Search in Google Scholar

31 Finkbeiner, M.; Bach, V.; Lehmann, A.: Environmental Footprint: Der Umwelt-Fußabdruck von Produkten und Dienstleistungen. Umweltbundesamt, Dessau-Roßlau 2019Search in Google Scholar

32 European Commission: International Reference Life Cycle Data System (ILCD) Handbook. Publications Office of the European Union, 2010 DOI:10.2788/3847910.2788/38479Search in Google Scholar

33 Rüdele, K.; Wolf, M.: Identification and Reduction of Product Carbon Footprints: Case Studies from the Austrian Automotive Supplier Industry. Sustainability 15 (2023) 20, 14911 DOI:10.3390/su15201491110.3390/su152014911Search in Google Scholar

34 Rüdele, K.; Wolf, M.: Grave without Death? A Plea for a More Accurate Wording of Study Scopes. International Journal of Life Cycle Assessment 28 (2023), pp. 1073–1077 DOI:10.1007/s11367-023-02208-310.1007/s11367-023-02208-3Search in Google Scholar

Published Online: 2025-09-16
Published in Print: 2025-09-20

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zwf-2025-1110/html?lang=en
Scroll to top button