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I Introduction

In recent years, there has been a notable
increase in demand for lightweight and
durable materials in several industrial
sectors, including e-mobility and aero-
space [1-3]. Cast materials, particularly
aluminum, are frequently employed in
the manufacture of components due to
their advantageous strength-to-weight ra-
tio, rendering them optimal for incorpo-
ration in electric vehicles and planes [4].
However, casting defects, such as porosi-
ty and shrinkage cavities, can signifi-
cantly compromise these components’
structural integrity [5, 6]. In the e-mobil-
ity context, defective parts in battery
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In this study, Al-supported anomaly detection methods in the milling
of inhomogeneous sample materials are investigated. To simplify data
generation, targeted boreholes were introduced into homogeneous ma-
terial samples. Process data were collected by means of acceleration
measurements on both the workpiece and tool sides and force mea-
surements on the tool side. Implementing targeted feature extraction
and applying feature-based machine learning algorithms achieved pre-
cise material classification and reliable differentiation between drilled
and undrilled samples for process monitoring.

housings, motor housings, or other criti-
cal components could result in product
recalls.

To address these challenges, there has
been a growing interest in leveraging ad-
vanced technologies such as machine
learning (ML) to improve quality assur-
ance during the manufacturing process.

Gao et al. summarize the use of artifi-
cial intelligence in manufacturing and
provide a perspective of future directions
[7]. Multiple studies have already ex-
plored the use of machine learning for
defect detection in casting materials [8-
13]. Many scientific papers have shown
the usage of ML and image recognition,
especially with X-rays. Bosse et al. en-
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hanced the porosity detection in alumi-
num die-casting using X-ray radiography
and Convolutional Neural Networks
(CNN), achieving high accuracy with a
false-positive rate below 1 percent [8].
Nouri et al. proposed Decision Trees (DT)
with model order reduction and optimal
transport with shape morphing to opti-
mize shrinkage porosity, showing prom-
ising results in aluminum casting [9].
Parlak et al. applied even deep learning,
specifically YOLOv5, for detecting defects
in Xoray images of aluminum parts,
achieving 95.9percent accuracy [12].
Fang et al. used deep learning models to
improve defect detection via infrared
thermography, enhancing segmentation
accuracy for non-destructive evaluation
[14]. Chen et al. developed machine learn-
ing models to predict surface defects in
steel and cast-iron foundries, with Ex-
treme Randomized Trees (ET) performing
best in reducing defects [15]. For accelera-
tion data and force measurements, in [16],
it is shown that the detection of voids is
possible using autoencoders. Ramme et al.
[17] have even presented that the genera-
tion of build-up edges in chip-forming
processes can be detected based on
acoustic emission signals.
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Building on the advancements outlined
in previous studies, this paper focuses on
the application of machine learning to de-
tect porosity defects in different materi-
als. While existing research has demon-
strated the efficacy of deep learning
models and other machine learning algo-
rithms in identifying casting defects, this
paper extends the analysis by applying
feature-based algorithms to detect anom-
alies during milling. Integrating these
approaches into quality assurance work-
flows aims to explore new paths for im-
proving defect detection and reducing
material and energy waste in high-perfor-
mance manufacturing environments.

Experimental Setup
and Methods

In this chapter, the idea and the resulting
methodology of analog testing, the ma-
chine setup, and the experiment execut-
ion are presented. Furthermore, data ac-
quisition and the subsequent data
processing up to machine learning are
introduced.

Method for Analogy Testing

Training machine learning algorithms
typically require extensive datasets de-
rived from relevant processes. However,
analyzing cast components is costly and
time-consuming, thus posing challenges
in data collection. To address this, an
analogy-based approach is used here to
represent inhomogeneities in material
specimens. Traditional methods, such as
X-ray scanning, can map void locations
accurately but are costly, while optical
systems are simpler but limited to two
cutting planes, risking undetected voids.
Using these two planes provides only a
rough estimation of void positions, leav-
ing uncertainty about whether the voids
form a continuous cavity or are separate.
Additionally, smaller voids might exist
within the machined layer but remain
undetected by microscopy, potentially im-
pacting data integrity for machine learn-
ing applications.

The here selected approach reverses
this issue: rather than first analyzing posi-
tions and then linking them to data, mate-
rial inhomogeneity is generated based on
predefined data. A MATLAB script creates
randomized borehole positions (drill pat-
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Figure 1. Methodological approach for generating labeled data for void detection

tern), translated into NC code for machin-
ing. To mimic inhomogeneity in aluminum
casting, 0.3-0.5 mm boreholes are drilled,
while homogeneous samples are left un-
modified for comparison. This method al-
lows machining and measurement to be
carried out in the same configuration, en-
abling a direct correlation between bore-
hole positions and measurement data, as
illustrated in Figure 1. Using this informa-
tion, labeled data for machine learning
training is easily acquired.

Data Acquisition, Measurement Setup
and Experimental Procedure

The test specimen is connected to differ-
ent sensors to obtain various measure-
ments on the workpiece side. Figure 2
shows the sample body mounted to the
force measurement platform (Kistler
9129AA), providing the process forces
FSpec. An acceleration sensor, gathering
vibration signals ACCSpec, is attached to
the specimen with wax. The data about
acceleration and force are recorded utiliz-
ing Type 9230 and 9223 measurement
cards (by company National Instruments)
at a sampling rate of 10 kHz. Data acqui-
sition is initiated by the machine‘s NC
code (DMG Lasertec 65 3D hybrid), en-
abling all systems to capture data within
the same time window.

Furthermore, the trigger enables the
precise calculation of the milling cutters
position at any given time. On the tool
side, a sensory Intendo’ tool clamping
system (by company SCHUNK) is used to
obtain vibration signals ACCTool. This
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hydro-deformable chuck

is equipped
with an acceleration sensor to record raw

data at a frequency of 15 kHz.

Grooves are milled along the specimen
using a 5 mm, four-tooth Ratio Cutter RF
100 Sharp (by company GUHRING). To
minimize influences of tool wear effects,
separate tools for homogeneous and in-
homogeneous specimens are used. The
grooving process involves a 5 mm width
of cut (ae) and 0.5 mm depth of cut (ap)
at a cutting speed of 180 m/min and
0.0264 mm feed per tooth. This results
in a measurement time of 3.29 s and
329000 samples in acceleration and
force data for each milling path.

Twenty grooves are milled, and data is
recorded for each mounted specimen, in-
cluding homogeneous and inhomoge-
neous samples and incorporating the ma-
terials EN10083-1 (C45), EN AC-42100, as
well as EN-GJS-400-15 and EN-GJS-500-7
cast iron. A randomized experimental
plan is used to account for material types
and porosity levels (0.5% and 1%). For
each specimen, 100 paths were utilized to
validate the algorithm, while at least
200 undrilled homogenous probes were
being milled. Machining parameters re-
main consistent with those for C45 mate-
rial. A thin oil layer was applied to the
sample to prevent tool clogging and break-
age during aluminum machining.

Machine Learning

For quality monitoring, a two-stage pro-
cedure with anomaly detection and mate-
rial classification is employed. This ap-
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Figure 2. Experimental setup and measurement technology

proach enables simultaneous operation,
enhancing the monitoring process‘s effi-
ciency and effectiveness.

As demonstrated in [16], neural net-
works such as an autoencoder can detect
anomalies. In contrast, this study utilizes
feature-based machine learning algo-
rithms such as Support Vector Machines
(SVM), Naive Bayes (NB), k-Nearest Neigh-
bours (KNN), Adaboost (ADA), Isolation
Forest (IF), Decision Tree (DT), Extra
Trees (ET), Linear Discriminant Analysis
(LDA), Ridge (RID), Light Gradient-Boost-
ing Machine (LGBM) and Random Forest
(RF) for the anomaly detection. Fea-
ture-based machine learning algorithms
are supervised learning techniques that
rely on predefined features from the data
to make predictions or decisions.

The acquired data undergoes initial pro-
cessing for training purposes, which in-
volves removing the periods of idleness
and tool entry/exit regions. Subsequently,
the data is normalized, and a mean-shift-
ing transformation is applied to align the
mean with a Y-axis intercept of zero.
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Each milling path is sliced into small
datasets of 200 points. With the knowl-
edge of the borehole positions, the data is
being labelled. To accommodate material
variations and the influences of wear or
other anomalies, these factors are inten-
tionally varied. Algorithm training is im-
plemented using randomly assembled
data from experiments conducted on dif-
ferent test days and under varying wear
conditions. Randomized milling paths are
also generated and examined for the test-
ed specimens. In each instance, 100 paths
are utilized to validate the algorithm.
The Spyder integrated development en-
vironment (IDE) was utilized to imple-
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ment the algorithms and handle the data,
with Python as the programming lan-
guage. The Scikit-learn library and
LightGBM toolbox were employed for ma-
chine learning tasks, enabling the appli-
cation of the previously named super-
vised learning methods.

I Results

In the following, the two-stage approach
will be discussed. First, the results of ma-
terial recognition will be presented, follo-
wed by the analysis of porosity detection.

Material Classification

The results in Table 1 indicate that using
an SVM allows for successful material
identification during machining, accurate-
ly distinguishing among the four classes
EN10083-1,EN AC-42100, EN-GJS-400-15,
and EN-GJS-500-7. The system achieves
an accuracy of 86 percent and an F1 score
of 0.857 [18]. Analysis of the confusion
matrix shows that most errors occur
when predicting steel and cast iron mate-
rials. Specifically, EN10083-1 is misclas-
sified as EN-GJS-500-7 in 15.32 percent
of cases, while EN-GJS-500-7 is misclassi-
fied as EN10083-1 in 10.81percent of
cases. This is likely due to the similar me-
chanical properties of EN10083-1 and
EN-GJS-500-7, such as hardness and ten-
sile strength, despite the more homoge-
neous microstructure of EN10083-1.
These similarities in the machining data
create challenges for SVM in distinguish-
ing between these two classes, leading to
higher misclassification rates compared
to more distinct material pairs, like
EN10083-1 and EN AC-42100. Overall,
while SVM effectively classifies materials,
the shared properties between certain ma-
terials contribute to misclassification, sug-
gesting that refining feature selection or
including additional distinguishing fea-
tures could help reduce these errors.

SVM EN10083-1

EN-GJS-400-15

EN-GJS-500-7 | EN AC-42100

EN10083-1
EN-GJS-400-15
EN-GJS-500-7
EN AC-42100

13,63

10,81

Table 1. Confusion matrix for material classification using a SVM algorithm
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To evaluate the various algorithms an-
alyzed in this study, Table 2 lists accura-
cy and F1-scores. Results indicate perfor-
mance variation across the algorithms
within a constant dataset. ET and RF
achieved high F1-scores above 0.98, while
NB and IF performed poorly with F1-
scores of 0.64 and 0.078, respectively. The
strong performance of ET and RF suggests
these algorithms excel at identifying rele-
vant patterns and handling high-dimen-
sional data. In contrast, with their specific
assumptions, NB and IF may be less suited
to this classification task.

Significant variations also occur bet-
ween datasets, such as acceleration ver-
sus force. For example, Adaboost’s F1
score drops from 0.771 with acceleration
data to 0.444 with force data, whereas
the KNN score improves from 0.815 to
0.941. However, compared to the triaxial
accelerometer, the influence of data from
the ACCTool is not as pronounced. For in-
stance, the ADA algorithm achieves an
F1 score of 0.77 with the triaxial sensor,
whereas it reaches 0.7 with the one-axis
sensor of the ACCTool. Similarly, in the
case of force measurements, the ACCT-
ool sensor slightly outperforms, with the
ET algorithm achieving an F1 score of
0.934-0.01 points higher than with the
triaxial sensor. These findings emphasi-
ze the importance of dataset selection in
influencing algorithm performance, sug-
gesting further investigation is needed to
optimize feature selection and model
outcomes.

Fspec ACCspec ACCro0
Name F1 Score |Accuracy F1 Score | Accuracy | F1Score | Accuracy
ADA 0,5329 0,7712 0,7517 0,7072 0,6854
DT 0,903 0,8912 0,8875 0,8648
BT 0,9252 0,9348 0,9274
IF
KNN 0,8153 0,7993 0,7927 0,7668
LDA 0,7219 0,6871 0,7284 0,6923
LGBM 0,9386 0,9346 0,9278
NB 0,6473 0,6436
RF 0,9209 0,9116 0,9201 0,9109
RID 0,9253 0,9204 0,7225 0,6905 0,7340 0,7001
SVM 0,8048 0,7755 0,7988|  0,76645

Table 2. Comparison of F1 scores and accuracy for material classification across various ML al-

gorithms for acceleration and force datasets

Void Detection

In a second approach, this paper aims to
detect intentionally introduced voids,
classifying them into drilled or undrilled
categories. The results of various algo-
rithms are presented in Table 3. ET, RF,
and SVM achieve excellent results in
this context. All other algorithms also
differentiate between normal and abnor-
mal states, achieving F1 scores exceed-
ing 0.98.

When considering the IF algorithm,
the performance comparison shows a
clear analogy to the material recognition
task. The accuracy of the IF stands at
56 %, which is more than 40 percent low-
er than the worst-performing among the
other algorithms.

Fspec ACCspec ACCro0l

Name F1 Score | Accuracy | F1Score | Accuracy | F1Score | Accuracy
ADA 0.9942 0.9925 0.9953 0.9942 0.9965 0.9954
DT 0.9914 0.9887 0.9859 0.9825 0.9833 0.9801
ET

IF

LDA

NB

RF

LGBM

Table 3. Comparison of F1 scores and accuracy for void detection across various ML algorithms

for acceleration and force datasets
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The results highlight the effectiveness
of different algorithms in detecting
drilled voids. However, the performance
of the IF indicates its limitations in this
classification task, reinforcing the impor-
tance of selecting appropriate algorithms
for specific types of data and classifica-
tion challenges.

Additionally, the sensor configuration
subtly influenced detection accuracy, al-
though the effect was not pronounced. In-
terestingly, the single-axis sensor in the
ACCTool performed nearly on par with
the triaxial ACCSpec sensor. This finding
suggests that complex, high-dimensional
sensor data may not always be necessary
for effective ML-driven quality monitor-
ing. However, it‘s possible that, in this
specific case, the additional axes intro-
duced noise, potentially acting as distur-
bance variables rather than enhancing
the measurement. This possibility high-
lights the need for a more detailed analy-
sis of the individual acceleration axes and
their behavior. This could provide in-
sights into optimizing sensor data config-
urations for improved accuracy in quality
monitoring applications.

I Summary and Outlook

This study highlights the successful appli-
cation of ML in material identification
during machining, with SVM, ET, and RF
algorithms achieving impressive results.
These algorithms effectively classified
materials such as EN10083-1, EN AC-
42100, EN-GJS-400-15, and EN-GJS-500-7,
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reaching an overall accuracy of 86 per-
cent and an F1 score of 0.857. Although
challenges remained in distinguishing
materials with similar mechanical prop-
erties, such as EN10083-1 and EN-
GJS-500-7, the high performance of ET
and RF, both achieving Fl-scores above
0.98, emphasizes the strength of ML in
material classification.

In a secondary approach, the study fo-
cused on detecting intentionally intro-
duced voids in specimens, categorizing
them into drilled and undrilled groups.
ET, RF, and SVM performed exceptionally
well in detecting voids like the material
classification task. However, with an ac-
curacy of only 56 percent, the IF algo-
rithm fell short by over 40 percent com-
pared to the other algorithms, under-
scoring its limitations in this context.
This performance gap between IF and
other models highlights the importance
of selecting suitable algorithms for spe-
cific data types and classification chal-
lenges, especially in high-dimensional
datasets.

These findings confirm that ML is via-
ble and highly effective in various quality
monitoring applications, including mate-
rial classification and defect detection.
The success of these algorithms in identi-
fying material types and drilled voids
demonstrates the potential of ML to en-
hance real-time process monitoring and
quality assurance, making it a valuable
addition to automated quality control sys-
tems in manufacturing.

Future work could focus on refining fea-
ture selection and incorporating addition-
al distinguishing characteristics to im-
prove classification accuracy, particularly
for materials with overlapping properties.
Additional studies might explore alterna-
tive datasets and data pre-processing tech-
niques to enhance model performance
further. Also, a reduction of needed fea-
tures and the usage of the trained model
on the milled aluminum cast material,
GGG40 and GGG50, will be explored.
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| Abstract

KI-gestiitzte Prozessiiberwachung in der
spanenden Fertigung - In-Prozess-Qualitéts-
sicherung von inhomogenen Materialien
mittels merkmalsbasierter Machine-Learning-
Methoden. Diese Studie untersucht die KI
-gestiitzte Anomaliedetektion beim Frasen
inhomogener Materialien. Zur vereinfachten
Datengenerierung wurden in homogene Werk-
stoffproben gezielt Bohrungen eingebracht.
Die Erfassung der Prozessdaten erfolgte durch
werkstiick- und werkzeugseitige Beschleuni-

gungsmessungen sowie durch werkzeugseitige
Kraftmessungen. Durch gezielte Feature-
Extraktion und den Einsatz feature-basierter
Machine-Learning-Algorithmen konnte eine
prézise Materialklassifizierung sowie eine zu-
verldssige Unterscheidung zwischen gebohrten
und ungebohrten Proben zur Prozessiiber-
wachung erreicht werden.
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