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Production of the Future
AI Meets Software-Defined Automation

The integration of software-defined automation with artificial intelli-
gence (AI) holds the potential to revolutionize production. Software-de-
fined automation can be characterized by its flexible, service-oriented 
architecture, enabling real-time monitoring and control of production 
processes. Combined with AI capabilities, it offers new levels of effi-
ciency, flexibility, and safety for industry. This article provides practi-
cal insights into how these technologies can be applied in production 
together to enhance resilience, sustainability, and competitiveness.

Steven Vettermann* and
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Motivation

To shape the future of production, we 
must rethink it fundamentally. Both pro-
cess and manufacturing industries often 
face significant challenges: Automation 
solutions insufficiently match digitaliza-
tion possibilities [1], shortage of skilled 
labor [2], and increasing demands for flex-
ibility, efficiency, and sustainability [3].

These requirements are driving the digi-
tal transformation of the industrial sector. 
However, traditional automation technolo-
gies have their limitations when it comes to 
fully taking advantage of the possibilities of 
modern information technologies to realize 
seamless and flexible information flows and 
location-independent interactions between 
humans and systems. Software-defined au-
tomation offers an alternative. It aims to re-
place the rigid automation pyramid with 
flexible, networked services [4]. By decou-
pling hardware and process control and 
shifting control to the software level, pro-
cesses can be adapted and expanded in 
real-time, similar to apps on a smartphone.

specialists cost an estimated 13 billion 
Euro annually [2]), it is increasingly im-
portant to efficiently network machines 
and systems, integrate AI-supported ser-
vices, and create transparency across all 
corporate systems. Traditional automation 
technologies are reaching their limits, even 
when hardware, such as programmable 
logic controllers (PLC), is virtualized [5].

Decoupling Hardware and Process 
Control
As with software-defined networks (SDN), 
software-defined automation abstracts 
hardware, and production capabilities are 
controlled exclusively through software 
[4]. Decoupling hardware and software 
significantly increases flexibility. For in-
stance, a welding robot only needs to 
know how to weld; the exact place of the 
welding point can be determined dynami-
cally via IT services. Tasks such as weld-
ing, screwing, or transporting can be or-
chestrated flexibly – independent of the 
specific machine and without specialized 
on-site personnel [5].

Implementing IT Security
Software-defined automation creates a flex-
ible network of IT services, replacing the 
rigid automation pyramid. When imple-
menting this, the necessary cybersecurity 
protections must be addressed rigorously. 
Traditionally, production environments 
have been largely self-contained, with IT 
security applied selectively. Thus, addi-

AI integration, in particular, offers 
enormous potential: predictive fault de-
tection, process optimization, and intui-
tive user assistance are just a few exam-
ples [4]. Software-defined automation 
structures and provides production-relat-
ed data so the AI can derive valuable in-
sights and optimizations. Simultaneous-
ly, software-defined automation enables 
the direct implementation of AI-driven 
insights into production processes. Thus, 
the combination of AI and software-de-
fined automation is an essential lever for 
realizing the production of the future.

State of the Art

The following section briefly overviews 
the current state of AI and software-de-
fined automation.

Principles of Software-Defined Auto-
mation
Given the growing complexity of produc-
tion processes and labor shortages (in Ger-
many alone, shortages of engineers and IT 
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After a successful PoC phase, compa-
nies need to plan for the operation and 
scalability of AI solutions. Important ques-
tions include whether to use cloud-based 
or on-premises solutions, open or closed 
source, and whether to develop in-house 
or rely on external expertise [15]. Cost 
management is also crucial, especially 
with cloud solutions, where ongoing costs 
vary. In the long term, it is essential to es-
tablish mechanisms for maintaining and 
updating machine learning models to en-
sure consistent performance. Figure 2 
presents this process in a flowchart.

Technical, Organizational, and Legal 
Constraints
Implementing AI in production is com-
plex, involving numerous technical and 
organizational requirements. Verifying 
data availability and quality is essential. 
High data quality is crucial, as poor data 
can undermine model accuracy and jeop-
ardize AI project success. Transparent 
data management and maintenance stan-
dards are needed to ensure a stable and 
reliable system. Data Mesh is a particu-
larly effective standard for integrating AI 
systems into companies [16]. Risk man-
agement strategies also help to identify 
and address common pitfalls such as bias 
or overfitting.

Another key aspect is data protection, 
compliance with legal regulations, and 
the previously discussed cybersecurity 
measures. When handling personal or 
sensitive data, complying with the EU’s 

Categorization and Fundamentals
AI refers to systems that independently 
learn from data through algorithms, han-
dling cognitive tasks such as prob-
lem-solving and decision-making. Unlike 
Large Language Models (LLMs), which 
primarily focus on language-based tasks 
[11], a realization of an AI application es-
sentially comprises three steps: System-
atic data collection, model training, and 
integration into the production environ-
ment. You can find a more detailed break-
down in [12].

Implementing AI requires technical 
and domain-specific knowledge to adapt 
AI solutions to production requirements. 
Additionally, it should be considered to 
provide structured data in the process 
context rather than the mere provision of 
semantically poor data [13]. The „Period-
ic Table of AI“ offers helpful guidance on 
industry application areas [14]. 

Successful AI Implementation
For companies beginning with AI, proof 
of concepts (PoC) can be used to test spe-
cific applications. The PoC approach aims 
to develop use cases with minimal effort 
and evaluate data availability and poten-
tial business benefits. Furthermore, the 
PoC phase reveals whether the project 
team possesses the necessary skills and 
how employees can be integrated into the 
process. Employee involvement is key, as 
close collaboration between the AI team 
and specialist departments is a founda-
tion for success.

tional exposure, such as that caused by 
introducing software-defined automa-
tion, increases vulnerability within pro-
duction [6].

Enforcing an organization‘s security pol-
icies centrally is a fundamental require-
ment for operational resilience [7]. The 
convergence of IT and operational technol-
ogy (OT) that comes with software-defined 
automation also presents the opportunity 
to unify and standardize security mea-
sures across organizations and beyond [5]. 
This approach supports unified system 
governance with significantly lower sys-
tem administration costs [8]. The EU’s 
NIS2 (Network and Information Security) 
directive will play an increasingly import-
ant role here [9]. Although it is primarily 
aimed at IT operations and management, it 
can also be used to improve security mea-
sures in companies in general. Thus, it can 
be assumed that the NIS2 will seriously 
impact the OT in production too.

Digital Twins at the Core
Digital twins form the backbone of soft-
ware-defined automation. They are virtu-
al representations of real objects, main-
taining live synchronization with their 
physical counterparts (Figure 1). This bi-
directional connection allows real-time 
monitoring and control of production pro-
cesses [10]. Digital twins are indispensable 
for applications like condition monitoring, 
prescriptive maintenance, as well as anom-
aly detection and safety assurance, en-
abling efficient production control, wheth-
er via cloud or edge computing.

Digital twins offer the capability to in-
teract directly with AI. They can provide 
precise, context-based data from the pro-
duction process, enabling AI to make ac-
curate decisions [5]. Suggested process 
changes and optimizations can then be 
implemented in actual production through 
digital twins [4].

AI in Production
Introducing AI into production promises 
significant efficiency gains and innovation 
(Figure 1). However, successful AI integra-
tion requires a deep understanding of the 
technology and a targeted strategy that 
considers economic, technical, organiza-
tional, and cultural aspects. The following 
outline key requirements and steps for 
companies starting AI implementations.

Figure 1. How ChatGPT might envision itself within a production setting if it had a physical form
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Real-time sensor data from software-de-
fined automation enables AI to identify 
non-linear patterns indicating potential 
leaks, pressure spikes, or other hazardous 
states and recommend appropriate counter-
measures. Software-defined automation can 
then directly implement these measures. In 
[21], more details on AI-based anomaly de-
tection are given, and a case study is intro-
duced. Meaningful publications from the 
industry currently seem to be kept secret to 
protect competitive advantage.

A further relevant aspect is „industrial 
aging“: Aging equipment poses additional 
challenges, which AI addresses by predict-
ing aging behavior and potential partial 
failures [22]. Software-defined automation 
can communicate context-specific data 
(current and historical sensor data, mainte-
nance information, etc.) to the AI and exe-
cute the optimizations suggested by the AI.

Prescriptive Maintenance and Self- 
Healing

Predictive and prescriptive mainte-
nance are essential for the manufactur-
ing and process industries [5]. Unplanned 
downtime can be costly in continuous 
production environments, such as refin-
eries or pharmaceutical plants. A single 
minute of downtime in the automotive in-
dustry can cost up to 20,000 euros. Com-
bining AI and software-defined automa-
tion provides substantial advantages over 
traditional automation technologies.

As depicted in Figure 3, AI and soft-
ware-defined automation go far beyond 
traditional automation technologies’ pos-
sibilities. Implementation requires deep 
expertise, a trained AI model, data from 
current and past production runs, and 
the integration of relevant systems (e. g., 
maintenance, ERP, MES). It also requires 
the ability to influence the production 
process actively.

There are several stages of implemen-
tation. AI generally analyzes sensor data 
from machines and systems, e. g., to pre-
dict failures or wear before they occur. 
The stages differ in terms of what addi-
tional information is thereby considered 
by the AI and how the results are used in 
production actively.

Prescriptive maintenance incorporates 
dynamic strategies for specific aging and 
degradation behaviors. Based on this in-
formation, AI suggests targeted mainte-

tive or electronics and pharmaceutical or 
food industries. Automated and digitally 
available results shorten processing 
times and increase efficiency.

In addition to visual inspection, sup-
plementary sensors can be used to moni-
tor processes more comprehensively. By 
combining data sources, AI gains more 
profound insights into process quality. 
For instance, inaccuracies from earlier 
process steps can be compensated for in 
subsequent steps [19].

Regarding this, software-defined auto-
mation provides the mechanisms to gath-
er and communicate current and histori-
cal production-related data to AI. It 
provides the mechanisms to take the re-
lated feedback from AI for reconfiguring 
processes or providing actionable recom-
mendations to personnel. In [5], a related 
application is described, where quali-
ty-related process information is gath-
ered from a Body-in-White line and fed to 
the associated algorithms. The results 
are then applied at the line.

Anomaly Detection and Safety
AI will play an increasingly crucial role 
in anomaly detection in the highly regu-
lated process industry to prevent produc-
tion disruptions and accidents. As pro-
cess complexity grows and unforeseen 
events become more frequent, AI algo-
rithms demonstrate advantages over con-
ventional analytics [4, 20]. This is partic-
ularly important in sectors with stringent 
safety and environmental regulations, 
where accidents can endanger lives and 
cause significant environmental and fi-
nancial damage.

GDPR (General Data Protection Regula-
tion) is crucial. Wherever possible, data 
should be hosted within the EU. The EU 
AI Act also provides valuable guidance 
on legal risks [17].

Finally, transparent internal decision- 
making in AI models is essential to ensure 
traceability of errors and foster employee 
acceptance. Considerations around sus-
tainability and ethics, such as efficient re-
source use and privacy protection, are also 
gaining importance as they reflect the 
company’s social responsibility.

AI-Enabled Software-Defined 
Production

The convergence of software-defined au-
tomation with AI offers numerous advan-
tages for modern production. For exam-
ple, AI enables prescriptive analytics and 
process optimizations, reducing down-
time, cutting costs, and improving effi-
ciency [12]. Software-defined automation 
provides AI with necessary process-con-
textual data and can directly execute 
AI-driven insights. Both technologies are 
valuable on their own; together, they 
form the critical foundation for realizing 
future production. In the following, prom-
ising fields of application are given.

Quality Control and Process Agility
AI visual inspection and quality control 
applications reduce human errors and 
improve precision [18]. Image processing 
algorithms quickly and reliably detect 
defects, reducing waste and production 
costs – a considerable advantage in preci-
sion-focused industries such as automo-

Figure 2. Flowchart for successful AI project implementation
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nance actions to ensure system reliabili-
ty, allowing for more flexible and efficient 
maintenance planning than traditional 
static strategies [23]. Whereas related re-
alizations can be found frequently in in-
dustrial applications (e.g. [5]), the follow-
ing two can be seen as promising future 
trends. A review and a case study regard-
ing the necessary self-reconfiguration ca-
pabilities are given in [24].

Proactive maintenance integrates main-
tenance and logistics knowledge, dynami-
cally steering production to optimize main-
tenance timing. Self-healing advances this 
process by automatically detecting and re-
solving disruptions through corrective ac-
tions, process adjustments, or alternative 
logistics without manual intervention. 
These approaches require a bi-directional 
interaction between AI and software-de-
fined automation.

Process Optimization, Supply Chains, 
and Sustainability
Machine-learning algorithms within soft-
ware-defined automation enable real-time 
adjustments to process parameters to im-
prove efficiency, product quality, and ener-
gy savings. In the process industry, AI-sup-
ported systems help reduce raw material 
consumption and maximize energy effi-
ciency, reducing operational costs and 
the ecological footprint [25]. Similar ben-
efits are observed in the manufacturing 
sector. A notable example is the publicly 
funded project E-KISS, which achieved 
nearly 30 percent savings in resources 
and energy [4].

AI can also optimize complex supply 
chains and enhance production processes. 

benefits in production planning. AI-based 
copilots support planners by accessing 
experiential knowledge from past proj-
ects, providing helpful recommendations 
and handling repetitive tasks, allowing 
planners to focus on strategic decisions.

Production planning is a complex pro-
cess that cannot be fully captured solely 
through the reasoning capabilities of a 
single language model [26]. However, it 
benefits significantly from enhanced rea-
soning abilities, enabling precise and ef-
ficient planning. The close integration of 
AI with cross-domain models creates a 
foundation on which changes in one do-
main can be automatically reflected in 
others. Figure 4 illustrates an example ar-
chitecture for an agent-based logic system 
in production planning. This architecture 
incorporates vector embeddings to cap-
ture the nuanced relationships between 
different planning concepts and uses mul-
tiple specialized agents to handle various 
aspects of the complex planning process. 
It also includes a feedback loop using Re-
inforcement Learning from Artificial Intel-
ligence Feedback (RLAIF) [27], which fur-
ther sharpens the reasoning of the 
agent-based logic. The architecture was 
developed and successfully validated in a 
prototype, and an industry-ready applica-
tion is in progress.

Active AI involvement can be structured 
so that a plan serves as a final output and 
seamless input for subsequent phases. 
When results—from engineering outputs, 
through production planning and virtual 
commissioning, to the services of soft-
ware-defined automation—are bidirection-

It improves demand forecasting, optimizes 
inventory, and enables flexible production 
adjustments. Software-defined automation 
provides the mechanisms for creating ag-
ile production and logistics environments.

New regulatory requirements further 
increase the need for real-time data avail-
ability. Real-time data, made available 
through software-defined automation ser-
vices, can populate data spaces like Cate-
na-X or Manufacturing-X in a structured 
and production-accompanying manner. In 
the future, such services and appropri-
ately developed AI may also be used to 
achieve a global minimum of CO2 emis-
sions for specific products while simulta-
neously providing data relevant to future 
product passports.

Copilots in Production Planning
The application of AI delivers operational 
advantages in production and substantial 

Figure 3. Unlocking new possibilities in maintenance through AI

Figure 4. Architecture of an LLM-based agent system in production planning



139

KI IN PRODUKTION

Jahrg. 120 (2025) Special Issue

duction. This approach addresses the rap-
idly increasing demands for flexibility, re-
silience, and sustainability, helping to 
make the production of the future a reality.

Despite the extensive possibilities that 
technology offers, it’s important to re-
member that humans will continue to play 
a critical role in the production environ-
ment of the future. Work itself will under-
go fundamental changes. Software-defined 
automation and AI applications present 
enormous opportunities for the industry. 
However, beyond the technical challenges 
that must be overcome for widespread in-
dustrial use, a comprehensive, indus-
try-wide change management strategy is 
essential. AI can play a crucial role in sup-
porting humans and helping to accelerate 
progress in this transformative era.
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Abstract
Produktion der Zukunft: KI trifft Software-
definierte Automatisierung. Die Verbindung 
von Software-definierte Automatisierung und 
Künstlicher Intelligenz (KI) bietet das Potenzial, 
die industrielle Produktion zu revolutionieren. 
Die Software-definierte Automatisierung  
besticht durch ihre flexible, Service-orientierte 
Architektur, die das Monitoring und Steuern 
von Anlagen in Echtzeit ermöglicht. Das mit 
den Möglichkeiten der KI kombiniert kann  
der Industrie neue Dimensionen an Effizienz, 
Flexibilität und Sicherheit erschließen. Der  
Artikel zeigt praxisnah, wie diese Technologien 
zusammen in der Produktion eingesetzt werden 
und dabei auch die Resilienz, Nachhaltigkeit 
und Wettbewerbsfähigkeit gefördert werden 
können.
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