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Applying AI in Supporting  
Additive Manufacturing Machine 
Maintenance
An Information Architecture

Based on recent Artificial Intelligence advancements, this paper address-
es implementing an AI-based maintenance strategy within a controlled 
production environment. The architecture employs real-time machine 
monitoring. Data is first processed locally for early fault detection and 
later cloud-based to support predictive maintenance functions. A Large 
Language Model trained with domain-specific knowledge provides opera-
tors with basic instructions to manage repetitive faults. The architecture 
is implemented and tested as a source of experimental data. 
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Introduction

With the industry‘s expansion on apply-
ing big data and machine learning, digi-
talized manufacturing has generated in-
creasing volumes of real-time data 
containing valuable information about 
machine and process conditions [1]. This 
data can be processed to implement pre-
dictive maintenance and optimize opera-
tions, improving productivity and ensur-
ing workplace safety [2–4]. 

The application of Artificial Intelli-
gence (AI) to support human-operated 

to operators. However, significant data 
protection and integrity challenges re-
main, especially in industrial settings. 

This paper discusses an AI-assisted in-
formation architecture focused on sup-
porting the maintenance of an additive 
manufacturing machine in a learning fac-
tory environment. The proposed model 
uses sensors for real-time monitoring and 
a gateway for local and cloud processing, 
facilitating fault detection and supporting 
predictive maintenance, assisted by an 
LLM trained with additive manufacturing 
contextual information. The study ad-
dresses the implementation of a secure ar-
chitecture, combining AI and VPN net-
works to maintain data privacy and 
integrity in industrial environments. By 
integrating emerging technologies, such 
as intelligent virtual assistants and secure 
networks, this approach seeks to validate 
a robust architecture that is practical and 
innovative with applications for the smart 
manufacturing industry.

The implemented framework is char-
acterized by remarkable applicability 
and adaptability across various manu-
facturing machines by adjusting to and 
incorporating each machine type’s spe-

machine maintenance in manufacturing 
is an emerging field with the potential to 
transform the industry. AI technologies, 
such as Large Language Models (LLMs), 
have enabled more effective interactions 
between humans and machines, playing 
an essential role in their operation, main-
tenance, and training [5–7]. LLMs, like 
GPT-3 [8] and GPT-4 [9], are recent tech-
nologies that allow more natural and effi-
cient interaction between humans and 
machines. These AIs can assist in opera-
tion, maintenance, and training, offering 
personalized and contextualized support 
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mands, such as initiating human technical 
assistance when the user requests.

Current architectures for assistive Ar-
tificial Intelligence (AI) applications of-
ten adopt the model represented in Sche-
matic A of Figure 2. In this architectural 
model, a web-based service sends re-
quests via APIs to an AI engine hosted in 
a cloud computing environment. The 
web-based service is responsible for the 
interface and communication manage-
ment, and the AI engine operates within 
cloud infrastructures, facilitating scal-
ability and remote access [2–4]. However, 
this configuration presents significant 
challenges when applied to industrial 
networks, particularly concerning data 
security, latency, and reliability [12].

lighting several essential characteristics of 
assistive AI applications for machine oper-
ation. Traditionally, the Human-Machine 
Interface (HMI) is implemented as a 
screen-based device due to the operation-
al conditions of machinery [10]. However, 
one of the critical innovations introduced 
by natural language AI is the voice com-
munication capability, which further sim-
plifies interaction within industrial HMIs 
[11]. Another essential feature is the AI’s 
interpretative capability regarding a data-
base (typically cloud-based) that can be 
continually updated, constraining the AI‘s 
response sample field and reducing the 
risk of erroneous outputs. Additionally, 
the architecture supports the AI‘s ability 
to execute varied interpretations and com-

cific properties and processes. For in-
stance, in the case of a CNC milling ma-
chine, the framework can be tailored to 
monitor spindle speed, tool wear, and 
precision tolerances, while in a robotic 
assembly line, it could focus on motor 
torque, alignment accuracy, and cycle 
times. This adaptability ensures that the 
framework can optimize secure manufac-
turing strategies by integrating ma-
chine-specific metrics into its monitoring 
and predictive maintenance algorithms, 
generally regardless of the origin of the 
specific optimization problem.

By leveraging secure data extraction 
methods through a VPD network and 
gateway, the framework ensures robust 
data security while enabling real-time 
data collection from multiple machine 
components and additionally integrated 
sensors. For example, in a smart factory 
producing automotive components, the 
AI could analyze vibration data and ther-
mal signatures to detect anomalies, re-
ducing risks of unplanned downtime. 
This secure and adaptable approach fos-
ters resilience, enhances efficiency, and 
supports sustainable manufacturing op-
erations across industries.

Architecture

The primary objective of the technological 
architecture is illustrated in Figure 1, high-

AI-Based Maintanance Strategies for Platforms

AI-based maintenance strategies for platforms, specifically an FDM printer, is de-
signed for an exemplary manufacturing machine to enhance operational efficiency, 
reduce machine downtime, and enhance maintenance quality. By adapting to vari-
ous machine properties and processes in the form of expert knowledge and re-
al-time sensor data, the platform can be adapted to multiple manufacturing ma-
chines, exceeding the exemplary application in the additive manufacturing context. 
It facilitates maintenance by providing expert knowledge to operators through a 
human-machine interface. The AI framework securely extracts data from the man-
ufacturing line via a VPD Network gateway, performs cloud-based analysis, and 
proactively informs operators of deviations to prevent downtime.

Figure 1. Functional  
architecture of the  

industrial use case
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chitecture B (Figure 2) was selected for 
deployment due to its balanced approach 
to security, cost efficiency, and operation-
al scalability. The implemented system 
architecture is illustrated in Figure 3.

The architecture is currently being im-
plemented on a Fused Deposition Model-
ing (FDM) Additive Manufacturing ma-
chine, which serves as a source of 
experimental data and a demonstrator of 
the proposed maintenance strategy. Giv-
en that FDM processes are characterized 
by high variability across several param-
eters, finding an optimal configuration 
presents a complex and challenging sce-
nario [13].

The technology was implemented by in-
tegrating a tablet as the main interface, a 
gateway equipped with a 5G sim card, 
and OpenAI’s AI engine. A voltage and 
current sensor were attached to the addi-
tive manufacturing machine, allowing the 
AI system to detect and report electrical 
issues in real time by comparing them 
with the training dataset. The tablet is the 
primary interaction between the human 
operator and the assistive system. It pro-
vides a Human-Machine Interface for 
monitoring and controlling the machine. 
By interacting with the assistive chat, op-
erators can receive immediate notifica-
tions about electrical failures or power 
interruptions and obtain guidance on op-
erational and maintenance procedures.

Based on Schematic B (Figure 2), the im-
plemented architecture uses a Virtual Pri-

communication, enhances security, and 
reduces latency, though it limits response 
capacity and application scalability. This 
configuration enables assistive chats to 
operate more efficiently and securely in 
industrial environments. 

Table 1 compares the different archi-
tectures discussed, highlighting their 
main characteristics and suitability for 
various industrial scenarios.

Implementation

The implementation described was evalu-
ated within the controlled environment 
of the Factory of the Future Lab, a Learn-
ing Factory at the University of São Paulo 
(USP). In this context, latency was not a 
critical parameter. Thus, the experimen-
tal focus was assessing the feasibility of 
different application scenarios and their 
scalability potential. Consequently, Ar-

One of the main challenges to overcome 
is data security. Protecting sensitive infor-
mation is crucial in industrial environ-
ments, as transmitting data over the Inter-
net to cloud services can expose the 
system to vulnerabilities and cyber-at-
tacks. Additionally, recurring operational 
costs and dependence on cloud infrastruc-
ture can pose significant obstacles to 
large-scale adoption of this architecture in 
the industrial sector.

To address these issues, VPNs are nec-
essary to ensure the security and privacy 
of transmitted data. Architectures B and 
C, illustrated in Figure 2, present alterna-
tive solutions. In Architecture B, a VPN 
creates a secure communication tunnel 
between system components, allowing 
the AI engine to remain in the cloud 
while protecting the entire system. In Ar-
chitecture C, implementing a local LLM 
eliminates the need for external cloud 

Figure 2. Schematic 
model architectures

Characteristic Architecture A Architecture B Architecture C

Scalability High Medium Low

Security Low Medium Medium

Latency – – Low

Operational Costs On demand On demand Low

Infrastructure Dependency Low Low Local dependent

Table 1. Comparison of alternative architectures
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vate Network (VPN) to ensure secure com-
munication between local devices and the 
cloud-based AI engine. The gateway col-
lects data from the voltage and current sen-
sors and transmits it through the VPN to 
the AI system in the cloud. This configura-
tion allows the AI to analyze real-time data 
and promptly alert the operator about de-
tected anomalies, enhancing operational 
efficiency and equipment safety. The VPN 
addresses security concerns associated 
with industrial networks, creating a secure 
tunnel for transmitting sensitive data [14]. 
Additionally, by maintaining the AI engine 
in the cloud and ensuring secure commu-
nication, the system leverages cloud ser-

sary security requirements to operate re-
liably and securely within an industrial 
setting. Figure 4 shows the solution im-
plementation in the selected machine.

The technology was integrated and 
tested using the OpenAI AI engine to pro-
cess received data and generate query re-
sponses. Initially, we extracted the con-
tent from the technical manual and 
reformulated significant portions of the 
material, organizing it into a structured 
dataset in FAQs (frequently asked ques-
tions). During this process, we empha-
sized critical information on operational 
procedures, such as startup and shut-
down, and maintenance guidelines, in-

vices‘ computational power and scalability 
without compromising data integrity.

The role of the VPN in data security is 
fundamental in this context. A VPN pro-
tects sensitive data transmitted between 
the machine, the gateway, and the cloud-
based AI engine against interception and 
unauthorized access. The VPN creates an 
encrypted tunnel for data transmission, 
guaranteeing the confidentiality and in-
tegrity of information [14]. This is espe-
cially critical in industrial environments, 
where data security is essential to pre-
vent cyber threats and protect intellectu-
al property. By implementing the VPN, 
the system architecture meets the neces-

Figure 3. Implemented 
system architecture and 

utilized elements

Figure 4. Photos of the 
local installation
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enhances human-machine interaction 
within the industrial context while vali-
dating an architecture that offers elevat-
ed levels of security and reliability.

A key innovation of this project was 
transforming the assistive chat from a pas-
sive helper into an active agent. The assis-
tant anticipates the operators‘ needs and 
takes action by proactively notifying them 
of detected electrical issues, potentially re-
ducing downtime and preventing possible 
failures. Moreover, a VPN ensures secure 
communication between devices and the 
virtual assistant, allowing private networks 
to be used within the industrial environ-
ment without compromising data security. 

The results highlight the substantial 
potential of integrating emerging tech-
nologies, such as intelligent virtual assis-
tants and secure networks, in industrial 
applications. This approach can be ex-
tended to other equipment and process-
es, fostering more effective human-ma-
chine interaction. Future research may 
further explore expanding the assistant‘s 
functionalities, incorporating additional 
sensor parameters, and optimizing hu-
man-machine interaction to improve op-
erational efficiency and safety.
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Abstract
Einsatz von KI zur Unterstützung der Wartung 
von additiven Fertigungsmaschinen – Eine 
Informationsarchitektur. Basierend auf den 
jüngsten Fortschritten im Bereich der Künstli-
chen Intelligenz adressiert dieser Beitrag die 
Implementierung einer KI-gestützten Wartungs-
strategie in einer kontrollierten Produktions-
umgebung. Die Architektur nutzt einen Echt-
zeitfähigen Überwachungsansatz. Zunächst 
werden die Daten lokal verarbeitet, um frühe 
Fehlererkennungen zu ermöglichen, und spä-
ter in einer Cloud verarbeitet, um prädiktive 
Wartungsfunktionen zu unterstützen. Ein mit 
domänenspezifischem Wissen trainiertes 
Large Language Model stellt den Bedienern 
grundlegende Anweisungen zur Bewältigung 
wiederkehrender Fehler bereit. Die Architektur 
wird implementiert und getestet, um experi-
mentelle Daten zu generieren.
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