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Federated Learning in der Arbeits-
planung

Bestimmung von Fertigungsvorgangen mithilfe von graphenbasiertem
Federated Learning

Die Aufbereitung von praxisnahen Trainingsdatensatzen fiir Deep Le-
arning in der Arbeitsplanung ist eine groBe Herausforderung. Die Da-
tengrundlage aktueller Ansdtze basiert auf synthetisch erstellten 3D-
Modellen. Eine solche synthetisierte Generierung von Trainingsdaten
bildet jedoch nur sehr begrenzt die industrielle Praxis ab. Vor diesem
Hintergrund haben Ansatze ein hohes Potenzial, bei denen aus den
Daten mehrerer Unternehmen eine ausreichend groBe Datengrundlage
gebildet werden kann, ohne dass diese an eine zentrale Stelle iibertra-
gen werden miissen. Eine im beschriebenen Kontext vielversprechende
Methode ist das Federated Learning (FL), fiir dessen Anwendung in der
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I Motivation

Die Aufbereitung von praxisnahen Trai-
ningsdatensatzen fiir Deep Learning in
der Arbeitsplanung bildet eine Heraus-
forderung fiir Industrie und Wissen-
schaft [1]. Auftragsfertigende Unterneh-
men verfligen oftmals nicht iiber eine
ausreichende Anzahl an Kunden und da-
mit iiber zu wenige Auftrage, um die
Vielzahl an Arbeitsplanungsdaten zur
Verfligung stellen zu konnen. Zusdtzlich
beschrinkt der Datenschutz die Zusam-
menfiihrung der Daten, da es sich um
sensitive Kundendaten handelt. Zwar ad-

Arbeitsplanung in diesem Beitrag ein Ansatz beschrieben wird.

ressieren aktuelle wissenschaftliche An-
satze die Nutzung von Deep Learning in
der Arbeitsplanung [2]. Bislang basiert
die Datengrundlage dieser Ansitze je-
doch auf synthetisch erstellten 3D-CAD-
Modellen, zum Beispiel durch die auto-
matisierte Generierung von einzelnen
Bauteilfeatures auf Quadern oder Zylin-
dern [3]. Eine synthetisierte Generierung
von Trainingsdaten bildet aber nur sehr
begrenzt die industrielle Praxis ab, in der
Produkte auf sehr unterschiedliche Art
und Weise konstruiert sind und demnach
eine hohere Diversitat und Komplexitat
aufweisen.
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Vor diesem Hintergrund werden An-
satze benotigt, die aus den Arbeitspla-
nungsdaten mehrerer Unternehmen eine
ausreichend groBe Datenbasis bilden,
ohne dass die Arbeitsplanungsdaten an
eine zentrale Stelle ibertragen werden,
um das Risiko von Datenlecks und Daten-
schutzverletzungen zu reduzieren.

Ein im beschriebenen Kontext vielver-
sprechender Ansatz ist das Federated
Learning (FL), bei dem Modelle des Deep
Learning auf unterschiedlichen Instan-
zen trainiert und danach zu einem Ge-
samtmodell zusammengefiihrt werden
[4]. Fir die Nutzung von FL - bezogen
auf den Anwendungsfall der Fertigungs-
vorgangsermittlung in der Arbeitspla-
nung - wird in diesem Beitrag ein An-
satz modelliert.

| Stand der Technik

Der Stand der Technik beschéftigt sich mit
der Arbeitsplanung und FL. Im ersten Teil
wird der Anwendungsfall zur Bestim-
mung von Fertigungsvorgangen beschrie-
ben und im zweiten Teil auf FL eingegan-
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gen und dabei Anforderungen an das
Konzept abgeleitet.

Bestimmung von Fertigungsvorgéngen
in der Arbeitsplanung

Die Aufgabe der Arbeitsplanung ist die
Planung aller einmalig auftretender Fer-
tigungsprozesse fiir jedes Produkt, um
dieses vom Roh- in den Fertigzustand zu
iiberfiihren. Die Arbeitsplanung bildet
damit den Ubergang zwischen Entwick-
lung und Fertigung eines Produkts und
wirkt sich maBgeblich auf fertigungs-
technische Faktoren, wie z.B. Zeit, Kos-
ten oder Qualitat, aus [5].

Ein zentraler Schritt in der Arbeitspla-
nung ist die Bestimmung der erforderli-
chen Fertigungsvorgdnge, da dieser Ein-
fluss auf die nachfolgenden Schritte, wie
z.B. Festlegung der erforderlichen Werk-
zeuge, hat. Methoden zur Bestimmung von
Fertigungsvorgiangen analysieren Konst-
ruktionsinformationen aus dem 3D-CAD-
Modell [3]. Innerhalb der 3D-CAD-Modelle
bestehen die Konstruktionsinformationen
aus den Zusammensetzungen geometri-
scher und topologischer Entitaten des Be-
grenzungsflichenmodells (engl. Bounda-
ry Representation, B-Rep) und Entitéten,
die sich zu Produkt- und Fertigungsinfor-
mationen (engl. Product and Manufactu-
ring Information, PMI) zusammenfassen
lassen. Zu den PMI zdhlen beispielsweise
Angaben zu Toleranzen, wie z. B. MaBtole-
ranz, oder Ebenheit einer Flache. Zu den
geometrischen und topologischen Dar-
stellungen des 3D-Modells zahlen zum
Beispiel Flachen, Punkte oder Kanten [6].

Aufgrund der Effektivitit im Umgang
mit Nichtlinearititen und Diskontinuita-
ten im Merkmalsraum der Daten werden
zunehmend Ansdtze des Deep Learning
fiir die Arbeitsplanung genutzt [3]. Diese
basieren auf einer Umwandlung der 3D-
CAD-Modelle in eine andere Représentati-
on, bspw. Voxel [7], Punktwolke [8] oder
projizierte 2D-Ansichten [9], die als Einga-
be fiir Ansitze des Deep Learning genutzt
werden. Durch diese Umwandlung wer-
den jedoch Informationen, wie topologi-
sche Beziehungen zwischen Fldchen,
nicht ausreichend beriicksichtigt. Weiter-
hin ist eine konsistente Zuordnung von
PMI zu den einzelnen Elementen der neu-
en Repréasentationen schwierig. Eine Mog-
lichkeit zur Modellierung von topologi-
schen Beziehungen und Beriicksichtigung

von Zuordnungen zwischen PMI und Fla-
chen bilden Graphen, weshalb sich deren
Einsatz fiir Deep Learning zur Bestim-
mung von Fertigungsvorgangen eignet.

Grundlagen, Anwendungen und Anfor-
derungen an das Federated Learning
Federated Learning (FL) ist ein dezentraler
Ansatz des maschinellen Lernens, bei dem
Modelle auf verteilten Datenquellen trai-
niert werden, ohne dass die zugrunde lie-
genden Daten zentral gespeichert oder
ausgetauscht werden miissen. Dement-
sprechend wird FL im Bereich des Internet
of Things bzw. Smart Home oder Smart
City fiir Telekommunikation insbesondere
auf mobilen Endgerédten oder autonomes
Fahren eingesetzt, wo iblicherweise Daten
vieler Instanzen zusammengefiihrt wer-
den miissten. Weitere Anwendungsfelder
sind der Gesundheits- oder Finanzsektor
aufgrund deren hohen Anforderungen an
die Privatsphére der Daten [10]. Die Her-
ausforderungen der Methode liegen
bspw. in der Heterogenitét der Daten, die
das Training erschwert und spezialisierte
Aggregationsmethoden erfordert. Lokale
Berechnungen konnen ressourceninten-
siv sein und ein hoher Kommunikations-
aufwand kann vorliegen, da Modellpara-
meter regelméBig zwischen den Gerédten
und dem Server ausgetauscht werden
missen. Zudem ist FL nicht ganzlich frei
von Sicherheitsrisiken, da iiber die Mo-
dellparameter Riickschliisse auf die Da-
tenstruktur moglich sind [11].

Fiir das Training beim FL wird das zen-
trale Modell fiir ausgewahlte Instanzen
bereitgestellt, damit diese das Modell mit
ihren jeweils vorliegenden Daten trainie-
ren konnen. Der Trainingsprozess findet
also dezentral und lokal auf den verschie-
denen Endgerdten der Instanzen statt.
Bei jeder Instanz wird ein lokales Update
des Modells (Trainingsschritt) durchge-
fiihrt. AnschlieBend werden lediglich die
Modellparameter gesammelt und nicht
die eigentlichen Rohdaten. Eine Aggrega-
tion der gesammelten Modellparameter
bildet die aktualisierte Version des zent-
ralen Modells. Der gesamte Vorgang ist
ein iterativer Prozess. Das aktualisierte
Modell wird demnach erneut an die Ins-
tanzen gesendet, damit diese in weiteren
Runden das Training fortsetzen kdnnen,
bis eine gewlinschte Leistung oder Ge-
nauigkeit erzielt ist [12].
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Grundsatzlich kann zwischen horizon-
talem und vertikalem bzw. zentralem und
dezentralem FL unterschieden werden.
Beim zentralen FL existiert ein zentraler
Server, der die Koordination des Trainings
ibernimmt. Dieser Server sammelt Mo-
dell-Updates von den Instanzen, aggregiert
diese und koordiniert weitere Iterations-
schritte. Beim dezentralen FL existiert
kein zentraler Koordinator. Stattdessen
kommunizieren die Instanzen direkt mit-
einander, um Modell-Updates auszutau-
schen und zu aggregieren [13]. Das hori-
zontale Federated Learning bezieht sich
daher auf Szenarien, in denen verschie-
dene Instanzen dhnliche oder identische
Datenmerkmale, aber unterschiedliche
Datenbeispiele besitzen. Beim vertikalen
FL besitzen die Instanzen dagegen unter-
schiedliche Datenmerkmale bei &hnli-
chen oder identischen Datenbeispielen.
Die Einordnung des Anwendungsfalls in
die jeweilige Kategorie hat dabei Auswir-
kungen auf die Gestaltung des FL. Da alle
Instanzen beim horizontalen FL dhnliche
Datenmerkmale, aber unterschiedliche
Beispiele haben, ist die Modellarchitek-
tur in der Regel auf diese Merkmale ab-
gestimmt. Bei vertikalem FL miissen die
Modelle fiir Merkmale, die bei verschie-
denen Instanzen vorhanden sind, kombi-
niert werden. Dies erfordert spezielle
Modellarchitekturen, die Merkmale ver-
schiedener Instanzen integrieren, ohne
die Daten direkt auszutauschen [14].

Trotz der Gestaltung des FL als dezent-
raler Trainingsmethode, bei der die Da-
ten auf den Endgerédten verbleiben kon-
nen, existieren weiterhin Moglichkeiten,
Riickschliisse auf die zugrunde liegen-
den Daten zu ziehen [12]. Selbst wenn
die Rohdaten nicht {ibertragen werden,
konnten Metadaten oder andere Informa-
tionen, die wahrend der Kommunikation
zwischen Gerdten ausgetauscht werden
(wie zum Beispiel die GroBe der Daten
oder Trainingsgewichte), Riickschliisse
auf die Daten zulassen. Dies gilt es bei
der Gestaltung des FL zu beriicksichtigen
und entsprechende Datenschutzmecha-
nismen anzuwenden. Fiir eine Zusam-
menfassung existierender Ansitze wird
auf Chen et al. [15] verwiesen.

Weiterhin ist beim Einsatz von FL die
Heterogenitit der Daten zu berticksichti-
gen. Fir verschiedene Instanzen konnen
die Datenverteilungen der Merkmale und
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Bild 1. Zusammenfassung des Ansatzes fiir die Ermittlung von Fertigungsvorgédngen durch

graphenbasiertes Federated Learning

Labels oder die Anzahl an verfiigharen
Datenpunkten stark variieren [12]. Unter
Berlicksichtigung der Bestimmung von
Fertigungsvorgdngen in der Arbeitspla-
nung, bei der der Anwendungsfall der
Arbeitsplanung durch graphenbasiertes
Deep Learning modelliert werden soll, er-
weitern sich die Moglichkeiten auftreten-
der Datenheterogenitat, da bei Graphen
zusatzlich die Verteilung der Topologie
unterschiedlich sein kann [13].
Zusammenfassend werden die folgen-
den Aspekte bei der Gestaltung des FL
fiir den Anwendungsfall in der Arbeits-
planung berticksichtigt:
m Gestaltung als horizontales oder verti-
kales bzw. zentrales oder dezentrales FL,
B Bestimmung eines Algorithmus fiir
die zentrale Aggregation der Modell-
parameter,

DE GRUYTER

® Handhabung von Datenheterogenitat
sowie

B Auswahl von Sicherheitsmechanismen
zum Datenschutz.

Anwendung von FL zur Be-
stimmung von Fertigungsvor-
gdngen in der Arbeitsplanung

Bild 1 verdeutlicht den Aufbau des Sys-
tems fiir graphenbasiertes Federated Le-
arning zur Ermittlung von Fertigungs-
vorgangen in der Arbeitsplanung. Es
werden die Daten verschiedener Unter-
nehmungen als Instanzen des FL ge-
nutzt. Ein zentraler Server tibernimmt
die Koordination des Trainings. Dieser
wahlt aus einer Gesamtmenge an Instan-
zen eine definierte Anzahl aus und initi-
iert das jeweilige Training. Durch die Ge-
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staltung als zentrales FL bleibt die
Struktur des Systems tibersichtlich, wo-
durch die Kommunikation und Synchro-
nisation des Trainings effizienter umge-
setzt werden kann. Gleichzeitig ist ein
solches System aufgrund der direkten
Kommunikation zwischen Server und
Partei aber auch anfilliger fiir Angriffe
dieses Kommunikationswegs, sodass
durch Zugriff auf die Modellparameter
Riickschliisse auf die Daten gemacht wer-
den konnen. Insgesamt fiihren hohere
Vertrauensannahmen zu einfacheren Da-
tenschutzmechanismen, was die System-
effizienz erhoht, durch geringere Re-
chenzeitenund Netzwerkkommunikation,
aber gleichzeitig Sicherheitsrisiken er-
hoht. Bei niedrigem Vertrauen kann auf
eine Differential-Privacy-Methode zu-
riickgegriffen werden [13].

Dabei wird Rauschen auf die zu sen-
denden Modell-Updates gegeben, was die
Riickschliisse auf verwendete Trainings-
daten schwer bis unmoglich macht. Je-
doch geht diese Methode mit einem Ge-
nauigkeitsverlust im zentralen Modell
durch das Rauschen einher. Ein beispiel-
hafter Ansatz fiir eine Differential-Priva-
cy-Methode bietet PRIVATE-FL [16]. Bei
hoheren Vertrauensannahmen kann zum
Schutz der Kommunikationswege und
der Privatsphdre der Daten eine homo-
morphe Verschliisselung eingesetzt wer-
den. Homomorphe Verschliisselung ist
eine kryptografische Technik, die es er-
moglicht, Berechnungen direkt auf ver-
schliisselten Daten durchzufiihren, ohne
diese vorher zu entschliisseln. Dadurch
konnen sensible Daten verarbeitet wer-
den, ohne jemals entschliisselt werden
zu miissen. Ein Beispiel fiir homomorphe
Verschliisselung bieten Liuetal [17].
Weitere Methoden zur Steigerung der Da-
tensicherheit sind vertrauenswiirdige
Ausfiihrungsumgebungen oder sichere
Mehrparteienberechnung [15]. Zur Ag-
gregation der Modellparameter auf dem
zentralen Server wird eine aufmerksam-
keitsbasierte Methode eingesetzt. Da-
durch werden den einzelnen lokalen Mo-
dellen der Parteien lernbare Gewichte
zugeordnet, um den Konvergenzprozess
zu beschleunigen. Ein solches Vorgehen
wurde schon erfolgreich fiir nicht-eukli-
dische Graphdaten gezeigt [18]. Der Ein-
fluss der Datenheterogenitit kann zu-
satzlich durch weitere MaBnahmen
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abgemildert werden. Dazu zdhlen die
Einfihrung von Regulierungstermen in
der Fehlerfunktion, Wissensdestillation
oder Modellinterpolation [19].

In Bezug auf die Bestimmung von Fer-
tigungsvorgangen in der Arbeitsplanung
konnen die Daten in ihrer Rohform (3D-
CAD-Modell und Fertigungsvorgiange)
nicht direkt fiir das Training eines Deep-
Learning-Modells genutzt werden und
werden daher zu Graphen transformiert.
Durch die Uberfiihrung in Graphen und
die damit einhergehende Definition von
Merkmalen kann der Ansatz in das hori-
zontale FL eingeordnet werden. Die 3D-
CAD-Modelle werden in drei verschiede-
ne Graphen umgewandelt, die als Eingabe
fiir Deep Learning genutzt werden. Die
erste Struktur ist ein merkmalsindizier-
ter Adjazenzgraph. Durch diesen werden
die topologischen Beziehungen der Fla-
chen zueinander abgebildet. Die Knoten
bilden somit die Flachen des 3D-CAD-Mo-
dells und die Kanten die Verbindungen
der Flachen. Merkmalsinduziert bedeutet
in diesem Zusammenhang, dass den Fla-
chen und Kanten des Graphen bestimmte
Attribute wie Lange oder Flacheninhalte
zugeordnet werden konnen. Durch eine
solche Beschreibung des 3D-CAD-Mo-
dells geht die Information zur Form der
Flache weitestgehend verloren. Zwar
kann durch die Beschreibung eines
Merkmals wie Flachentyp die Form einer
Flache (z.B. zylindrisch) beriicksichtigt
werden, fiir komplexere Formen kann
diese Beschreibung jedoch nicht ausrei-
chen. Ein weiterer Graph bildet demnach
ein Gitternetz (Mesh) einzelner Flachen.
Durch die Analyse dieser soll der Deep-
Learning-Ansatz befidhigt werden, unter-
schiedliche Flachenformen differenzie-
ren zu konnen. Als letztes werden die
Abhdngigkeiten der PMI mithilfe eines
Graphen modelliert. Im Wesentlichen
konnen diese in indirekte und direkte
PMI unterteilt werden. Direkte PMI, wie
z.B. Zylindrizitat, kann direkt einer Fla-
che zugeordnet werden. Indirekte PMI,
wie z.B. Parallelitdt, wird {iber ein soge-
nanntes Datum im 3D-CAD-Modell zuge-
ordnet. Dadurch kann ein Graph defi-
niert werden, indem die Flachen des
CAD-Modells die Knoten bilden, deren
Attribute direkte PMI sind und die indi-
rekten PMI {iber Kanten mit Attributen
im Graph modelliert werden.

I Zusammenfassung und Ausblick

In diesem Beitrag wurde ein Ansatz vor-
gestellt, der die Ermittlung von Ferti-
gungsvorgangen aus 3D-CAD-Modellen
fiir die Arbeitsplanung durch FL ermog-
licht. Dazu werden die 3D-CAD-Modelle
in Graphen umgewandelt, die anschlie-
Bend mithilfe von FL analysiert werden.
Dabei wurde das FL als horizontal und
zentral modelliert. Es wurden Mechanis-
men zur Reduktion von Datenheterogeni-
tdt und zur Erhéhung von Datensicher-
heit aufgezeigt und diskutiert. Des
Weiteren wurde eine Methode fiir die Ag-
gregation der Modellparameter beschrie-
ben. Der dargestellte Ansatz wird zu-
kiinftig umgesetzt, in einen Software-
Demonstrator integriert und fiir die Ar-
beitsplanung unterschiedlicher Unter-
nehmen getestet.
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| Abstract

Federated Learning in Process Planning -
Selection of Manufacturing Processes Using
Federated Graph Learning. Preparing of train-
ing datasets for deep learning in process plan-
ning presents a significant challenge. The data
basis for various approaches has been based on
synthetically created 3D models. However,

such synthetic generation of training data only
limitedly reflects industrial practice. Consider-
ing this background, approaches that can form
a sufficiently large data basis from several
companies‘ data without transferring the data
to a central location are required. A promising
approach in the described context is Federated
Learning (FL). Therefore, this paper focuses on
modeling an FL approach for process planning.
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