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Data-Driven Decision-Making:  
Leveraging Digital Twins for  
Reprocessing in the Circular Factory

Circular factories must ensure the functionality and reliability of used 
components for recombination with other components or subsystems 
from the same or different product generations. This paper presents 
a data-driven decision-making framework integrating the Functional 
Behavior Model and System Reliability Model within a Digital Twin. 
Data from physical testing is continuously incorporated, simulating re-
combination scenarios and guiding decision-making on component re-
processing. An angle grinder is used as a case study for demonstration. 
The proposed framework enhances sustainability and supports the use 
of reprocessed components in products designed for primary markets.
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Introduction

Modern manufacturing systems are in-
creasingly complex, particularly in non-lin-
ear, interdependent production lines. This 
complexity raises the likelihood of down-
time and maintenance, challenges that re-
dundancy measures or stricter quality 
standards cannot fully mitigate. Circular 
factories (CFs), which aim to promote sus-
tainability by reprocessing components, 

Within the CF [2], DDDM enables re-
source optimization, extended product 
lifespans, and sustainable practices by 
integrating machine learning to develop 
functional and reliability models that 
guide predictive and prescriptive deci-
sions [3]. The FBM provides actionable 
insights to assess a product’s operational 
performance based on its current condi-
tion. Using the relations between the em-
bodiment and the functional behavior of 
a product, the FBM links the two domains 
and allows for the evaluation of used 
products. The operational performance 
can be derived [4] and expressed as a 
metric by comparing the functional be-
havior with the product’s requirements. 
To gain insights into the performance 
over time, the System Reliability Model 
(SRM) complements this metric by ad-
dressing potential failure modes, includ-
ing fatigue, corrosion, and wear, estimat-
ing the impact of failures, and predicting 
the product’s performance under various 
conditions [5]. Together, these models en-
able monitoring and predicting product 
health and support DDDM in the CF. DTs 
serve as the core of this data integration 

face additional challenges due to the 
variable quality of returned inputs [1]. 
Addressing these issues requires ad-
vanced frameworks capable of manag-
ing uncertainty and optimizing deci-
sion-making in dynamic environments. 
DDDM in manufacturing involves the 
continuous acquisition, processing, and 
analysis of data to optimize strategies 
across a product’s lifecycle, from design 
to end-of-life decisions. 
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Framework

The proposed framework integrates DTs, 
FBMs, and SRMs into a unified frame-
work to enable precise DDDM in CFs. By 
dynamically synchronizing functional 
and reliability data within the DTs, the 
framework supports real-time decisions 
on component reprocessing. Angle grind-
er is used as the case study, as seen in 
Figure 1, to support the vision of the per-
petual innovative product for reprocess-
ing products in CFs.

Digital Twin (DT) as the Decision Core 
The DT serves as the central component 
of the framework, providing a platform 
for real-time data aggregation, synchroni-
zation, and simulation. DTs enable hierar-
chical decision-making by dynamically 
updating system states and evaluating 
whether components require disassem-
bly or a refit for reprocessing, as illustrat-
ed in Figure 2. Compared to linear pro-
duction factories where there is more 
uniformity, the CF needs a more flexible 
DT because of the high variability of the 
products. When a product enters the CF, 
an instance is created in the DT and dy-
namically updated accordingly for new 
measurements and remanufacturing. 
This process makes the DT instance-spe-
cific in the CF context. For example, deci-
sions regarding an angle grinder, such as 
determining if it retains 95 percent of its 
performance, rely on iterative updates 
from the DT [1]. In the case of deci-
sion-making on the bevel gear, for exam-
ple, these updates are invoked by measure-
ments of its parameters, such as circular 
pitch, shaft angle, and elasticity, represent-
ed as distributions that are refined 

it expert knowledge to form real-time 
computational models, enabling bidirec-
tional evaluation of the EFRs. Therefore, 
the FBM helps to assess product func-
tionality based on the current condition 
but does not include degradation over 
time. SRMs address this gap by focusing 
on the performance of systems and com-
ponents over time. Reliability is the prob-
ability of a system or component per-
forming its required function at varying 
performance levels over a specified peri-
od under stated conditions [5]. Tools like 
Ishikawa diagrams [21] and Design 
Structure Matrices [22] identify key fail-
ure causes and subsystem interactions, 
while Reliability Block Diagrams (RBDs) 
[23] provide a graphical representation 
of the system’s reliability.

Furthermore, probabilistic approaches, 
such as Bayesian inference [24] and Mar-
kov models [25], are used to evaluate 
gradual degradation and multi-state sys-
tem reliability. This allows for more nu-
anced assessments of components that 
may not fail outright but experience per-
formance declines. Multi-state system re-
liability models (MSSRMs) are effective 
for systems where performance degrada-
tion occurs gradually or in multiple 
modes and represent a special case of 
SRMs [26, 27]. Although DTs, FBMs, and 
SRMs are powerful individually, current 
methodologies cannot dynamically syn-
chronize functional and reliability data. 
This limitation restricts their applicabili-
ty in CFs, where real-time decision-mak-
ing is essential. To address this gap, the 
paper proposes a unified framework that 
integrates DTs, FBMs, and SRMs to en-
hance strategies for component repro-
cessing.

process. A DT is a virtual representation of 
a physical asset [1], continuously updated 
with real-time product data throughout 
the processes within the CF. Data from the 
FBM and SRM is integrated and dynami-
cally updated to inform reprocessing deci-
sions. DTs ensure that data-driven in-
sights provided by product conditions 
guide decisions.

Background

DTs, FBMs, and SRMs form the founda-
tion of modern manufacturing systems. 
They are particularly relevant in the con-
text of CF, which faces significant chal-
lenges due to the variability in the quali-
ty of returned parts. DTs represent 
physical systems virtually and enable re-
al-time, bidirectional data flow between 
physical and digital domains. Their char-
acteristics have been defined across vari-
ous authoritative implementations [6–
10]. DTs have evolved significantly [11], 
driven by advancements in high-perfor-
mance computing [12], Moore’s Law [13], 
IoT technologies [14], chip design [15], 
and deep learning [16]. These advance-
ments have expanded DT applications 
from predictive maintenance to real-time 
system simulations, enabling complex 
decision-making scenarios. The issue of 
R-strategies lies in their optimal choice 
[17]. To make informed decisions about 
reprocessing strategies, it is essential to 
have quantitative knowledge about the 
relations between a product’s embodi-
ment and functional behavior [3]. Under-
standing these embodiment-function re-
lations (EFRs) provides insight into the 
product‘s current condition and creates a 
cornerstone for targeted and effective re-
processing. In the vision of the CF, this 
step is carried out by the FBM. Behavior 
investigation is carried out using behav-
ioral models [18] of physical systems. 
They include qualitative approaches such 
as Characteristics Properties Modeling 
[19] and quantitative approaches like ex-
perimental studies or numerical simula-
tions [20]. Behavioral models investigate 
how the product’s functional behavior is 
derived from its embodiment [4]. Howev-
er, the inversion of this investigation, 
needed for reprocessing decisions in the 
CF, requires implicit expert knowledge. 
In the CF, the FBM integrates this implic-

Figure 1. A vision of the “perpetual innovative product” for reprocessing products in CFs using an 
angle grinder as a case study
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be reused. If not, further disassembly 
and measurements are required. To 
guide this iterative disassembly, the FBM 
identifies structural areas of interest. 
These areas include the subsystems or 
components that are most likely to cause 
degradation in performance. For exam-
ple, the gearbox‘s condition is most likely 
to cause a change in the vibration emis-
sions of an angle grinder. After each step, 
geometric measurements are carried out 
to verify the assumptions. This way, a 
minimal degree of disassembly can be 
achieved. The FBM also defines how the 
structural parameters must be adjusted 
to meet the functional requirements. This 
is possible due to the bidirectional as-
sessment of the EFRs and references in 
the form of historical data. The derived 
Instance-Specific Tolerance Scheme (ITS) 
is shown in Figure 3. The exemplary 
three-dimensional space’s boundaries 
represent the target condition’s function-
al requirements. Everything inside ex-
ceeds the requirements, and everything 
outside falls short. Based on the geomet-
ric measurements and their correspond-
ing uncertainty, the instances of used 
products are mapped as points or areas 
in the ITS. As indicated by the different 
colors, an initial statement regarding the 
end-of-life strategies and manufacturing 
processes can be derived. The FBM, 
therefore, facilitates runtime decisions 
during the inspection of used products 
and links functional evaluation to long-

models inside the FBM, but conclusions 
can be drawn between the two domains.

Furthermore, the approach enables the 
combination of specific key performance 
indicators (KPIs) in the form of a perfor-
mance metric to evaluate functional be-
havior. In the CF, the FBM supports the 
inspection of used products entering the 
CF and guides their disassembly and re-
processing. Figure 3 shows the different 
inputs of the FBM and their correspond-
ing domains.

Functional tests at the inspection sta-
tion provide information about the cur-
rent performance. If the functional re-
quirements of the target condition are 
fulfilled, the system or subsystem is fit to 

throughout the CF. DTs in the context of 
the CFs also simulate recombination sce-
narios to assess the cross-generational 
compatibility of components, which is also 
part of CF DTs being instance-specific. 
They integrate real-time data from FBMs 
and SRMs, enabling reprocessing deci-
sions such as disassembling, remanufac-
turing, or reusing parts. By synchronizing 
these inputs, DTs lay the foundation for 
precise and efficient decision-making in 
CFs, optimizing resource use while main-
taining high-reliability standards.

Functional Behavior and System Reli-
ability Models as Decision Inputs

Functional Behavior Model (FBM) 
The functional behavior based on its cur-
rent condition must be considered to de-
cide how a used product should be repro-
cessed in a CF. This is done by the FBM, 
which expands behavioral models to eval-
uate the EFRs in both directions automat-
ically. The FBM is developed in a con-
trolled laboratory environment before 
the runtime of the CF. To incorporate the 
previously described implicit expert 
knowledge into the FBM, comprehensive 
system insights are created by using qual-
itative product models. The main empha-
sis of these models is to identify relevant 
EFRs and their interactions in the system. 
Afterward, this qualitative knowledge is 
embedded in a quantitative approach, 
such as a physics-informed neural net-
work. As a result, the quantified EFRs and 
their interactions are not pure black box Figure 3. Inputs of the functional behavior model (FBM) spanning the domains of design

Figure 2. Hierarchical disassembly of an angle grinder, using the data from the FBMs, the SRMs 
and other different stations in the CF, and replicating it digitally in the DT – Features are stored as 
probability distributions
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term dependability by providing a perfor-
mance metric.

System Reliability Model (SRM) 
To reprocess products in the CF, it is es-
sential to know about the individual sys-
tems and subsystems’ performance over 
time. The SBM complements the FBM by 
predicting the instance-specific reliabili-
ty of components, subsystems, and sys-
tems under various conditions. The SRM 
used in this framework uses MSSRM, 
which provides a nuanced evaluation of 
performance degradation over time. The 
SRM development consists of two distinct 
phases Figure 4. In the first phase, the 
SRM is built and trained using lifetime 
test data and knowledge about the func-
tional behavior of the FBM. This process 
occurs in a controlled laboratory environ-
ment, as described by Leitenberger et al. 
[25]. First, it defines the system’s reliabil-
ity structure by identifying key failure 
modes using Ishikawa diagrams, RBD, 
and Design Structure Matrices as de-
scribed above. Next, it collects data 
through sensors and test-bench simula-
tions, capturing operational loads and 
material behavior. The SRM is then pa-
rameterized with historical load curves 
and a system performance metric, en-
abling predictive capabilities. Bayesian 
approaches and Markov models are ap-
plied to analyze state transitions and 
handle model uncertainties. 

4SRM within the CF
Once the SRM is developed and validated, 
it is implemented and applied directly on 
the shop floor of the CF and integrated 
into the DT. The data incorporated in the 
DT, combined with the FBM, which re-

metrical measurements on the subsystem 
and component levels. Therefore, the FBM 
guarantees that the SRM receives all rele-
vant information to assess performance 
over time. All the gathered data is passed 
to the DT, feeding the DT representation in 
Figure 5. The DT dynamically updates 
component attributes using Bayesian tech-
niques by combining prior knowledge and 
real-time evidence [24].

Furthermore, the FBM determines the 
system’s performance based on its cur-
rent condition and passes it on to the 
SRM. This performance can be expressed 
both in the form of a performance metric 
focusing on the behavior or in the form of 
an ITS, concentrating on the structure. 
An initial statement regarding the possi-
ble end-of-life strategies can be derived 
based on the comparison between the 
current performance and its target condi-
tion. Depending on the possible combina-
tions and reprocessing strategies, the 
SRM predicts the instance-specific sys-
tem reliability. The varying performance 
predictions enable the DT to dynamically 
decide on further reprocessing within 
the CF. Compared to the FBM, a reliabili-
ty-related ITS further refined the manu-
facturing tolerances to incorporate the 
degradation over time. This ensures that 
decisions regarding reuse, repair, or dis-
assembly are based on precise, data-driv-
en insights.

Bayesian fusion methods on Gaussian 
Mixture Models (GMMs), which can rep-
resent complex uncertainties inherent to 
the products in the CFs, further refine 
these insights, enabling accurate deci-
sions on component compatibility (Eq. 1). 
Where P(a) represents the prior knowl-
edge about the attributes, P(a|I) is the 

cords the current state of the angle grind-
er, serves as input for the SRM during 
deployment. The SRM must account for 
the impact of varying reprocessing strat-
egies on multi-state system and subsys-
tem reliability, as different recombina-
tion or remanufacturing approaches for 
components affect their instance-specific 
functional behavior over time. Conse-
quently, a key output of the SRM is the 
multi-state system and subsystem reli-
ability prediction under diverse repro-
cessing strategies, as exemplified by 
three different strategies in Figure 4. The 
blue cube in Figure 4 part (d) is the ITS 
based on the current condition described 
by the FBM. As performance degrades 
over time, it is necessary to establish toler-
ance boundaries, as seen in Figure 4 (d), as 
the red cube, to ensure the tool continues 
to meet the required functional behavior 
throughout its lifecycle. This reliability-re-
lated ITS, aligned with the functional re-
quirements defined by the FBM, is another 
critical output of the SRM. Figure 4, part 
(d) by the green dot, symbolizes an exem-
plary instance of fulfilling the require-
ments. Both outputs, the instance-specific 
reliability prediction, and the reliability-re-
lated ITS, inform the R-strategies for opti-
mizing component reuse while maintain-
ing functionality.

Model integration for decision-making
The decision-making process relies on the 
reliability-related ITS, which integrates 
FBM and SRM outputs within the DT to 
guide remanufacturing decisions. The pro-
cess begins at the inspection station by 
evaluating whether components meet 
baseline functional requirements. If not, 
the FBM guides the disassembly and geo-

Figure 4. Workflow of the Instance-specific SRM within the CF
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ments to meet performance metrics. It 
combines implicit expert knowledge with 
measurable parameters, and its bidirec-
tional approach between EFRs and histor-
ical data allows iterative refinement of 
parameters, driving the development of 
ITS. The SRM complements this by provid-
ing predictive insights into system and 
subsystem reliability under varying condi-
tions, with reliability-related ITS further 
refining decision-making by balancing 
structural tolerances against degradation 
over time. Additionally, Bayesian fusion 
techniques enhance the framework’s abili-
ty to address uncertainties, enabling the 
DT to update prior knowledge dynamically 
and improve decision accuracy, ensuring 

Discussion

The proposed DDDM framework leverages 
DT technology, particularly instance-spe-
cific handling, to address the challenges 
of reprocessing used returned products 
with uncertainties, ensuring that each 
product‘s unique condition is thoroughly 
considered. By integrating FBMs and 
SRMs, the framework enables precise, da-
ta-driven recombination decisions aligned 
with market standards. The DT aggre-
gates real-time data, supports scenario 
simulations, and optimizes resource utili-
zation in CFs. The FBM evaluates the 
functional state of components, facilitat-
ing targeted disassembly and adjust-

likelihood function of the evidence, de-
rived from measurements. The normal-
ization factor P(a) is negligible as it adds 
no information to I. Bayesian fusion up-
dates prior knowledge by combining it 
with the likelihood function as new evi-
dence is being updated in the DT. After 
this update, the ITS is used as a bench-
mark for decision-making regarding the 
actual posterior knowledge in the DT. Fig-
ure 5 illustrates how FBMs and SRMs in-
teract within the DT to ensure repro-
cessed components meet functional and 
reliability standards.
 

𝑃𝑃(𝐼𝐼) = 	
𝑃𝑃(𝐼𝐼) 	𝑃𝑃(𝐼𝐼)
𝑃𝑃(𝑎𝑎)

 
	

(1)
 

Figure 5. Framework of the DDDM in the CF leveraging DT and the integration of FBM and SRM for the R-strategies
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alignment with evolving performance and 
reliability conditions.

However, the framework faces several 
challenges and limitations. Experimental 
validation is lacking, which limits the 
demonstration of its real-world effective-
ness. The methodology for setting ITS 
boundaries in the FBM and SRM remains 
unclear, as does selecting appropriate reli-
ability metrics to evaluate performance 
for diverse components and recombina-
tion strategies. DT implementation is fur-
ther constrained by the high data acquisi-
tion costs and computational demands for 
real-time integration, posing scalability 
and broader adoption challenges. Addi-
tionally, the focus on the three core com-
ponents, FBM, SRM, and DT, overlooks 
other critical aspects of CFs, such as in-
spection processes, material consider-
ations, manufacturing stations, and facto-
ry planning, which are essential for a fully 
integrated circular factory.

Future work should focus on experi-
mental validation to establish the frame-
work’s practical effectiveness and refine 
methodologies for defining ITS boundar-
ies and selecting reliability metrics for 
performance evaluation. Expanding the 
framework to incorporate additional ele-
ments of CFs, such as inspection and ma-
terial handling processes, could enable a 
more comprehensive and holistic ap-
proach to sustainable manufacturing.

Conclusion

This paper addresses the challenge of re-
processing returned products with un-
known conditions within a CF, driven by 
the need for sustainable resource use align-
ing with circular economy principles. The 
proposed framework integrates FBM, SRM, 
and DT by leveraging DT to enable DDDM 
across product generations. The FBM 
quantifies performance metrics, while the 
SRM predicts reliability and informs toler-
ance schemes, both dynamically interact-
ing with the DT to guide reprocessing deci-
sions on component disassembly, reuse, 
repair, or recombination. The DT is a cen-
tral data hub, aggregating various data to 
support scenario evaluations. The results 
demonstrated through an angle grinder 
case study highlight the framework‘s abili-
ty to ensure functionality and reliability 
standards for primary market applications 
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Abstract
Datengestützte Entscheidungsfindung: Nut-
zung von digitalen Zwillingen für Wiederauf-
bereitung in der Kreislauffabrik. Kreislauffa-
briken müssen die Funktionalität und Zuver-
lässigkeit gebrauchter Komponenten für die 
Rekombination mit anderen Komponenten oder 
Subsystemen der gleichen oder anderer Pro-
duktgenerationen sicherstellen. In diesem Bei-
trag wird ein Framework zur datengetriebener 
Entscheidungsfindung vorgestellt, welches das 
funktionale Verhaltensmodell und das System-
zuverlässigkeitsmodell in einem digitalen Zwil-
ling integriert. Es werden kontinuierlich Daten 
aus physischen Tests eingebunden, um Szena-
rien für die Rekombination zu simulieren und 
bei der Entscheidungsfindung für die Wieder-
aufbereitung von Komponenten zu unterstüt-
zen. Ein Winkelschleifer wird als Fallstudie zur 
Demonstration verwendet. Das vorgestellte Fra-
mework fördert die Nachhaltigkeit und unter-
stützt die Verwendung von wiederaufbereiteten 
Komponenten in Produkten, die für den Pri-
märmarkt bestimmt sind.
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