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Developing and Qualifying an ML 
Application for MRO Assistance

This study presents a framework for integrating and qualifying Ma-
chine Learning (ML) in Maintenance, Repair, and Overhaul (MRO) 
processes for gas turbines. Using neural networks for damage detec-
tion and decision trees for repair estimation, it emphasizes continuous 
qualification aligned with ISO/IEC standards and responsible AI prin-
ciples. An interactive guide supports systematic ML implementation, 
ensuring transparency and compliance with Industry 4.0. Validated 
through two turbine blade case studies, the approach addresses key 
qualification steps, ensuring reliability in ML-assisted workflows. The 
study highlights the need for refined ML qualification standards to 
adapt to evolving AI technologies and regulations.
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Introduction

In recent years, machine learning (ML) 
has gained increasing prominence within 
the industry, particularly in enabling the 
capabilities of Industry 4.0 [1]. Integrating 
ML into industrial processes is expected to 
yield benefits such as enhanced perfor-
mance [2]. Specifically, in maintenance 
management, a transition from reactive 
and periodic maintenance to predictive 
and proactive maintenance is anticipated 
[3]. Maintenance management is often re-
ferred to as Maintenance, Repair, and 
Overhaul (MRO), which encompasses 
many cost-efficient procedures. The MRO 
process is commonly applied to overhaul 

identify appropriate repair actions or 
subsequent inspection processes for ob-
served material defects. This process is 
monotonous, prone to errors, and incom-
patible with the real-time capabilities re-
quired for documentation management 
in Industry 4.0 [6], as the RSM documen-
tation is searched manually and updated 
infrequently. To address these challeng-
es, using ML applications is becoming an 
increasingly viable solution [7].

Engineering Case

In this paper, a turbine blade from a gas 
turbine is considered as the technical 
system under study. The turbine blades 
undergo an MRO process that initially in-
volves stripping, cleaning, and inspec-
tion. The inspection results determine 
the scope of repair and individual activi-
ties before the repair process begins. 
This paper examines two subprocesses in 
more detail: damage detection and repair 
estimation.

Damage detection primarily focuses on 
inspecting surface cracks, spallation, and 
material loss. Traditionally, after strip-
ping, the blades were manually inspected 
for cracks by inspectors, who documented 

gas turbines to minimize life cycle costs 
and optimize component performance. 
The availability and efficiency of gas tur-
bine units are two key concerns for opera-
tors regarding performance optimization 
[4]. Many components have a limited ser-
vice life relative to the overall operational 
lifespan of the gas turbine system [5], 
making maintenance and repair a long-
standing focus for operators.

Traditionally, maintenance has been 
conducted through static repair process 
chains, in which the same value-adding 
steps are repeatedly executed. However, 
this manual and static approach is often 
inefficient. Typically, engineers consult 
the Repair Specification Manual (RSM) to 
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ods to industrialization processes [15]. 
Examining the ML life cycle proposed by 
Oracle, the software company places 
greater emphasis on business processes. 
Oracle‘s approach begins with a typical 
ML life cycle comprising business needs, 
data, model development, model training, 
model testing, model deployment, inte-
gration with business applications, and 
monitoring & optimization [16]. Subse-
quently, an operationalization perspec-
tive is introduced, suggesting that after 
an ML model is developed, a Minimum 
Viable Product (MVP) should simplify 
this step [17]. In both perspectives, the 
business need is strongly emphasized. 
Detailed attention is given to defining the 
use case and how it can be represented 
through an MVP, aiming to understand 
the minimal requirements and the gaps 
between the experimental phase and 
these requirements. The integration of 
new ML solutions with existing business 
applications is also examined.

In conclusion, all existing ML processes 
or life cycles provide initial guidance for 
implementing and operationalizing ML 
solutions. However, most lack a qualifica-
tion aspect. Process qualification is a risk 
mitigation measure in industrial sectors, 
and its absence in ML-based processes 
limits trust in these solutions. This pa-
per‘s contribution is the development of 
an ML process that incorporates qualifica-
tion aspects, extending from data identifi-
cation to ML training and, ultimately, to 
the monitoring of ML solutions.

Approach 

As outlined in the previous chapter, sever-
al studies have introduced ML applications 
in industrial contexts. Alongside these de-
velopments, various standards and norms 
have been established to guide ML system 
development in general software engineer-
ing and ML-specific aspects. This research 
aims to create a practical guide grounded 
in scientific standards while reflecting in-
dustrial realities. To achieve this, existing 
norms were systematically reviewed. Based 
on ISO/IEC FDIS 5338:2023 (Information 
technology – Artificial intelligence – AI 
system life cycle processes), the AI techni-
cal life cycle structure served as the foun-
dation for this analysis. Each phase of the 
life cycle was carefully examined, and rel-

dence in the outcomes generated by the 
ML models. This raises the question of 
how ML models can be effectively inte-
grated into business processes and what 
the qualification process for their imple-
mentation should entail.

State of the Art

Several ML processes have been estab-
lished in academia and industry, outlin-
ing the necessary steps for implementing 
and deploying ML models. However, 
these frameworks differ in their level of 
detail. One of the most widely used meth-
odologies is CRISP-DM [10]. Although 
initially developed for data management, 
CRISP-DM also applies to ML projects. 
Nevertheless, it has limitations regarding 
the selection and verification of ML algo-
rithms. The industrialization steps are 
addressed at the deployment stage, but 
the specific details of the industrializa-
tion process remain vague, as only broad 
deployment steps are described. Other 
ML processes are usually related to 
CRISP-DM since ML is a data-driven ana-
lytics field; however, these frameworks 
differ in certain phases relevant to ML or 
supplement existing ones [11].
Ashmore et al. (2019) propose a life cycle 
focusing on ML models operating in safe-
ty-critical systems. As with any technical 
artifact, assurance can only be achieved 
by understanding the complex processes 
involved. Therefore, it is crucial to com-
prehend the ML life cycle to evaluate the 
ML components effectively. Their ap-
proach emphasizes the essential role of 
data in ML models, and accordingly, they 
highlight this in their description. They 
specify the desired properties of datasets 
and outline methods to achieve these 
properties [12]. Xiang et al. (2018) ad-
dress the verification of neural networks, 
focusing on formal verification. However, 
their approach does not address assur-
ance during the data management and 
model training phases [13]. Focusing on 
reinforcement learning, Garcia and Fer-
nandez (2015) explored methods for re-
ducing risk metrics, but their research 
covers only the model training phase 
[14]. Salay and Czarnecki review existing 
methods for ensuring the safety of super-
vised learning throughout the ML life cy-
cle, but they do not connect these meth-

them in 2D drawings. To automate this 
process, cameras were employed to cap-
ture image data of the turbine blades, and 
a neural network was trained to detect 
cracks from the images and map them 
onto a 3D model of the blade. Repair esti-
mation involves deciding whether the tur-
bine blade should be repaired, left as is, 
or discarded. This step begins once all in-
spection processes have been completed 
and the findings are entered into a sys-
tem. Inspectors then review the findings 
to assess whether they conform to the 
RSM, derive the necessary repair steps, 
or identify deviations from the RSM. Engi-
neers manually review the findings in 
cases of deviations and determine the ap-
propriate dispositions. A decision tree 
model was implemented to estimate dis-
positions for damages not defined in the 
RSM, utilizing historical data from previ-
ous decisions related to such damages.

Each ML application was evaluated as a 
standalone solution using the precision, 
accuracy, and F1 score metrics. The ML 
model for damage detection achieved dif-
ferent accuracies depending on the spe-
cific damage. An accuracy of 80,5 per-
cent was achieved for spallation, an 
accuracy of 74,1 percent for material 
loss, and an accuracy of 54,2 percent for 
surface crack [8]. For the estimation of 
dispositions for damages not defined in 
the RSM, the developed ML model 
achieved an F1 score of 88.5 percent [7].

Problem Statement

For industrial applicability, however, in-
tegrating the developed ML models into 
existing processes and qualification of 
the resulting new processes is crucial. 
Beyond the numerical validation of the 
accuracy of ML solutions, it is equally im-
portant to build trust among engineers in 
the results provided by these models. Hy-
brid processes arise when engineers, 
supported by ML models, carry out tasks. 
This support can range from simple feed-
back through assistance to full automa-
tion. The higher the level of support, the 
more critical the engineers’ trust in the 
information provided or in the tasks au-
tomatically performed by the ML model 
becomes [9]. The qualification process 
aims to identify potential risks associated 
with hybrid processes and enhance confi-
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against which the accuracy of newly labe-
led data is assessed. Inspectors were aut-
horized to label production data only after 
completing a qualification test. To ensure 
ongoing labeling accuracy, periodic audits 
were conducted.

The resulting qualification process is 
structured as follows:
	■ Data and Model Evaluation	  

Data collection and labeling were 
carefully monitored, with an 80 per-
cent threshold for performance met-
rics (precision, recall, and F1 score). 
Inspectors underwent specific train-
ing and testing to ensure labeling ac-
curacy, with ongoing verification 
against Golden Data.

	■ IT System	  
The system infrastructure was veri-
fied to meet safety and performance 
requirements, ensuring real-time pre-
dictions and operational stability. Se-
curity measures were implemented, 
including penetration testing and role-
based access control.

	■ Frontend (User Interface & Experience)	
Usability tests ensured that the inter-
face allowed users to interact effec-
tively with the system and provide 
feedback on ML predictions, which 
was then integrated into the retrain-
ing process.

	■ Business Process	  
The ML system was integrated into the 
existing MRO process, with clear role 
definitions for human operators. A con-
tinuous improvement process was es-
tablished to monitor performance and 
gather stakeholder feedback.

Process for Development and 
Qualification of ML Applications

An interactive guide was developed 
based on the analyzed standards and the 
development and qualification processes 
undertaken to support domain experts 
and ML developers in building qualified 
ML systems. The entire process descrip-
tion is accessible as a PDF at [18]. The 
process is structured as a BPMN dia-
gram, highlighting the key phases in ML 
system development (Figure 1). These 
phases include Understanding current 
processes and business goals, Identifying 
domain knowledge, Defining require-
ments and selecting metrics, Determin-

the guide. Initially, the guide was created 
deductively based on the standards and 
subsequently refined through observa-
tions of actual industrial implementation. 
The deductive approach helped establish 
a strong, standards-based structure, while 
the inductive approach provided practi-
cal insights and allowed for adjustments 
needed for real-world applications.

Qualifying an ML Application 
for MRO Assistance

To ensure that ML systems can be effec-
tively utilized, they must undergo an in-
ternal qualification process similar to 
that used for other tools in industrial set-
tings. This process verifies that the ML 
system meets the requirements, but the 
qualification specifics depend heavily on 
the application and context. In this case, 
the ML system was designed to support 
the MRO process as an assistance tool, 
with final decision-making in human op-
erators’ hands. The qualification process 
followed a sequential approach aligned 
with the ML system’s development, in-
corporating four key quality gates: data 
and ML model, IT system, frontend, and 
business process. Unlike traditional soft-
ware systems, ML models can be quali-
fied based on performance metrics such 
as precision, recall, and F1 score. Typi-
cally, human baseline testing is used to 
establish thresholds. Still, in this case, 
human decisions (assumed to be correct) 
served as the benchmark due to the high 
risks associated with incorrect repair as-
sessments. Given the novelty of ML de-
velopment in many industrial contexts, 
experience-based thresholds were not yet 
established. Therefore, an initial qualifi-
cation threshold of 80 percent was set, 
with iterative reviews involving users to 
reassess and potentially refine these 
thresholds.

A specific challenge in qualifying this 
machine learning (ML) system, which ap-
plied computer vision, was ensuring the 
reliability of the data used for model trai-
ning. Inspectors labeled defects on turbine 
blades, and these labels were compared to 
a “Golden Dataset” to verify accuracy. In 
this context, the “Golden Dataset” refers to 
a set of images or data samples meticu-
lously and consistently labeled by domain 
experts, serving as a reference standard 

evant activities, milestones, and associat-
ed standards were outlined.
The key standards that informed the 
guide include:
	■ ISO/IEC FDIS 5338:2023 – Provided 

the overarching framework for the AI 
life cycle.

	■ ISO/IEC 27000 & ISO/IEC 27002 – Ad-
dressed information security manage-
ment and IT security for AI systems.

	■ ISO/IEC 25010 & ISO/IEC 25059 – De-
fined quality metrics for both software 
and AI systems.

	■ ISO/IEC TR 24368 – Focused on ethi-
cal and societal concerns for AI sys-
tems.

	■ EU Ethics Guidelines for Trustworthy 
AI & EU AI Act – Informed a regulatory 
framework for responsible AI.

Using these standards as a foundation, the 
guide was applied to develop two ML appli-
cations for the case studies described earli-
er with Siemens Energy. Based on ISO/IEC 
FDIS 5338:2023 (Information technology – 
Artificial intelligence – AI system life cycle 
processes), the AI technical life cycle 
structure served as the foundation for 
this analysis. This standard was signifi-
cant for structuring the process phases 
and defining activities and milestones. 
ISO/IEC 25010 and ISO/IEC 25059 pro-
vided essential quality metrics guiding 
software and AI system evaluations. On 
the other hand, standards like ISO/IEC TR 
24368 and IEEE 7000-2021 were consid-
ered secondary, offering valuable but less 
critical insights into ethical concerns and 
system architecture design. Documents 
such as the EU Ethics Guidelines for 
Trustworthy AI and the EU AI Act also in-
fluenced the development process, pri-
marily for embedding Responsible AI 
principles. The development process in-
volved collaboration between domain ex-
perts from the company and external ML 
developers. Technical steps and mile-
stones were analyzed throughout the 
project, along with potential tools and 
methods used. A primary focus was placed 
on the sequential qualification of ML sys-
tem components and their implementation 
in industrial environments. Additionally, 
particular attention was paid to integrating 
principles of Responsible AI.

A combination of deductive and induc-
tive approaches was employed to build 
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ing reference values and thresholds, De-
fining data management and Selecting/
Generating data, Model selection and 
training, System development/deploy-
ment, Frontend development, Defining 
new business process and monitoring 
processes, final Reporting, Rolling-out, 
continuous Monitoring, and Improving.

Each phase is assigned specific respon-
sibilities to the ML developer or the do-
main expert. The qualification steps 
(quality gates, QG) are conducted after 
the stages of “Model selection and train-
ing”, “System development and deploy-
ment”, “Frontend development”, and “De-
fine new business process and monitoring 
processes”. Notably, continuous monitor-
ing begins at the start of the usage phase. 
As outlined in the qualification process, 
ML systems must be designed to ensure 
their performance is consistently moni-
tored, thereby facilitating ongoing quali-
fication of their effectiveness.

The guide is developed as a clickable 
application, where each phase provides 
an overview of tasks, objectives, and po-
tential methods for both roles. Further-
more, the guide emphasizes consider-
ations for responsible AI. An example of 
this is shown in Figure 2, where the 
“Data management and data selection” 
phase is viewed from the perspective of 
the domain expert.

ness of the labeling process in this project 
lies in its approach to ensuring high-quali-
ty training data for the computer vision ap-
plication. Initially, training sessions were 
conducted to familiarize labelers with the 
specific requirements and methods of the 
labeling process. Subsequently, the label-
ers were required to pass a test where their 
annotations were compared against a 
“Golden Dataset”, a reference created by 
experienced engineers. Only after passing 
this test were labelers authorized to anno-
tate new images. To further ensure data 
quality, a continuous validation mecha-
nism was conceptualized, wherein a ran-
domly selected image from the Golden 
Dataset was presented for review after a 
certain number of labeling tasks. Subse-
quently, an ML model was trained, with a 
performance threshold set at a minimum of 
80 percent. Whenever the model’s perfor-
mance fell below this threshold, experts la-
beled additional images to improve model 
accuracy and robustness.

In addition to the development phases, 
the qualification steps for the final report-
ing of the AI application are presented in 
a generalized format, which must then be 
tailored to the specific use case. For exam-
ple, after the data and model evaluation 
phase, quality gate 1 starts with the re-
quirement: “Define assisted engineering 
activity, the system under investigation, 

In this phase, the domain expert is re-
sponsible for developing the data genera-
tion qualification process and ensuring 
data quality relevant to the use case and 
other tasks. Specific objectives include en-
suring that all labelers are qualified, la-
bels are representative, and the ML devel-
oper fully comprehends and documents 
the data‘s meaning. The guide suggests 
methods such as the SemDaServ method 
[19] and highlights responsible ML con-
siderations. For instance, it emphasizes 
that data sharing must not violate privacy 
laws or include sensitive personal data. 
Additionally, it calls for clear documenta-
tion of shared data and transparent com-
munication with relevant stakeholders. 

In the engineering case for damage de-
tection, the “Data Management and Data 
Selection” phase began with establishing a 
data labeling process, as no pre-labeled im-
ages were initially available for the ML 
model. The process was structured as fol-
lows: Cameras installed around the turbine 
blade captured images under real lighting 
conditions and camera angles to simulate 
the actual environment. These images 
were then presented to engineers to define 
the labels. The labeling strategy was de-
signed to ensure that quality metrics, in-
cluding “quantity of occurrence”, “distribu-
tion across product types”, and “uniformity 
of labels”, were maintained. The unique-

Figure 1. Process  
chart for the development 

of qualified ML  
applications
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and supervised learning applications. The 
structured approach includes core steps 
like understanding business goals, identi-
fying domain knowledge, and defining 
new business processes, which ensure 
that the ML implementation aligns with 
specific use cases and organizational 
needs. This alignment improves the sys-
tem’s effectiveness and enhances its inte-
gration within existing workflows, leading 
to smoother transitions from prototype to 
deployment in real-world scenarios.

Future research will expand this guide 
to other industrial sectors and explore 
emerging standards, particularly those ad-
dressing generative AI and explainability. 
Integrating these standards will be critical 
as AI technologies continue to evolve and 
diversify in application. Ongoing valida-
tion through real-world case studies and 
iterative refinement will be essential to 
align the guide with evolving norms and 
industrial needs, ensuring it remains rele-
vant and applicable across different indus-
tries and technological landscapes.
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Abstract
Entwicklung und Qualifizierung einer ML-
Anwendung für MRO-Unterstützung. Diese 
Studie stellt einen Rahmen für die Integration 
und Qualifizierung von Maschinellem Lernen 
(ML) in Wartungs-, Reparatur- und Überholungs-
prozessen (MRO) für Gasturbinen vor. Durch 
den Einsatz neuronaler Netze zur Schadenser-
kennung und Entscheidungsbäumen zur 
Reparaturschätzung wird eine kontinuierliche 
Qualifizierung im Einklang mit ISO/IEC-Stan-
dards und verantwortungsvollen KI-Prinzipien 
betont. Ein interaktiver Leitfaden unterstützt 
die systematische ML-Implementierung und 
sorgt so für Transparenz und Einhaltung von 
Industrie 4.0. Der durch zwei Fallstudien zu 
Turbinenschaufeln validierte Ansatz befasst 
sich mit wichtigen Qualifizierungsschritten 
und gewährleistet die Zuverlässigkeit in ML-
unterstützten Arbeitsabläufen. Die Studie  
unterstreicht die Notwendigkeit verfeinerter 
ML-Qualifizierungsstandards, um sich an  
die sich entwickelnden KI-Technologien und 
-Vorschriften anzupassen.
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