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Production of the Future

Al Meets Software-Defined Automation
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I Motivation

To shape the future of production, we
must rethink it fundamentally. Both pro-
cess and manufacturing industries often
face significant challenges: Automation
solutions insufficiently match digitaliza-
tion possibilities [1], shortage of skilled
labor [2], and increasing demands for flex-
ibility, efficiency, and sustainability [3].
These requirements are driving the digi-
tal transformation of the industrial sector.
However, traditional automation technolo-
gies have their limitations when it comes to
fully taking advantage of the possibilities of
modern information technologies to realize
seamless and flexible information flows and
location-independent interactions between
humans and systems. Software-defined au-
tomation offers an alternative. It aims to re-
place the rigid automation pyramid with
flexible, networked services [4]. By decou-
pling hardware and process control and
shifting control to the software level, pro-
cesses can be adapted and expanded in
real-time, similar to apps on a smartphone.

The integration of software-defined automation with artificial intelli-
gence (Al) holds the potential to revolutionize production. Software-de-
fined automation can be characterized by its flexible, service-oriented
architecture, enabling real-time monitoring and control of production
processes. Combined with Al capabilities, it offers new levels of effi-
ciency, flexibility, and safety for industry. This article provides practi-
cal insights into how these technologies can be applied in production
together to enhance resilience, sustainability, and competitiveness.

Al integration, in particular, offers
enormous potential: predictive fault de-
tection, process optimization, and intui-
tive user assistance are just a few exam-
ples [4]. Software-defined automation
structures and provides production-relat-
ed data so the Al can derive valuable in-
sights and optimizations. Simultaneous-
ly, software-defined automation enables
the direct implementation of Al-driven
insights into production processes. Thus,
the combination of Al and software-de-
fined automation is an essential lever for
realizing the production of the future.

| State of the Art

The following section briefly overviews
the current state of Al and software-de-
fined automation.

Principles of Software-Defined Auto-
mation

Given the growing complexity of produc-
tion processes and labor shortages (in Ger-
many alone, shortages of engineers and IT
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specialists cost an estimated 13 billion
Euro annually [2]), it is increasingly im-
portant to efficiently network machines
and systems, integrate Al-supported ser-
vices, and create transparency across all
corporate systems. Traditional automation
technologies are reaching their limits, even
when hardware, such as programmable
logic controllers (PLC), is virtualized [5].

Decoupling Hardware and Process
Control

As with software-defined networks (SDN),
software-defined automation abstracts
hardware, and production capabilities are
controlled exclusively through software
[4]. Decoupling hardware and software
significantly increases flexibility. For in-
stance, a welding robot only needs to
know how to weld; the exact place of the
welding point can be determined dynami-
cally via IT services. Tasks such as weld-
ing, screwing, or transporting can be or-
chestrated flexibly - independent of the
specific machine and without specialized
on-site personnel [5].

Implementing IT Security

Software-defined automation creates a flex-
ible network of IT services, replacing the
rigid automation pyramid. When imple-
menting this, the necessary cybersecurity
protections must be addressed rigorously.
Traditionally, production environments
have been largely self-contained, with IT
security applied selectively. Thus, addi-
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tional exposure, such as that caused by
introducing software-defined automa-
tion, increases vulnerability within pro-
duction [6].

Enforcing an organization‘s security pol-
icies centrally is a fundamental require-
ment for operational resilience [7]. The
convergence of IT and operational technol-
ogy (OT) that comes with software-defined
automation also presents the opportunity
to unify and standardize security mea-
sures across organizations and beyond [5].
This approach supports unified system
governance with significantly lower sys-
tem administration costs [8]. The EU’s
NIS2 (Network and Information Security)
directive will play an increasingly import-
ant role here [9]. Although it is primarily
aimed at IT operations and management, it
can also be used to improve security mea-
sures in companies in general. Thus, it can
be assumed that the NIS2 will seriously
impact the OT in production too.

Digital Twins at the Core

Digital twins form the backbone of soft-
ware-defined automation. They are virtu-
al representations of real objects, main-
taining live synchronization with their
physical counterparts (Figure 1). This bi-
directional connection allows real-time
monitoring and control of production pro-
cesses [10]. Digital twins are indispensable
for applications like condition monitoring,
prescriptive maintenance, as well as anom-
aly detection and safety assurance, en-
abling efficient production control, wheth-
er via cloud or edge computing.

Digital twins offer the capability to in-
teract directly with Al They can provide
precise, context-based data from the pro-
duction process, enabling Al to make ac-
curate decisions [5]. Suggested process
changes and optimizations can then be
implemented in actual production through
digital twins [4].

Al in Production

Introducing Al into production promises
significant efficiency gains and innovation
(Figure 1). However, successful Al integra-
tion requires a deep understanding of the
technology and a targeted strategy that
considers economic, technical, organiza-
tional, and cultural aspects. The following
outline key requirements and steps for
companies starting Al implementations.
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Figure 1. How ChatGPT might envision itself within a production setting if it had a physical form

Categorization and Fundamentals

Al refers to systems that independently
learn from data through algorithms, han-
dling cognitive tasks such as prob-
lem-solving and decision-making. Unlike
Large Language Models (LLMs), which
primarily focus on language-based tasks
[11], a realization of an Al application es-
sentially comprises three steps: System-
atic data collection, model training, and
integration into the production environ-
ment. You can find a more detailed break-
down in [12].

Implementing Al requires technical
and domain-specific knowledge to adapt
Al solutions to production requirements.
Additionally, it should be considered to
provide structured data in the process
context rather than the mere provision of
semantically poor data [13]. The ,Period-
ic Table of AI“ offers helpful guidance on
industry application areas [14].

Successful AI Implementation

For companies beginning with Al, proof
of concepts (PoC) can be used to test spe-
cific applications. The PoC approach aims
to develop use cases with minimal effort
and evaluate data availability and poten-
tial business benefits. Furthermore, the
PoC phase reveals whether the project
team possesses the necessary skills and
how employees can be integrated into the
process. Employee involvement is key, as
close collaboration between the Al team
and specialist departments is a founda-
tion for success.
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After a successful PoC phase, compa-
nies need to plan for the operation and
scalability of Al solutions. Important ques-
tions include whether to use cloud-based
or on-premises solutions, open or closed
source, and whether to develop in-house
or rely on external expertise [15]. Cost
management is also crucial, especially
with cloud solutions, where ongoing costs
vary. In the long term, it is essential to es-
tablish mechanisms for maintaining and
updating machine learning models to en-
sure consistent performance. Figure 2
presents this process in a flowchart.

Technical, Organizational, and Legal
Constraints

Implementing Al in production is com-
plex, involving numerous technical and
organizational requirements. Verifying
data availability and quality is essential.
High data quality is crucial, as poor data
can undermine model accuracy and jeop-
ardize Al project success. Transparent
data management and maintenance stan-
dards are needed to ensure a stable and
reliable system. Data Mesh is a particu-
larly effective standard for integrating Al
systems into companies [16]. Risk man-
agement strategies also help to identify
and address common pitfalls such as bias
or overfitting.

Another key aspect is data protection,
compliance with legal regulations, and
the previously discussed cybersecurity
measures. When handling personal or
sensitive data, complying with the EU’s
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Figure 2. Flowchart for successful Al project implementation

GDPR (General Data Protection Regula-
tion) is crucial. Wherever possible, data
should be hosted within the EU. The EU
Al Act also provides valuable guidance
on legal risks [17].

Finally, transparent internal decision-
making in Al models is essential to ensure
traceability of errors and foster employee
acceptance. Considerations around sus-
tainability and ethics, such as efficient re-
source use and privacy protection, are also
gaining importance as they reflect the
company’s social responsibility.

Al-Enabled Software-Defined
Production

The convergence of software-defined au-
tomation with Al offers numerous advan-
tages for modern production. For exam-
ple, Al enables prescriptive analytics and
process optimizations, reducing down-
time, cutting costs, and improving effi-
ciency [12]. Software-defined automation
provides Al with necessary process-con-
textual data and can directly execute
Al-driven insights. Both technologies are
valuable on their own; together, they
form the critical foundation for realizing
future production. In the following, prom-
ising fields of application are given.

Quality Control and Process Agility

Al visual inspection and quality control
applications reduce human errors and
improve precision [18]. Image processing
algorithms quickly and reliably detect
defects, reducing waste and production
costs - a considerable advantage in preci-
sion-focused industries such as automo-
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tive or electronics and pharmaceutical or
food industries. Automated and digitally
available results shorten processing
times and increase efficiency.

In addition to visual inspection, sup-
plementary sensors can be used to moni-
tor processes more comprehensively. By
combining data sources, Al gains more
profound insights into process quality.
For instance, inaccuracies from earlier
process steps can be compensated for in
subsequent steps [19].

Regarding this, software-defined auto-
mation provides the mechanisms to gath-
er and communicate current and histori-
cal production-related data to Al It
provides the mechanisms to take the re-
lated feedback from Al for reconfiguring
processes or providing actionable recom-
mendations to personnel. In [5], a related
application is described, where quali-
ty-related process information is gath-
ered from a Body-in-White line and fed to
the associated algorithms. The results
are then applied at the line.

Anomaly Detection and Safety

AT will play an increasingly crucial role
in anomaly detection in the highly regu-
lated process industry to prevent produc-
tion disruptions and accidents. As pro-
cess complexity grows and unforeseen
events become more frequent, Al algo-
rithms demonstrate advantages over con-
ventional analytics [4, 20]. This is partic-
ularly important in sectors with stringent
safety and environmental regulations,
where accidents can endanger lives and
cause significant environmental and fi-
nancial damage.
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Real-time sensor data from software-de-
fined automation enables Al to identify
non-linear patterns indicating potential
leaks, pressure spikes, or other hazardous
states and recommend appropriate counter-
measures. Software-defined automation can
then directly implement these measures. In
[21], more details on Al-based anomaly de-
tection are given, and a case study is intro-
duced. Meaningful publications from the
industry currently seem to be kept secret to
protect competitive advantage.

A further relevant aspect is ,industrial
aging®: Aging equipment poses additional
challenges, which Al addresses by predict-
ing aging behavior and potential partial
failures [22]. Software-defined automation
can communicate context-specific data
(current and historical sensor data, mainte-
nance information, etc.) to the Al and exe-
cute the optimizations suggested by the Al

Prescriptive Maintenance and Self-
Healing

Predictive and prescriptive mainte-
nance are essential for the manufactur-
ing and process industries [5]. Unplanned
downtime can be costly in continuous
production environments, such as refin-
eries or pharmaceutical plants. A single
minute of downtime in the automotive in-
dustry can cost up to 20,000 euros. Com-
bining Al and software-defined automa-
tion provides substantial advantages over
traditional automation technologies.

As depicted in Figure 3, Al and soft-
ware-defined automation go far beyond
traditional automation technologies’ pos-
sibilities. Implementation requires deep
expertise, a trained Al model, data from
current and past production runs, and
the integration of relevant systems (e.g.,
maintenance, ERP, MES). It also requires
the ability to influence the production
process actively.

There are several stages of implemen-
tation. Al generally analyzes sensor data
from machines and systems, e.g., to pre-
dict failures or wear before they occur.
The stages differ in terms of what addi-
tional information is thereby considered
by the Al and how the results are used in
production actively.

Prescriptive maintenance incorporates
dynamic strategies for specific aging and
degradation behaviors. Based on this in-
formation, Al suggests targeted mainte-

ZIWF

137



ZIWF

138

KI IN PRODUKTION

nance actions to ensure system reliabili-
ty, allowing for more flexible and efficient
maintenance planning than traditional
static strategies [23]. Whereas related re-
alizations can be found frequently in in-
dustrial applications (e.g. [5]), the follow-
ing two can be seen as promising future
trends. A review and a case study regard-
ing the necessary self-reconfiguration ca-
pabilities are given in [24].

Proactive maintenance integrates main-
tenance and logistics knowledge, dynami-
cally steering production to optimize main-
tenance timing. Self-healing advances this
process by automatically detecting and re-
solving disruptions through corrective ac-
tions, process adjustments, or alternative
logistics without manual intervention.
These approaches require a bi-directional
interaction between Al and software-de-
fined automation.

Process Optimization, Supply Chains,
and Sustainability
Machine-learning algorithms within soft-
ware-defined automation enable real-time
adjustments to process parameters to im-
prove efficiency, product quality, and ener-
gy savings. In the process industry, Al-sup-
ported systems help reduce raw material
consumption and maximize energy effi-
ciency, reducing operational costs and
the ecological footprint [25]. Similar ben-
efits are observed in the manufacturing
sector. A notable example is the publicly
funded project E-KISS, which achieved
nearly 30 percent savings in resources
and energy [4].

Al can also optimize complex supply
chains and enhance production processes.

Agentic LLM Workflow
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Figure 3. Unlocking new possibilities in maintenance through Al

It improves demand forecasting, optimizes
inventory, and enables flexible production
adjustments. Software-defined automation
provides the mechanisms for creating ag-
ile production and logistics environments.

New regulatory requirements further
increase the need for real-time data avail-
ability. Real-time data, made available
through software-defined automation ser-
vices, can populate data spaces like Cate-
na-X or Manufacturing-X in a structured
and production-accompanying manner. In
the future, such services and appropri-
ately developed Al may also be used to
achieve a global minimum of CO, emis-
sions for specific products while simulta-
neously providing data relevant to future
product passports.

Copilots in Production Planning

The application of Al delivers operational
advantages in production and substantial

Embedding Logic

s Embedding Model

Process
Planning
I XML

Qi) el \/ector DB

Figure 4. Architecture of an LLM-based agent system in production planning
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benefits in production planning. Al-based
copilots support planners by accessing
experiential knowledge from past proj-
ects, providing helpful recommendations
and handling repetitive tasks, allowing
planners to focus on strategic decisions.

Production planning is a complex pro-
cess that cannot be fully captured solely
through the reasoning capabilities of a
single language model [26]. However, it
benefits significantly from enhanced rea-
soning abilities, enabling precise and ef-
ficient planning. The close integration of
Al with cross-domain models creates a
foundation on which changes in one do-
main can be automatically reflected in
others. Figure 4 illustrates an example ar-
chitecture for an agent-based logic system
in production planning. This architecture
incorporates vector embeddings to cap-
ture the nuanced relationships between
different planning concepts and uses mul-
tiple specialized agents to handle various
aspects of the complex planning process.
It also includes a feedback loop using Re-
inforcement Learning from Artificial Intel-
ligence Feedback (RLAIF) [27], which fur-
ther sharpens the reasoning of the
agent-based logic. The architecture was
developed and successfully validated in a
prototype, and an industry-ready applica-
tion is in progress.

Active Al involvement can be structured
so that a plan serves as a final output and
seamless input for subsequent phases.
When results—from engineering outputs,
through production planning and virtual
commissioning, to the services of soft-
ware-defined automation—are bidirection-
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Figure 5. Overview
of Al technologies in
production
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ally interconnected, a well-trained Al sys-
tem can ensure that changes in one domain
are automatically updated in others. Such
a solution could lead to an unprecedented
efficiency boost in production.

Overview and Classification
of Al Technologies

To illustrate and summarize the diverse
applications of Al within the context of
software-defined automation we dis-
cussed in this paper, Figure 5 presents
the primary application areas and corre-
sponding Al technologies in a compact ta-
ble. It serves as a micro-overview, offering
a quick reference for the various Al appli-
cation areas, the respective goals, and the
specific advantages achieved by integrat-
ing computer vision, large language mod-
els (LLM), outlier detection, supervised
learning, unsupervised learning, rein-
forcement learning, and time series fore-
casting in production.

This illustration highlights how Al
technologies can be strategically utilized
to optimize processes, enhance opera-
tional safety, and achieve sustainability
goals. Figure 5 shows that the intelligent
use of Al can increase efficiency and
quality in production, achieve significant
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cost savings, and reduce environmental
footprints. An ,x“ indicates where the Al
technology applies to the specified auto-
mation application.

I Summary and Outlook

Successful Al projects in the industry are
characterized by addressing use cases
with clear business benefits. The project
team must possess the necessary skills,
and employees should be involved initial-
ly. Additionally, data must be available at
the required quality level, and IT security
considerations are always relevant when
it comes to data. Furthermore, the scal-
ability and operational costs of Al in pro-
duction must also be considered.
Insights from Al implementations offer
valuable strategic and operational advan-
tages. However, a much greater leap in in-
novation can be achieved by using these
insights to enable the automated reconfig-
uration of production processes. This is
made possible by software-defined auto-
mation solutions, which provide Al with
real-time access to production-related data
(both current and historical) as well as
data from other systems (ERP, MES, main-
tenance, etc.) and enable the execution of
the Al’s resulting insights directly in pro-
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duction. This approach addresses the rap-
idly increasing demands for flexibility, re-
silience, and sustainability, helping to
make the production of the future a reality.
Despite the extensive possibilities that
technology offers, it’s important to re-
member that humans will continue to play
a critical role in the production environ-
ment of the future. Work itself will under-
go fundamental changes. Software-defined
automation and Al applications present
enormous opportunities for the industry.
However, beyond the technical challenges
that must be overcome for widespread in-
dustrial use, a comprehensive, indus-
try-wide change management strategy is
essential. Al can play a crucial role in sup-
porting humans and helping to accelerate
progress in this transformative era.
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| Abstract

Produktion der Zukunft: KI trifft Software-
definierte Automatisierung. Die Verbindung
von Software-definierte Automatisierung und
Kiinstlicher Intelligenz (KI) bietet das Potenzial,
die industrielle Produktion zu revolutionieren.
Die Software-definierte Automatisierung
besticht durch ihre flexible, Service-orientierte
Architektur, die das Monitoring und Steuern
von Anlagen in Echtzeit ermdglicht. Das mit
den Moglichkeiten der KI kombiniert kann

der Industrie neue Dimensionen an Effizienz,
Flexibilitat und Sicherheit erschlieBen. Der
Artikel zeigt praxisnah, wie diese Technologien
zusammen in der Produktion eingesetzt werden
und dabei auch die Resilienz, Nachhaltigkeit
und Wettbewerbsfahigkeit gefordert werden
konnen.
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