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I Introduction

Modern manufacturing systems are in-
creasingly complex, particularly in non-lin-
ear, interdependent production lines. This
complexity raises the likelihood of down-
time and maintenance, challenges that re-
dundancy measures or stricter quality
standards cannot fully mitigate. Circular
factories (CFs), which aim to promote sus-
tainability by reprocessing components,

Circular factories must ensure the functionality and reliability of used
components for recombination with other components or subsystems
from the same or different product generations. This paper presents
a data-driven decision-making framework integrating the Functional
Behavior Model and System Reliability Model within a Digital Twin.
Data from physical testing is continuously incorporated, simulating re-
combination scenarios and guiding decision-making on component re-
processing. An angle grinder is used as a case study for demonstration.
The proposed framework enhances sustainability and supports the use
of reprocessed components in products designed for primary markets.

face additional challenges due to the
variable quality of returned inputs [1].
Addressing these issues requires ad-
vanced frameworks capable of manag-
ing uncertainty and optimizing deci-
sion-making in dynamic environments.
DDDM in manufacturing involves the
continuous acquisition, processing, and
analysis of data to optimize strategies
across a product’s lifecycle, from design
to end-of-life decisions.
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Within the CF [2], DDDM enables re-
source optimization, extended product
lifespans, and sustainable practices by
integrating machine learning to develop
functional and reliability models that
guide predictive and prescriptive deci-
sions [3]. The FBM provides actionable
insights to assess a product’s operational
performance based on its current condi-
tion. Using the relations between the em-
bodiment and the functional behavior of
a product, the FBM links the two domains
and allows for the evaluation of used
products. The operational performance
can be derived [4] and expressed as a
metric by comparing the functional be-
havior with the product’s requirements.
To gain insights into the performance
over time, the System Reliability Model
(SRM) complements this metric by ad-
dressing potential failure modes, includ-
ing fatigue, corrosion, and wear, estimat-
ing the impact of failures, and predicting
the product’s performance under various
conditions [5]. Together, these models en-
able monitoring and predicting product
health and support DDDM in the CF. DTs
serve as the core of this data integration
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process. A DT is a virtual representation of
a physical asset [1], continuously updated
with real-time product data throughout
the processes within the CF. Data from the
FBM and SRM is integrated and dynami-
cally updated to inform reprocessing deci-
sions. DTs ensure that data-driven in-
sights provided by product conditions
guide decisions.

I Background

DTs, FBMs, and SRMs form the founda-
tion of modern manufacturing systems.
They are particularly relevant in the con-
text of CF, which faces significant chal-
lenges due to the variability in the quali-
ty of returned parts. DTs represent
physical systems virtually and enable re-
al-time, bidirectional data flow between
physical and digital domains. Their char-
acteristics have been defined across vari-
ous authoritative implementations [6-
10]. DTs have evolved significantly [11],
driven by advancements in high-perfor-
mance computing [12], Moore’s Law [13],
IoT technologies [14], chip design [15],
and deep learning [16]. These advance-
ments have expanded DT applications
from predictive maintenance to real-time
system simulations, enabling complex
decision-making scenarios. The issue of
R-strategies lies in their optimal choice
[17]. To make informed decisions about
reprocessing strategies, it is essential to
have quantitative knowledge about the
relations between a product’s embodi-
ment and functional behavior [3]. Under-
standing these embodiment-function re-
lations (EFRs) provides insight into the
product’s current condition and creates a
cornerstone for targeted and effective re-
processing. In the vision of the CF, this
step is carried out by the FBM. Behavior
investigation is carried out using behav-
ioral models [18] of physical systems.
They include qualitative approaches such
as Characteristics Properties Modeling
[19] and quantitative approaches like ex-
perimental studies or numerical simula-
tions [20]. Behavioral models investigate
how the product’s functional behavior is
derived from its embodiment [4]. Howev-
er, the inversion of this investigation,
needed for reprocessing decisions in the
CF, requires implicit expert knowledge.
In the CF, the FBM integrates this implic-
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Figure 1. A vision of the “perpetual innovative product” for reprocessing products in CFs using an

angle grinder as a case study

it expert knowledge to form real-time
computational models, enabling bidirec-
tional evaluation of the EFRs. Therefore,
the FBM helps to assess product func-
tionality based on the current condition
but does not include degradation over
time. SRMs address this gap by focusing
on the performance of systems and com-
ponents over time. Reliability is the prob-
ability of a system or component per-
forming its required function at varying
performance levels over a specified peri-
od under stated conditions [5]. Tools like
Ishikawa diagrams [21] and Design
Structure Matrices [22] identify key fail-
ure causes and subsystem interactions,
while Reliability Block Diagrams (RBDs)
[23] provide a graphical representation
of the system’s reliability.

Furthermore, probabilistic approaches,
such as Bayesian inference [24] and Mar-
kov models [25], are used to evaluate
gradual degradation and multi-state sys-
tem reliability. This allows for more nu-
anced assessments of components that
may not fail outright but experience per-
formance declines. Multi-state system re-
liability models (MSSRMs) are effective
for systems where performance degrada-
tion occurs gradually or in multiple
modes and represent a special case of
SRMs [26, 27]. Although DTs, FBMs, and
SRMs are powerful individually, current
methodologies cannot dynamically syn-
chronize functional and reliability data.
This limitation restricts their applicabili-
ty in CFs, where real-time decision-mak-
ing is essential. To address this gap, the
paper proposes a unified framework that
integrates DTs, FBMs, and SRMs to en-
hance strategies for component repro-
cessing.
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| Framework

The proposed framework integrates DTs,
FBMs, and SRMs into a unified frame-
work to enable precise DDDM in CFs. By
dynamically synchronizing functional
and reliability data within the DTs, the
framework supports real-time decisions
on component reprocessing. Angle grind-
er is used as the case study, as seen in
Figure 1, to support the vision of the per-
petual innovative product for reprocess-
ing products in CFs.

Digital Twin (DT) as the Decision Core
The DT serves as the central component
of the framework, providing a platform
for real-time data aggregation, synchroni-
zation, and simulation. DTs enable hierar-
chical decision-making by dynamically
updating system states and evaluating
whether components require disassem-
bly or a refit for reprocessing, as illustrat-
ed in Figure 2. Compared to linear pro-
duction factories where there is more
uniformity, the CF needs a more flexible
DT because of the high variability of the
products. When a product enters the CF,
an instance is created in the DT and dy-
namically updated accordingly for new
measurements and remanufacturing.
This process makes the DT instance-spe-
cific in the CF context. For example, deci-
sions regarding an angle grinder, such as
determining if it retains 95 percent of its
performance, rely on iterative updates
from the DT [1]. In the case of deci-
sion-making on the bevel gear, for exam-
ple, these updates are invoked by measure-
ments of its parameters, such as circular
pitch, shaft angle, and elasticity, represent-
ed as distributions that are refined
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Figure 2. Hierarchical disassembly of an angle grinder, using the data from the FBMs, the SRMs
and other different stations in the CF, and replicating it digitally in the DT - Features are stored as

probability distributions

throughout the CF. DTs in the context of
the CFs also simulate recombination sce-
narios to assess the cross-generational
compatibility of components, which is also
part of CF DTs being instance-specific.
They integrate real-time data from FBMs
and SRMs, enabling reprocessing deci-
sions such as disassembling, remanufac-
turing, or reusing parts. By synchronizing
these inputs, DTs lay the foundation for
precise and efficient decision-making in
CFs, optimizing resource use while main-
taining high-reliability standards.

Functional Behavior and System Reli-
ability Models as Decision Inputs

Functional Behavior Model (FBM)

The functional behavior based on its cur-
rent condition must be considered to de-
cide how a used product should be repro-
cessed in a CF. This is done by the FBM,
which expands behavioral models to eval-
uate the EFRs in both directions automat-
ically. The FBM is developed in a con-
trolled laboratory environment before
the runtime of the CF. To incorporate the
previously described implicit expert
knowledge into the FBM, comprehensive
system insights are created by using qual-
itative product models. The main empha-
sis of these models is to identify relevant
EFRs and their interactions in the system.
Afterward, this qualitative knowledge is
embedded in a quantitative approach,
such as a physics-informed neural net-
work. As a result, the quantified EFRs and
their interactions are not pure black box

models inside the FBM, but conclusions
can be drawn between the two domains.

Furthermore, the approach enables the
combination of specific key performance
indicators (KPIs) in the form of a perfor-
mance metric to evaluate functional be-
havior. In the CF, the FBM supports the
inspection of used products entering the
CF and guides their disassembly and re-
processing. Figure 3 shows the different
inputs of the FBM and their correspond-
ing domains.

Functional tests at the inspection sta-
tion provide information about the cur-
rent performance. If the functional re-
quirements of the target condition are
fulfilled, the system or subsystem is fit to

Functional tests

Overall system tests Inspe(_:tlon - Disassembly
- Subsystem tests Station - Visual investigation
Bellavior Stru+cture

Functional Behavior Model
- Qualitative & Quantitative-
Information

be reused. If not, further disassembly
and measurements are required. To
guide this iterative disassembly, the FBM
identifies structural areas of interest.
These areas include the subsystems or
components that are most likely to cause
degradation in performance. For exam-
ple, the gearbox‘s condition is most likely
to cause a change in the vibration emis-
sions of an angle grinder. After each step,
geometric measurements are carried out
to verify the assumptions. This way, a
minimal degree of disassembly can be
achieved. The FBM also defines how the
structural parameters must be adjusted
to meet the functional requirements. This
is possible due to the bidirectional as-
sessment of the EFRs and references in
the form of historical data. The derived
Instance-Specific Tolerance Scheme (ITS)
is shown in Figure 3. The exemplary
three-dimensional space’s boundaries
represent the target condition’s function-
al requirements. Everything inside ex-
ceeds the requirements, and everything
outside falls short. Based on the geomet-
ric measurements and their correspond-
ing uncertainty, the instances of used
products are mapped as points or areas
in the ITS. As indicated by the different
colors, an initial statement regarding the
end-of-life strategies and manufacturing
processes can be derived. The FBM,
therefore, facilitates runtime decisions
during the inspection of used products
and links functional evaluation to long-
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Figure 3. Inputs of the functional behavior model (FBM) spanning the domains of design
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Figure 4. Workflow of the Instance-specific SRM within the CF

term dependability by providing a perfor-
mance metric.

System Reliability Model (SRM)

To reprocess products in the CF, it is es-
sential to know about the individual sys-
tems and subsystems’ performance over
time. The SBM complements the FBM by
predicting the instance-specific reliabili-
ty of components, subsystems, and sys-
tems under various conditions. The SRM
used in this framework uses MSSRM,
which provides a nuanced evaluation of
performance degradation over time. The
SRM development consists of two distinct
phases Figure 4. In the first phase, the
SRM is built and trained using lifetime
test data and knowledge about the func-
tional behavior of the FBM. This process
occurs in a controlled laboratory environ-
ment, as described by Leitenberger et al.
[25]. First, it defines the system’s reliabil-
ity structure by identifying key failure
modes using Ishikawa diagrams, RBD,
and Design Structure Matrices as de-
scribed above. Next, it collects data
through sensors and test-bench simula-
tions, capturing operational loads and
material behavior. The SRM is then pa-
rameterized with historical load curves
and a system performance metric, en-
abling predictive capabilities. Bayesian
approaches and Markov models are ap-
plied to analyze state transitions and
handle model uncertainties.

4SRM within the CF

Once the SRM is developed and validated,
it is implemented and applied directly on
the shop floor of the CF and integrated
into the DT. The data incorporated in the
DT, combined with the FBM, which re-
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cords the current state of the angle grind-
er, serves as input for the SRM during
deployment. The SRM must account for
the impact of varying reprocessing strat-
egies on multi-state system and subsys-
tem reliability, as different recombina-
tion or remanufacturing approaches for
components affect their instance-specific
functional behavior over time. Conse-
quently, a key output of the SRM is the
multi-state system and subsystem reli-
ability prediction under diverse repro-
cessing strategies, as exemplified by
three different strategies in Figure 4. The
blue cube in Figure 4 part (d) is the ITS
based on the current condition described
by the FBM. As performance degrades
over time, it is necessary to establish toler-
ance boundaries, as seen in Figure 4 (d), as
the red cube, to ensure the tool continues
to meet the required functional behavior
throughout its lifecycle. This reliability-re-
lated ITS, aligned with the functional re-
quirements defined by the FBM, is another
critical output of the SRM. Figure 4, part
(d) by the green dot, symbolizes an exem-
plary instance of fulfilling the require-
ments. Both outputs, the instance-specific
reliability prediction, and the reliability-re-
lated ITS, inform the R-strategies for opti-
mizing component reuse while maintain-
ing functionality.

Model integration for decision-making

The decision-making process relies on the
reliability-related ITS, which integrates
FBM and SRM outputs within the DT to
guide remanufacturing decisions. The pro-
cess begins at the inspection station by
evaluating whether components meet
baseline functional requirements. If not,
the FBM guides the disassembly and geo-
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T
Instance specific system reliability prediction,
after remanufacturing a system

metrical measurements on the subsystem
and component levels. Therefore, the FBM
guarantees that the SRM receives all rele-
vant information to assess performance
over time. All the gathered data is passed
to the DT, feeding the DT representation in
Figure 5. The DT dynamically updates
component attributes using Bayesian tech-
niques by combining prior knowledge and
real-time evidence [24].

Furthermore, the FBM determines the
system’s performance based on its cur-
rent condition and passes it on to the
SRM. This performance can be expressed
both in the form of a performance metric
focusing on the behavior or in the form of
an ITS, concentrating on the structure.
An initial statement regarding the possi-
ble end-of-life strategies can be derived
based on the comparison between the
current performance and its target condi-
tion. Depending on the possible combina-
tions and reprocessing strategies, the
SRM predicts the instance-specific sys-
tem reliability. The varying performance
predictions enable the DT to dynamically
decide on further reprocessing within
the CF. Compared to the FBM, a reliabili-
ty-related ITS further refined the manu-
facturing tolerances to incorporate the
degradation over time. This ensures that
decisions regarding reuse, repair, or dis-
assembly are based on precise, data-driv-
en insights.

Bayesian fusion methods on Gaussian
Mixture Models (GMMs), which can rep-
resent complex uncertainties inherent to
the products in the CFs, further refine
these insights, enabling accurate deci-
sions on component compatibility (Eq. 1).
Where P(a) represents the prior knowl-
edge about the attributes, P(a|l) is the
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Figure 5. Framework of the DDDM in the CF leveraging DT and the integration of FBM and SRM for the R-strategies

likelihood function of the evidence, de-
rived from measurements. The normal-
ization factor P(a) is negligible as it adds
no information to /. Bayesian fusion up-
dates prior knowledge by combining it
with the likelihood function as new evi-
dence is being updated in the DT. After
this update, the ITS is used as a bench-
mark for decision-making regarding the
actual posterior knowledge in the DT. Fig-
ure 5 illustrates how FBMs and SRMs in-
teract within the DT to ensure repro-
cessed components meet functional and
reliability standards.

P(D) P()

P(I) = —P(a)

(1)

I Discussion

The proposed DDDM framework leverages
DT technology, particularly instance-spe-
cific handling, to address the challenges
of reprocessing used returned products
with uncertainties, ensuring that each
product’'s unique condition is thoroughly
considered. By integrating FBMs and
SRMs, the framework enables precise, da-
ta-driven recombination decisions aligned
with market standards. The DT aggre-
gates real-time data, supports scenario
simulations, and optimizes resource utili-
zation in CFs. The FBM evaluates the
functional state of components, facilitat-
ing targeted disassembly and adjust-

Jahrg. 120 (2025) Special Issue

ments to meet performance metrics. It
combines implicit expert knowledge with
measurable parameters, and its bidirec-
tional approach between EFRs and histor-
ical data allows iterative refinement of
parameters, driving the development of
ITS. The SRM complements this by provid-
ing predictive insights into system and
subsystem reliability under varying condi-
tions, with reliability-related ITS further
refining decision-making by balancing
structural tolerances against degradation
over time. Additionally, Bayesian fusion
techniques enhance the framework’s abili-
ty to address uncertainties, enabling the
DT to update prior knowledge dynamically
and improve decision accuracy, ensuring
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alignment with evolving performance and
reliability conditions.

However, the framework faces several
challenges and limitations. Experimental
validation is lacking, which limits the
demonstration of its real-world effective-
ness. The methodology for setting ITS
boundaries in the FBM and SRM remains
unclear, as does selecting appropriate reli-
ability metrics to evaluate performance
for diverse components and recombina-
tion strategies. DT implementation is fur-
ther constrained by the high data acquisi-
tion costs and computational demands for
real-time integration, posing scalability
and broader adoption challenges. Addi-
tionally, the focus on the three core com-
ponents, FBM, SRM, and DT, overlooks
other critical aspects of CFs, such as in-
spection processes, material consider-
ations, manufacturing stations, and facto-
ry planning, which are essential for a fully
integrated circular factory.

Future work should focus on experi-
mental validation to establish the frame-
work’s practical effectiveness and refine
methodologies for defining ITS boundar-
ies and selecting reliability metrics for
performance evaluation. Expanding the
framework to incorporate additional ele-
ments of CFs, such as inspection and ma-
terial handling processes, could enable a
more comprehensive and holistic ap-
proach to sustainable manufacturing.

I Conclusion

This paper addresses the challenge of re-
processing returned products with un-
known conditions within a CF, driven by
the need for sustainable resource use align-
ing with circular economy principles. The
proposed framework integrates FBM, SRM,
and DT by leveraging DT to enable DDDM
across product generations. The FBM
quantifies performance metrics, while the
SRM predicts reliability and informs toler-
ance schemes, both dynamically interact-
ing with the DT to guide reprocessing deci-
sions on component disassembly, reuse,
repair, or recombination. The DT is a cen-
tral data hub, aggregating various data to
support scenario evaluations. The results
demonstrated through an angle grinder
case study highlight the framework’s abili-
ty to ensure functionality and reliability
standards for primary market applications

DE GRUYTER

and reduce waste. Despite its strengths, it
faces challenges such as high-quality data
acquisition, computational demands, and
the need for experimental validation. Fu-
ture work should address these limitations
and explore integrating additional factory
elements to enable a more comprehensive
and scalable approach.
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| Abstract

Datengestiitzte Entscheidungsfindung: Nut-
zung von digitalen Zwillingen fiir Wiederauf-
bereitung in der Kreislauffabrik. Kreislauffa-
briken miissen die Funktionalitdt und Zuver-
lassigkeit gebrauchter Komponenten fiir die
Rekombination mit anderen Komponenten oder
Subsystemen der gleichen oder anderer Pro-
duktgenerationen sicherstellen. In diesem Bei-
trag wird ein Framework zur datengetriebener
Entscheidungsfindung vorgestellt, welches das
funktionale Verhaltensmodell und das System-
zuverldssigkeitsmodell in einem digitalen Zwil-
ling integriert. Es werden kontinuierlich Daten
aus physischen Tests eingebunden, um Szena-
rien fiir die Rekombination zu simulieren und
bei der Entscheidungsfindung fiir die Wieder-
aufbereitung von Komponenten zu unterstiit-
zen. Ein Winkelschleifer wird als Fallstudie zur
Demonstration verwendet. Das vorgestellte Fra-
mework fordert die Nachhaltigkeit und unter-
stiitzt die Verwendung von wiederaufbereiteten
Komponenten in Produkten, die fiir den Pri-
marmarkt bestimmt sind.
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