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Federated Learning in der Arbeits-
planung
Bestimmung von Fertigungsvorgängen mithilfe von graphenbasiertem  
Federated Learning

Die Aufbereitung von praxisnahen Trainingsdatensätzen für Deep Le-
arning in der Arbeitsplanung ist eine große Herausforderung. Die Da-
tengrundlage aktueller Ansätze basiert auf synthetisch erstellten 3D-
Modellen. Eine solche synthetisierte Generierung von Trainingsdaten 
bildet jedoch nur sehr begrenzt die industrielle Praxis ab. Vor diesem 
Hintergrund haben Ansätze ein hohes Potenzial, bei denen aus den 
Daten mehrerer Unternehmen eine ausreichend große Datengrundlage 
gebildet werden kann, ohne dass diese an eine zentrale Stelle übertra-
gen werden müssen. Eine im beschriebenen Kontext vielversprechende 
Methode ist das Federated Learning (FL), für dessen Anwendung in der 
Arbeitsplanung in diesem Beitrag ein Ansatz beschrieben wird. 
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Motivation

Die Aufbereitung von praxisnahen Trai-
ningsdatensätzen für Deep Learning in 
der Arbeitsplanung bildet eine Heraus-
forderung für Industrie und Wissen-
schaft [1]. Auftragsfertigende Unterneh-
men verfügen oftmals nicht über eine 
ausreichende Anzahl an Kunden und da-
mit über zu wenige Aufträge, um die 
Vielzahl an Arbeitsplanungsdaten zur 
Verfügung stellen zu können. Zusätzlich 
beschränkt der Datenschutz die Zusam-
menführung der Daten, da es sich um 
sensitive Kundendaten handelt. Zwar ad-

Vor diesem Hintergrund werden An-
sätze benötigt, die aus den Arbeitspla-
nungsdaten mehrerer Unternehmen eine 
ausreichend große Datenbasis bilden, 
ohne dass die Arbeitsplanungsdaten an 
eine zentrale Stelle übertragen werden, 
um das Risiko von Datenlecks und Daten-
schutzverletzungen zu reduzieren. 

Ein im beschriebenen Kontext vielver-
sprechender Ansatz ist das Federated 
Learning (FL), bei dem Modelle des Deep 
Learning auf unterschiedlichen Instan-
zen trainiert und danach zu einem Ge-
samtmodell zusammengeführt werden 
[4]. Für die Nutzung von FL – bezogen 
auf den Anwendungsfall der Fertigungs-
vorgangsermittlung in der Arbeitspla-
nung – wird in diesem Beitrag ein An-
satz modelliert. 

Stand der Technik

Der Stand der Technik beschäftigt sich mit 
der Arbeitsplanung und FL. Im ersten Teil 
wird der Anwendungsfall zur Bestim-
mung von Fertigungsvorgängen beschrie-
ben und im zweiten Teil auf FL eingegan-

ressieren aktuelle wissenschaftliche An-
sätze die Nutzung von Deep Learning in 
der Arbeitsplanung [2]. Bislang basiert 
die Datengrundlage dieser Ansätze je-
doch auf synthetisch erstellten 3D-CAD-
Modellen, zum Beispiel durch die auto-
matisierte Generierung von einzelnen 
Bauteilfeatures auf Quadern oder Zylin-
dern [3]. Eine synthetisierte Generierung 
von Trainingsdaten bildet aber nur sehr 
begrenzt die industrielle Praxis ab, in der 
Produkte auf sehr unterschiedliche Art 
und Weise konstruiert sind und demnach 
eine höhere Diversität und Komplexität 
aufweisen.
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Grundsätzlich kann zwischen horizon-
talem und vertikalem bzw. zentralem und 
dezentralem FL unterschieden werden. 
Beim zentralen FL existiert ein zentraler 
Server, der die Koordination des Trainings 
übernimmt. Dieser Server sammelt Mo-
dell-Updates von den Instanzen, aggregiert 
diese und koordiniert weitere Iterations-
schritte. Beim dezentralen FL existiert 
kein zentraler Koordinator. Stattdessen 
kommunizieren die Instanzen direkt mit-
einander, um Modell-Updates auszutau-
schen und zu aggregieren [13]. Das hori-
zontale Federated Learning bezieht sich 
daher auf Szenarien, in denen verschie-
dene Instanzen ähnliche oder identische 
Datenmerkmale, aber unterschiedliche 
Datenbeispiele besitzen. Beim vertikalen 
FL besitzen die Instanzen dagegen unter-
schiedliche Datenmerkmale bei ähnli-
chen oder identischen Datenbeispielen. 
Die Einordnung des Anwendungsfalls in 
die jeweilige Kategorie hat dabei Auswir-
kungen auf die Gestaltung des FL. Da alle 
Instanzen beim horizontalen FL ähnliche 
Datenmerkmale, aber unterschiedliche 
Beispiele haben, ist die Modellarchitek-
tur in der Regel auf diese Merkmale ab-
gestimmt. Bei vertikalem FL müssen die 
Modelle für Merkmale, die bei verschie-
denen Instanzen vorhanden sind, kombi-
niert werden. Dies erfordert spezielle 
Modellarchitekturen, die Merkmale ver-
schiedener Instanzen integrieren, ohne 
die Daten direkt auszutauschen [14].

Trotz der Gestaltung des FL als dezent-
raler Trainingsmethode, bei der die Da-
ten auf den Endgeräten verbleiben kön-
nen, existieren weiterhin Möglichkeiten, 
Rückschlüsse auf die zugrunde liegen-
den Daten zu ziehen [12]. Selbst wenn 
die Rohdaten nicht übertragen werden, 
könnten Metadaten oder andere Informa-
tionen, die während der Kommunikation 
zwischen Geräten ausgetauscht werden 
(wie zum Beispiel die Größe der Daten 
oder Trainingsgewichte), Rückschlüsse 
auf die Daten zulassen. Dies gilt es bei 
der Gestaltung des FL zu berücksichtigen 
und entsprechende Datenschutzmecha-
nismen anzuwenden. Für eine Zusam-
menfassung existierender Ansätze wird 
auf Chen et al. [15] verwiesen.

Weiterhin ist beim Einsatz von FL die 
Heterogenität der Daten zu berücksichti-
gen. Für verschiedene Instanzen können 
die Datenverteilungen der Merkmale und 

von Zuordnungen zwischen PMI und Flä-
chen bilden Graphen, weshalb sich deren 
Einsatz für Deep Learning zur Bestim-
mung von Fertigungsvorgängen eignet. 

Grundlagen, Anwendungen und Anfor-
derungen an das Federated Learning
Federated Learning (FL) ist ein dezentraler 
Ansatz des maschinellen Lernens, bei dem 
Modelle auf verteilten Datenquellen trai-
niert werden, ohne dass die zugrunde lie-
genden Daten zentral gespeichert oder 
ausgetauscht werden müssen. Dement-
sprechend wird FL im Bereich des Internet 
of Things bzw. Smart Home oder Smart 
City für Telekommunikation insbesondere 
auf mobilen Endgeräten oder autonomes 
Fahren eingesetzt, wo üblicherweise Daten 
vieler Instanzen zusammengeführt wer-
den müssten. Weitere Anwendungsfelder 
sind der Gesundheits- oder Finanzsektor 
aufgrund deren hohen Anforderungen an 
die Privatsphäre der Daten [10]. Die Her-
ausforderungen der Methode liegen 
bspw. in der Heterogenität der Daten, die 
das Training erschwert und spezialisierte 
Aggregationsmethoden erfordert. Lokale 
Berechnungen können ressourceninten-
siv sein und ein hoher Kommunikations-
aufwand kann vorliegen, da Modellpara-
meter regelmäßig zwischen den Geräten 
und dem Server ausgetauscht werden 
müssen. Zudem ist FL nicht gänzlich frei 
von Sicherheitsrisiken, da über die Mo-
dellparameter Rückschlüsse auf die Da-
tenstruktur möglich sind [11]. 

Für das Training beim FL wird das zen-
trale Modell für ausgewählte Instanzen 
bereitgestellt, damit diese das Modell mit 
ihren jeweils vorliegenden Daten trainie-
ren können. Der Trainingsprozess findet 
also dezentral und lokal auf den verschie-
denen Endgeräten der Instanzen statt. 
Bei jeder Instanz wird ein lokales Update 
des Modells (Trainingsschritt) durchge-
führt. Anschließend werden lediglich die 
Modellparameter gesammelt und nicht 
die eigentlichen Rohdaten. Eine Aggrega-
tion der gesammelten Modellparameter 
bildet die aktualisierte Version des zent-
ralen Modells. Der gesamte Vorgang ist 
ein iterativer Prozess. Das aktualisierte 
Modell wird demnach erneut an die Ins-
tanzen gesendet, damit diese in weiteren 
Runden das Training fortsetzen können, 
bis eine gewünschte Leistung oder Ge-
nauigkeit erzielt ist [12]. 

gen und dabei Anforderungen an das 
Konzept abgeleitet. 

Bestimmung von Fertigungsvorgängen 
in der Arbeitsplanung
Die Aufgabe der Arbeitsplanung ist die 
Planung aller einmalig auftretender Fer-
tigungsprozesse für jedes Produkt, um 
dieses vom Roh- in den Fertigzustand zu 
überführen. Die Arbeitsplanung bildet 
damit den Übergang zwischen Entwick-
lung und Fertigung eines Produkts und 
wirkt sich maßgeblich auf fertigungs-
technische Faktoren, wie z. B. Zeit, Kos-
ten oder Qualität, aus [5]. 

Ein zentraler Schritt in der Arbeitspla-
nung ist die Bestimmung der erforderli-
chen Fertigungsvorgänge, da dieser Ein-
fluss auf die nachfolgenden Schritte, wie 
z. B. Festlegung der erforderlichen Werk-
zeuge, hat. Methoden zur Bestimmung von 
Fertigungsvorgängen analysieren Konst-
ruktionsinformationen aus dem 3D-CAD-
Modell [3]. Innerhalb der 3D-CAD-Modelle 
bestehen die Konstruktionsinformationen 
aus den Zusammensetzungen geometri-
scher und topologischer Entitäten des Be-
grenzungsflächenmodells (engl. Bounda-
ry Representation, B-Rep) und Entitäten, 
die sich zu Produkt- und Fertigungsinfor-
mationen (engl. Product and Manufactu-
ring Information, PMI) zusammenfassen 
lassen. Zu den PMI zählen beispielsweise 
Angaben zu Toleranzen, wie z. B. Maßtole-
ranz, oder Ebenheit einer Fläche. Zu den 
geometrischen und topologischen Dar-
stellungen des 3D-Modells zählen zum 
Beispiel Flächen, Punkte oder Kanten [6].

Aufgrund der Effektivität im Umgang 
mit Nichtlinearitäten und Diskontinuitä-
ten im Merkmalsraum der Daten werden 
zunehmend Ansätze des Deep Learning 
für die Arbeitsplanung genutzt [3]. Diese 
basieren auf einer Umwandlung der 3D-
CAD-Modelle in eine andere Repräsentati-
on, bspw. Voxel [7], Punktwolke [8] oder 
projizierte 2D-Ansichten [9], die als Einga-
be für Ansätze des Deep Learning genutzt 
werden. Durch diese Umwandlung wer-
den jedoch Informationen, wie topologi-
sche Beziehungen zwischen Flächen, 
nicht ausreichend berücksichtigt. Weiter-
hin ist eine konsistente Zuordnung von 
PMI zu den einzelnen Elementen der neu-
en Repräsentationen schwierig. Eine Mög-
lichkeit zur Modellierung von topologi-
schen Beziehungen und Berücksichtigung 
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staltung als zentrales FL bleibt die 
Struktur des Systems übersichtlich, wo-
durch die Kommunikation und Synchro-
nisation des Trainings effizienter umge-
setzt werden kann. Gleichzeitig ist ein 
solches System aufgrund der direkten 
Kommunikation zwischen Server und 
Partei aber auch anfälliger für Angriffe 
dieses Kommunikationswegs, sodass 
durch Zugriff auf die Modellparameter 
Rückschlüsse auf die Daten gemacht wer-
den können. Insgesamt führen höhere 
Vertrauensannahmen zu einfacheren Da-
tenschutzmechanismen, was die System-
effizienz erhöht, durch geringere Re-
chenzeiten und Netzwerkkommunikation, 
aber gleichzeitig Sicherheitsrisiken er-
höht. Bei niedrigem Vertrauen kann auf 
eine Differential-Privacy-Methode zu-
rückgegriffen werden [13].

Dabei wird Rauschen auf die zu sen-
denden Modell-Updates gegeben, was die 
Rückschlüsse auf verwendete Trainings-
daten schwer bis unmöglich macht. Je-
doch geht diese Methode mit einem Ge-
nauigkeitsverlust im zentralen Modell 
durch das Rauschen einher. Ein beispiel-
hafter Ansatz für eine Differential-Priva-
cy-Methode bietet PRIVATE-FL [16]. Bei 
höheren Vertrauensannahmen kann zum 
Schutz der Kommunikationswege und 
der Privatsphäre der Daten eine homo-
morphe Verschlüsselung eingesetzt wer-
den. Homomorphe Verschlüsselung ist 
eine kryptografische Technik, die es er-
möglicht, Berechnungen direkt auf ver-
schlüsselten Daten durchzuführen, ohne 
diese vorher zu entschlüsseln. Dadurch 
können sensible Daten verarbeitet wer-
den, ohne jemals entschlüsselt werden 
zu müssen. Ein Beispiel für homomorphe 
Verschlüsselung bieten Liu et al. [17]. 
Weitere Methoden zur Steigerung der Da-
tensicherheit sind vertrauenswürdige 
Ausführungsumgebungen oder sichere 
Mehrparteienberechnung [15]. Zur Ag-
gregation der Modellparameter auf dem 
zentralen Server wird eine aufmerksam-
keitsbasierte Methode eingesetzt. Da-
durch werden den einzelnen lokalen Mo-
dellen der Parteien lernbare Gewichte 
zugeordnet, um den Konvergenzprozess 
zu beschleunigen. Ein solches Vorgehen 
wurde schon erfolgreich für nicht-eukli-
dische Graphdaten gezeigt [18]. Der Ein-
fluss der Datenheterogenität kann zu-
sätzlich durch weitere Maßnahmen 

	■ Handhabung von Datenheterogenität 
sowie

	■ Auswahl von Sicherheitsmechanismen 
zum Datenschutz.

Anwendung von FL zur Be-
stimmung von Fertigungsvor-
gängen in der Arbeitsplanung

Bild 1 verdeutlicht den Aufbau des Sys-
tems für graphenbasiertes Federated Le-
arning zur Ermittlung von Fertigungs-
vorgängen in der Arbeitsplanung. Es 
werden die Daten verschiedener Unter-
nehmungen als Instanzen des FL ge-
nutzt. Ein zentraler Server übernimmt 
die Koordination des Trainings. Dieser 
wählt aus einer Gesamtmenge an Instan-
zen eine definierte Anzahl aus und initi-
iert das jeweilige Training. Durch die Ge-

Labels oder die Anzahl an verfügbaren 
Datenpunkten stark variieren [12]. Unter 
Berücksichtigung der Bestimmung von 
Fertigungsvorgängen in der Arbeitspla-
nung, bei der der Anwendungsfall der 
Arbeitsplanung durch graphenbasiertes 
Deep Learning modelliert werden soll, er-
weitern sich die Möglichkeiten auftreten-
der Datenheterogenität, da bei Graphen 
zusätzlich die Verteilung der Topologie 
unterschiedlich sein kann [13]. 

Zusammenfassend werden die folgen-
den Aspekte bei der Gestaltung des FL 
für den Anwendungsfall in der Arbeits-
planung berücksichtigt: 
	■ Gestaltung als horizontales oder verti-

kales bzw. zentrales oder dezentrales FL,
	■ Bestimmung eines Algorithmus für 

die zentrale Aggregation der Modell-
parameter,

Bild 1. Zusammenfassung des Ansatzes für die Ermittlung von Fertigungsvorgängen durch  
graphenbasiertes Federated Learning
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abgemildert werden. Dazu zählen die 
Einführung von Regulierungstermen in 
der Fehlerfunktion, Wissensdestillation 
oder Modellinterpolation [19]. 

In Bezug auf die Bestimmung von Fer-
tigungsvorgängen in der Arbeitsplanung 
können die Daten in ihrer Rohform (3D-
CAD-Modell und Fertigungsvorgänge) 
nicht direkt für das Training eines Deep-
Learning-Modells genutzt werden und 
werden daher zu Graphen transformiert. 
Durch die Überführung in Graphen und 
die damit einhergehende Definition von 
Merkmalen kann der Ansatz in das hori-
zontale FL eingeordnet werden. Die 3D-
CAD-Modelle werden in drei verschiede-
ne Graphen umgewandelt, die als Eingabe 
für Deep Learning genutzt werden. Die 
erste Struktur ist ein merkmalsindizier-
ter Adjazenzgraph. Durch diesen werden 
die topologischen Beziehungen der Flä-
chen zueinander abgebildet. Die Knoten 
bilden somit die Flächen des 3D-CAD-Mo-
dells und die Kanten die Verbindungen 
der Flächen. Merkmalsinduziert bedeutet 
in diesem Zusammenhang, dass den Flä-
chen und Kanten des Graphen bestimmte 
Attribute wie Länge oder Flächeninhalte 
zugeordnet werden können. Durch eine 
solche Beschreibung des 3D-CAD-Mo-
dells geht die Information zur Form der 
Fläche weitestgehend verloren. Zwar 
kann durch die Beschreibung eines 
Merkmals wie Flächentyp die Form einer 
Fläche (z. B. zylindrisch) berücksichtigt 
werden, für komplexere Formen kann 
diese Beschreibung jedoch nicht ausrei-
chen. Ein weiterer Graph bildet demnach 
ein Gitternetz (Mesh) einzelner Flächen. 
Durch die Analyse dieser soll der Deep-
Learning-Ansatz befähigt werden, unter-
schiedliche Flächenformen differenzie-
ren zu können. Als letztes werden die 
Abhängigkeiten der PMI mithilfe eines 
Graphen modelliert. Im Wesentlichen 
können diese in indirekte und direkte 
PMI unterteilt werden. Direkte PMI, wie 
z. B. Zylindrizität, kann direkt einer Flä-
che zugeordnet werden. Indirekte PMI, 
wie z. B. Parallelität, wird über ein soge-
nanntes Datum im 3D-CAD-Modell zuge-
ordnet. Dadurch kann ein Graph defi-
niert werden, indem die Flächen des 
CAD-Modells die Knoten bilden, deren 
Attribute direkte PMI sind und die indi-
rekten PMI über Kanten mit Attributen 
im Graph modelliert werden. 
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Zusammenfassung und Ausblick

In diesem Beitrag wurde ein Ansatz vor-
gestellt, der die Ermittlung von Ferti-
gungsvorgängen aus 3D-CAD-Modellen 
für die Arbeitsplanung durch FL ermög-
licht. Dazu werden die 3D-CAD-Modelle 
in Graphen umgewandelt, die anschlie-
ßend mithilfe von FL analysiert werden. 
Dabei wurde das FL als horizontal und 
zentral modelliert. Es wurden Mechanis-
men zur Reduktion von Datenheterogeni-
tät und zur Erhöhung von Datensicher-
heit aufgezeigt und diskutiert. Des 
Weiteren wurde eine Methode für die Ag-
gregation der Modellparameter beschrie-
ben. Der dargestellte Ansatz wird zu-
künftig umgesetzt, in einen Software- 
Demonstrator integriert und für die Ar-
beitsplanung unterschiedlicher Unter-
nehmen getestet. 
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such synthetic generation of training data only 
limitedly reflects industrial practice. Consider-
ing this background, approaches that can form 
a sufficiently large data basis from several 
companies‘ data without transferring the data 
to a central location are required. A promising 
approach in the described context is Federated 
Learning (FL). Therefore, this paper focuses on 
modeling an FL approach for process planning.
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Abstract
Federated Learning in Process Planning –  
Selection of Manufacturing Processes Using 
Federated Graph Learning. Preparing of train-
ing datasets for deep learning in process plan-
ning presents a significant challenge. The data 
basis for various approaches has been based on 
synthetically created 3D models. However, 


