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AI-Supported 
Process Monitoring in Machining
In-Process Quality Assurance of Inhomogeneous Materials Using Feature-
Based Machine Learning Methods

In this study, AI-supported anomaly detection methods in the milling 
of inhomogeneous sample materials are investigated. To simplify data 
generation, targeted boreholes were introduced into homogeneous ma-
terial samples. Process data were collected by means of acceleration 
measurements on both the workpiece and tool sides and force mea-
surements on the tool side. Implementing targeted feature extraction 
and applying feature-based machine learning algorithms achieved pre-
cise material classification and reliable differentiation between drilled 
and undrilled samples for process monitoring.
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Introduction

In recent years, there has been a notable 
increase in demand for lightweight and 
durable materials in several industrial 
sectors, including e-mobility and aero-
space [1-3]. Cast materials, particularly 
aluminum, are frequently employed in 
the manufacture of components due to 
their advantageous strength-to-weight ra-
tio, rendering them optimal for incorpo-
ration in electric vehicles and planes [4]. 
However, casting defects, such as porosi-
ty and shrinkage cavities, can signifi-
cantly compromise these components‘ 
structural integrity [5, 6]. In the e-mobil-
ity context, defective parts in battery 

hanced the porosity detection in alumi-
num die-casting using X-ray radiography 
and Convolutional Neural Networks 
(CNN), achieving high accuracy with a 
false-positive rate below 1 percent [8]. 
Nouri et al. proposed Decision Trees (DT) 
with model order reduction and optimal 
transport with shape morphing to opti-
mize shrinkage porosity, showing prom-
ising results in aluminum casting [9]. 
Parlak et al. applied even deep learning, 
specifically YOLOv5, for detecting defects 
in X-ray images of aluminum parts, 
achieving 95.9 percent accuracy [12]. 
Fang et al. used deep learning models to 
improve defect detection via infrared 
thermography, enhancing segmentation 
accuracy for non-destructive evaluation 
[14]. Chen et al. developed machine learn-
ing models to predict surface defects in 
steel and cast-iron foundries, with Ex-
treme Randomized Trees (ET) performing 
best in reducing defects [15]. For accelera-
tion data and force measurements, in [16], 
it is shown that the detection of voids is 
possible using autoencoders. Ramme et al. 
[17] have even presented that the genera-
tion of build-up edges in chip-forming 
processes can be detected based on 
acoustic emission signals. 

housings, motor housings, or other criti-
cal components could result in product 
recalls.

To address these challenges, there has 
been a growing interest in leveraging ad-
vanced technologies such as machine 
learning (ML) to improve quality assur-
ance during the manufacturing process.

Gao et al. summarize the use of artifi-
cial intelligence in manufacturing and 
provide a perspective of future directions 
[7]. Multiple studies have already ex-
plored the use of machine learning for 
defect detection in casting materials [8–
13]. Many scientific papers have shown 
the usage of ML and image recognition, 
especially with X-rays. Bosse et al. en-
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hydro-deformable chuck is equipped 
with an acceleration sensor to record raw 
data at a frequency of 15 kHz.

Grooves are milled along the specimen 
using a 5 mm, four-tooth Ratio Cutter RF 
100 Sharp (by company GÜHRING). To 
minimize influences of tool wear effects, 
separate tools for homogeneous and in-
homogeneous specimens are used. The 
grooving process involves a 5 mm width 
of cut (ae) and 0.5 mm depth of cut (ap) 
at a cutting speed of 180 m/min and 
0.0264 mm feed per tooth. This results 
in a measurement time of 3.29 s and 
329000 samples in acceleration and 
force data for each milling path.

Twenty grooves are milled, and data is 
recorded for each mounted specimen, in-
cluding homogeneous and inhomoge-
neous samples and incorporating the ma-
terials EN10083-1 (C45), EN AC-42100, as 
well as EN-GJS-400-15 and EN-GJS-500-7 
cast iron. A randomized experimental 
plan is used to account for material types 
and porosity levels (0.5 % and 1 %). For 
each specimen, 100 paths were utilized to 
validate the algorithm, while at least 
200 undrilled homogenous probes were 
being milled. Machining parameters re-
main consistent with those for C45 mate-
rial. A thin oil layer was applied to the 
sample to prevent tool clogging and break-
age during aluminum machining. 

Machine Learning
For quality monitoring, a two-stage pro-
cedure with anomaly detection and mate-
rial classification is employed. This ap-

tern), translated into NC code for machin-
ing. To mimic inhomogeneity in aluminum 
casting, 0.3–0.5 mm boreholes are drilled, 
while homogeneous samples are left un-
modified for comparison. This method al-
lows machining and measurement to be 
carried out in the same configuration, en-
abling a direct correlation between bore-
hole positions and measurement data, as 
illustrated in Figure 1. Using this informa-
tion, labeled data for machine learning 
training is easily acquired.

Data Acquisition, Measurement Setup 
and Experimental Procedure
The test specimen is connected to differ-
ent sensors to obtain various measure-
ments on the workpiece side. Figure 2 
shows the sample body mounted to the 
force measurement platform (Kistler 
9129AA), providing the process forces 
FSpec. An acceleration sensor, gathering 
vibration signals ACCSpec, is attached to 
the specimen with wax. The data about 
acceleration and force are recorded utiliz-
ing Type 9230 and 9223 measurement 
cards (by company National Instruments) 
at a sampling rate of 10 kHz. Data acqui-
sition is initiated by the machine‘s NC 
code (DMG Lasertec 65 3D hybrid), en-
abling all systems to capture data within 
the same time window.

Furthermore, the trigger enables the 
precise calculation of the milling cutter‘s 
position at any given time. On the tool 
side, a sensory Intendo² tool clamping 
system (by company SCHUNK) is used to 
obtain vibration signals ACCTool. This 

Building on the advancements outlined 
in previous studies, this paper focuses on 
the application of machine learning to de-
tect porosity defects in different materi-
als. While existing research has demon-
strated the efficacy of deep learning 
models and other machine learning algo-
rithms in identifying casting defects, this 
paper extends the analysis by applying 
feature-based algorithms to detect anom-
alies during milling. Integrating these 
approaches into quality assurance work-
flows aims to explore new paths for im-
proving defect detection and reducing 
material and energy waste in high-perfor-
mance manufacturing environments.

Experimental Setup 
and Methods

In this chapter, the idea and the resulting 
methodology of analog testing, the ma-
chine setup, and the experiment execut-
ion are presented. Furthermore, data ac-
quisition and the subsequent data 
processing up to machine learning are 
introduced. 

Method for Analogy Testing
Training machine learning algorithms 
typically require extensive datasets de-
rived from relevant processes. However, 
analyzing cast components is costly and 
time-consuming, thus posing challenges 
in data collection. To address this, an 
analogy-based approach is used here to 
represent inhomogeneities in material 
specimens. Traditional methods, such as 
X-ray scanning, can map void locations 
accurately but are costly, while optical 
systems are simpler but limited to two 
cutting planes, risking undetected voids. 
Using these two planes provides only a 
rough estimation of void positions, leav-
ing uncertainty about whether the voids 
form a continuous cavity or are separate. 
Additionally, smaller voids might exist 
within the machined layer but remain 
undetected by microscopy, potentially im-
pacting data integrity for machine learn-
ing applications.

The here selected approach reverses 
this issue: rather than first analyzing posi-
tions and then linking them to data, mate-
rial inhomogeneity is generated based on 
predefined data. A MATLAB script creates 
randomized borehole positions (drill pat-

Figure 1. Methodological approach for generating labeled data for void detection
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ment the algorithms and handle the data, 
with Python as the programming lan-
guage. The Scikit-learn library and 
LightGBM toolbox were employed for ma-
chine learning tasks, enabling the appli-
cation of the previously named super-
vised learning methods.

Results

In the following, the two-stage approach 
will be discussed. First, the results of ma-
terial recognition will be presented, follo-
wed by the analysis of porosity detection. 

Material Classification
The results in Table 1 indicate that using 
an SVM allows for successful material 
identification during machining, accurate-
ly distinguishing among the four classes 
EN10083-1, EN AC-42100, EN-GJS-400-15, 
and EN-GJS-500-7. The system achieves 
an accuracy of 86 percent and an F1 score 
of 0.857 [18]. Analysis of the confusion 
matrix shows that most errors occur 
when predicting steel and cast iron mate-
rials. Specifically, EN10083-1 is misclas-
sified as EN-GJS-500-7 in 15.32 percent 
of cases, while EN-GJS-500-7 is misclassi-
fied as EN10083-1 in 10.81 percent of 
cases. This is likely due to the similar me-
chanical properties of EN10083-1 and 
EN-GJS-500-7, such as hardness and ten-
sile strength, despite the more homoge-
neous microstructure of EN10083-1. 
These similarities in the machining data 
create challenges for SVM in distinguish-
ing between these two classes, leading to 
higher misclassification rates compared 
to more distinct material pairs, like 
EN10083-1 and EN AC-42100. Overall, 
while SVM effectively classifies materials, 
the shared properties between certain ma-
terials contribute to misclassification, sug-
gesting that refining feature selection or 
including additional distinguishing fea-
tures could help reduce these errors.

Each milling path is sliced into small 
datasets of 200 points. With the knowl-
edge of the borehole positions, the data is 
being labelled. To accommodate material 
variations and the influences of wear or 
other anomalies, these factors are inten-
tionally varied. Algorithm training is im-
plemented using randomly assembled 
data from experiments conducted on dif-
ferent test days and under varying wear 
conditions. Randomized milling paths are 
also generated and examined for the test-
ed specimens. In each instance, 100 paths 
are utilized to validate the algorithm.

The Spyder integrated development en-
vironment (IDE) was utilized to imple-

proach enables simultaneous operation, 
enhancing the monitoring process‘s effi-
ciency and effectiveness.

As demonstrated in [16], neural net-
works such as an autoencoder can detect 
anomalies. In contrast, this study utilizes 
feature-based machine learning algo-
rithms such as Support Vector Machines 
(SVM), Naive Bayes (NB), k-Nearest Neigh-
bours (KNN), Adaboost (ADA), Isolation 
Forest (IF), Decision Tree (DT), Extra 
Trees (ET), Linear Discriminant Analysis 
(LDA), Ridge (RID), Light Gradient-Boost-
ing Machine (LGBM) and Random Forest 
(RF) for the anomaly detection. Fea-
ture-based machine learning algorithms 
are supervised learning techniques that 
rely on predefined features from the data 
to make predictions or decisions. 

The acquired data undergoes initial pro-
cessing for training purposes, which in-
volves removing the periods of idleness 
and tool entry/exit regions. Subsequently, 
the data is normalized, and a mean-shift-
ing transformation is applied to align the 
mean with a Y-axis intercept of zero. 

Figure 2. Experimental setup and measurement technology

Table 1. Confusion matrix for material classification using a SVM algorithm
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To evaluate the various algorithms an-
alyzed in this study, Table 2 lists accura-
cy and F1-scores. Results indicate perfor-
mance variation across the algorithms 
within a constant dataset. ET and RF 
achieved high F1-scores above 0.98, while 
NB and IF performed poorly with F1-
scores of 0.64 and 0.078, respectively. The 
strong performance of ET and RF suggests 
these algorithms excel at identifying rele-
vant patterns and handling high-dimen-
sional data. In contrast, with their specific 
assumptions, NB and IF may be less suited 
to this classification task.

Significant variations also occur bet-
ween datasets, such as acceleration ver-
sus force. For example, Adaboost’s F1 
score drops from 0.771 with acceleration 
data to 0.444 with force data, whereas 
the KNN score improves from 0.815 to 
0.941. However, compared to the triaxial 
accelerometer, the influence of data from 
the ACCTool is not as pronounced. For in-
stance, the ADA algorithm achieves an 
F1 score of 0.77 with the triaxial sensor, 
whereas it reaches 0.7 with the one-axis 
sensor of the ACCTool. Similarly, in the 
case of force measurements, the ACCT-
ool sensor slightly outperforms, with the 
ET algorithm achieving an F1 score of 
0.934-0.01 points higher than with the 
triaxial sensor. These findings emphasi-
ze the importance of dataset selection in 
influencing algorithm performance, sug-
gesting further investigation is needed to 
optimize feature selection and model 
outcomes.

The results highlight the effectiveness 
of different algorithms in detecting 
drilled voids. However, the performance 
of the IF indicates its limitations in this 
classification task, reinforcing the impor-
tance of selecting appropriate algorithms 
for specific types of data and classifica-
tion challenges. 

Additionally, the sensor configuration 
subtly influenced detection accuracy, al-
though the effect was not pronounced. In-
terestingly, the single-axis sensor in the 
ACCTool performed nearly on par with 
the triaxial ACCSpec sensor. This finding 
suggests that complex, high-dimensional 
sensor data may not always be necessary 
for effective ML-driven quality monitor-
ing. However, it‘s possible that, in this 
specific case, the additional axes intro-
duced noise, potentially acting as distur-
bance variables rather than enhancing 
the measurement. This possibility high-
lights the need for a more detailed analy-
sis of the individual acceleration axes and 
their behavior. This could provide in-
sights into optimizing sensor data config-
urations for improved accuracy in quality 
monitoring applications.

Summary and Outlook

This study highlights the successful appli-
cation of ML in material identification 
during machining, with SVM, ET, and RF 
algorithms achieving impressive results. 
These algorithms effectively classified 
materials such as EN10083-1, EN AC-
42100, EN-GJS-400-15, and EN-GJS-500-7, 

Void Detection
In a second approach, this paper aims to 
detect intentionally introduced voids, 
classifying them into drilled or undrilled 
categories. The results of various algo-
rithms are presented in Table 3. ET, RF, 
and SVM achieve excellent results in 
this context. All other algorithms also 
differentiate between normal and abnor-
mal states, achieving F1 scores exceed-
ing 0.98.

When considering the IF algorithm, 
the performance comparison shows a 
clear analogy to the material recognition 
task. The accuracy of the IF stands at 
56 %, which is more than 40 percent low-
er than the worst-performing among the 
other algorithms.

Table 2. Comparison of F1 scores and accuracy for material classification across various ML al-
gorithms for acceleration and force datasets

Table 3. Comparison of F1 scores and accuracy for void detection across various ML algorithms 
for acceleration and force datasets
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reaching an overall accuracy of 86 per-
cent and an F1 score of 0.857. Although 
challenges remained in distinguishing 
materials with similar mechanical prop-
erties, such as EN10083-1 and EN-
GJS-500-7, the high performance of ET 
and RF, both achieving F1-scores above 
0.98, emphasizes the strength of ML in 
material classification.

In a secondary approach, the study fo-
cused on detecting intentionally intro-
duced voids in specimens, categorizing 
them into drilled and undrilled groups. 
ET, RF, and SVM performed exceptionally 
well in detecting voids like the material 
classification task. However, with an ac-
curacy of only 56 percent, the IF algo-
rithm fell short by over 40 percent com-
pared to the other algorithms, under- 
scoring its limitations in this context. 
This performance gap between IF and 
other models highlights the importance 
of selecting suitable algorithms for spe-
cific data types and classification chal-
lenges, especially in high-dimensional 
datasets.

These findings confirm that ML is via-
ble and highly effective in various quality 
monitoring applications, including mate-
rial classification and defect detection. 
The success of these algorithms in identi-
fying material types and drilled voids 
demonstrates the potential of ML to en-
hance real-time process monitoring and 
quality assurance, making it a valuable 
addition to automated quality control sys-
tems in manufacturing.

Future work could focus on refining fea-
ture selection and incorporating addition-
al distinguishing characteristics to im-
prove classification accuracy, particularly 
for materials with overlapping properties. 
Additional studies might explore alterna-
tive datasets and data pre-processing tech-
niques to enhance model performance 
further. Also, a reduction of needed fea-
tures and the usage of the trained model 
on the milled aluminum cast material, 
GGG40 and GGG50, will be explored.
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Abstract
KI-gestützte Prozessüberwachung in der  
spanenden Fertigung – In-Prozess-Qualitäts-
sicherung von inhomogenen Materialien  
mittels merkmalsbasierter Machine-Learning-
Methoden. Diese Studie untersucht die KI 
-gestützte Anomaliedetektion beim Fräsen  
inhomogener Materialien. Zur vereinfachten 
Datengenerierung wurden in homogene Werk-
stoffproben gezielt Bohrungen eingebracht.  
Die Erfassung der Prozessdaten erfolgte durch 
werkstück- und werkzeugseitige Beschleuni-
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Prozessüberwachung, Maschinelles Lernen, 
Sensorik, Zerspanen, Signalanalyse 
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gungsmessungen sowie durch werkzeugseitige 
Kraftmessungen. Durch gezielte Feature- 
Extraktion und den Einsatz feature-basierter 
Machine-Learning-Algorithmen konnte eine 
präzise Materialklassifizierung sowie eine zu-
verlässige Unterscheidung zwischen gebohrten 
und ungebohrten Proben zur Prozessüber
wachung erreicht werden.
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