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ChatPLC –  
Potenziale der Generativen KI  
für die Steuerungsentwicklung

In diesem Beitrag werden Ansätze untersucht, um ProgrammiererIn-
nen von speicherprogrammierbaren Steuerungen (SPS) entlang des 
gesamten Softwareentwicklungszyklus durch den Einsatz von genera-
tiver künstlicher Intelligenz (KI) zu unterstützen. Konkret wird dabei 
auf die Umsetzung eines lokalen Sprachmodells für die Generierung 
von strukturiertem Text (ST) nach IEC 61131-3 und eines Retrieval 
Augmented Generation-(RAG)-Systeme als Assistent für die Enginee-
ring-Software von SPS eingegangen. Diese Beispiele zeigen Potenziale 
auf, die durch den Einsatz von Sprachmodellen im Umfeld der SPS-Pro-
grammierung bereits jetzt greifbar sind.
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Einleitung

Die rasante Entwicklung der generativen 
KI und die damit einhergehenden Verän-
derungen in Wirtschaft und Gesellschaft 
durch den Einsatz von großen Sprachmo-
dellen, bzw. Large Language Models (LLM) 
haben weitreichende Auswirkungen. Ins-
besondere moderne LLM wie ChatGPT [1], 
BERT [2], LLaMA [3, 4] und Gemini [5] 
sind zu zentralen Akteuren in der digita-
len Transformation geworden. Mit ihren 
Fähigkeiten, natürliche Sprache zu verar-
beiten, bieten sie das Potenzial, Geschäfts-
prozesse durch die Analyse umfangreicher 

senschaft verstanden und fungiert als Brü-
cke zwischen den Bereichen Maschinenbau, 
Elektrotechnik und Informatik [8]. Eine 
Herausforderung in der Automatisie-
rungstechnik sind manuelle Engineering-
Tätigkeiten, die im Bereich der Software-
entwicklung mehr als 10 Prozent der 
Gesamtkosten für die Planung und Reali-
sierung von Produktionssystemen ausma-
chen [9]. Um die Effizienz des Entwick-
lungsprozesses zu steigern, können LLM 
eine entscheidende Rolle spielen. Die 
Grundidee, den Softwareprozess durch 
LLM zu unterstützen, wurde in aktuellen 
Arbeiten für Teilgebiete der IT bereits un-
tersucht [10, 11], jedoch noch nicht um-
fassend für die Automatisierungstechnik 
betrachtet. Es ist daher entscheidend, die 
tatsächlichen Potenziale und die prakti-
schen Anwendungsmöglichkeiten dieser 
Technologien im Kontext der Automatisie-
rungstechnik zu ermitteln.

In diesem Beitrag soll daher das Poten-
zial von LLM innerhalb des Felds der Au-
tomatisierungstechnik mit einem Fokus 
auf die SPS-Programmierung betrachtet 
werden. Im ersten Schritt erfolgt dazu 
eine Analyse des gesamten Softwareent-
wicklungszyklus. Anschließend werden 

Datenmengen zu optimieren. Außerdem 
können sie die Schaffung personalisierter 
Kundenerlebnisse und die Automatisie-
rung von Routineaufgaben grundlegend 
verändern [6]. Diese Potenziale sind ins-
besondere angesichts aktueller globaler 
Herausforderungen wie dem Fachkräfte-
mangel und der Deglobalisierung von Be-
deutung, da sie die Chance bieten, die Wett-
bewerbsfähigkeit und technologische 
Souveränität Deutschlands zu stärken [7]. 
Ein zentrales Standbein für die technologi-
sche Souveränität Deutschlands im Zuge 
der Industrie 4.0 bildet die Automatisie-
rungstechnik. Sie wird als Integrationswis-

	 Hinweis 
	� Bei diesem Beitrag handelt es sich um einen von den Mitgliedern des ZWF-Advisory Board für 

dieses Sonderheft wissenschaftlich begutachteten Fachaufsatz (Peer-Review).

*	 Korrespondenzautorin 
Dr. Gesa Benndorf; Fraunhofer IOSB-INA; Campusallee 1, 32657 Lemgo;  
Tel.: +49 (0) 5261 942-9048, E-Mail: gesa.benndorf@iosb-ina.fraunhofer.de

	 Weitere Autoren 
Dennis Reinhardt, B. Sc.; Universität Bielefeld  
Jörg Jeschin; Phoenix Contact GmbH & Co KG, Blomberg  
Prof. Dr.-Ing. Jürgen Jasperneite; Fraunhofer IOSB-INA



197

KI IN PRODUKTION

Jahrg. 120 (2025) Special Issue

und Maschinenbau zusammengeführt und 
in Einklang gebracht. Ein E-Plan umfasst 
die elektrische Verkabelung sowie das 
Kommunikationssystem einschließlich der 
zugehörigen Hardware-Komponenten. Zu-
dem werden entsprechende Signallisten 
für die Steuerungstechnik erzeugt. Um eine 
Kompatibilität mit verschiedenen Enginee-
ring-Tools im Fertigungsbereich zu ermög-
lichen, wurde der Standard AutomationML 
entwickelt, welcher auf einem Extensible 
Markup Language (XML)-Datenformat be-
ruht und Informationen gemäß dem objekt-
orientierten Design anordnet [16]. 

In der Literatur existieren verschiede-
ne Ansätze, Graphen und Schemata auto-
matisiert zu erzeugen [17, 18]. Die automa-
tische Erstellung von E-Plänen in der 
Automatisierungstechnik ist durch diese 
Vorarbeiten und die aktuellen Entwicklun-
gen im Feld der multimodalen LLM greif-
barer geworden, jedoch aktuell noch relativ 
weit von der praktischen Anwendung ent-
fernt. Dies liegt nicht zuletzt daran, dass 
für die Implementierung dieses Ansatzes 
zunächst die Erstellung umfassender Da-
tensätze erforderlich ist, die E-Pläne, tech-
nische Spezifikationen, Hardwaredoku-
mentationen und Normen beinhalten. 
Weiterhin ist zu beachten, dass die automa-
tische Erstellung von E-Plänen durch 
LLM eine sorgfältige Abwägung von 
Faktoren wie Genauigkeit, Generalisier-
barkeit und Anpassungsfähigkeit an 
spezifische Projektanforderungen erfor-

fakte wie Programmcode und Testfälle. Da 
die meisten Pflichtenhefte in natürlicher 
Sprache geschrieben sind und Grafiken 
enthalten, besteht das Ziel der Integration 
von LLM darin, die Fähigkeiten der Text-
analyse und -erstellung zu nutzen, um die 
Qualität der Anforderungsdokumente zu 
steigern und den Entwicklungsprozess ef-
fizienter zu gestalten. Unter dem Begriff 
Natural Language Processing for Require-
ments Engineering (NLP4RE) wird der 
Einsatz von verschiedenen Modellen er-
forscht [12]. Trotz der multiplen Anwen-
dungsmöglichkeiten von NLP4RE ist die 
Forschung in diesem Bereich noch nicht 
weit fortgeschritten [13]. Zum jetzigen 
Zeitpunkt gibt es Potenzialanalysen [14, 
15], welche darauf hindeuten, dass die von 
ChatGPT generierten Anforderungen viel-
versprechende Ansätze bieten. Grundle-
gende Qualitätsmerkmale wie Verständ-
lichkeit, Konsistenz und Korrektheit 
wurden gezeigt. Jedoch deuten die Studien 
auch auf Ambiguität in der Formulierung 
der Anforderungen und potentielle Her-
ausforderungen in der praktischen Imple-
mentierung hin. 

Elektroplanung
Elektropläne (E-Pläne) und Rohrleitungs- 
und Instrumenten (R & I)-Fließschemata 
stellen zentrale Dokumente in der Design-
phase des Software-Lebenszyklus dar, 
denn in ihnen werden die verschiedenen 
Engineering-Disziplinen IT, Elektrotechnik 

zwei konkrete Umsetzungsbeispiele il-
lustriert und schließlich ein Ausblick auf 
zukünftige Entwicklungen gegeben. 

Generative KI im 
Softwareentwicklungszyklus 

Im vorliegenden Abschnitt wird der ge-
samte Software-Lebenszyklus aus der 
Perspektive der Automatisierungstech-
nik betrachtet und auf Arbeitsschritte 
hin analysiert, die durch den Einsatz von 
LLM eine Steigerung hinsichtlich Effekti-
vität, Effizienz und Qualität erfahren 
können. Die gewonnenen Erkenntnisse 
sind in Bild 1 zusammengefasst und il-
lustrieren die potentiellen Anwendungs-
fälle von LLM in den verschiedenen Pha-
sen des Lebenszyklus. Aus der grafischen 
Darstellung geht hervor, dass sich die An-
wendungspotenziale von LLM grundsätz-
lich in zwei Kategorien einteilen lassen: 
den generativen und den unterstützen-
den Bereich (Support). Der generative Be-
reich umfasst sämtliche Applikationen 
von LLM, die auf Basis vorhandenen Kon-
textes neue Inhalte generieren. Dagegen 
bezieht sich der unterstützende Bereich 
auf die Aufbereitung existierender Wis-
sensbestände in einer interaktiven, mul-
timodalen Form (z. B. durch Texte, Bilder 
oder Audio-/Video-Inhalte), was die Zu-
gänglichkeit für Nutzer verbessert.

Im Folgenden werden einzelne An-
wendungsbereiche kurz exemplarisch 
dargestellt, eine tiefergehende Erläute-
rung erfolgt für die beiden in Bild 1 her-
vorgehobenen Anwendungsfälle in den 
nächsten beiden Kapiteln.

Anforderungsanalyse
Die Anforderungsanalyse ist ein zentra-
les Element im Prozess der Softwareent-
wicklung. Sie dient als essenzielles Ver-
bindungsglied zwischen den technischen 
Spezifikationen der von Entwicklern kon-
zipierten Systeme und den Anwendungs-
zwecken dieser Systeme. In diesem Kon-
text wird, basierend auf Lastenheften 
und ergänzt durch spezifisches Wissen 
aus dem Bereich der Automatisierungs-
technik, ein Pflichtenheft erstellt. Dieses 
Pflichtenheft enthält beispielsweise Uni-
fied Modeling Language (UML)-Diagram-
me mit funktionalen und nicht-funktio-
nalen Anforderungen. Es dient als Basis 
für die Erzeugung diverser Softwarearte-

Bild 1. Anwendungspotenziale von LLM entlang des Software-Lebenszyklus von der Anforderungs-
definition bis zum Betrieb. Es wird zwischen dem generativen Bereich (oben) und dem unterstüt-
zenden Bereich (unten) unterschieden, je nachdem ob neue Inhalte generiert oder bestehende  
Inhalte kontextspezifisch aufbereitet werden. Die beiden hervorgehobenen Anwendungsfälle  
werden in den folgenden Kapiteln näher erläutert
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siert werden, wobei im Folgenden die Ge-
nerierung von ST-Code im Fokus steht.

Zum Zeitpunkt der Durchführung der 
Studie im Jahr 2023 erzielte GPT 3.5 im 
Vergleich zu anderen großen Sprachmo-
dellen (z. B. Bard, Llama 2, Bloom) die mit 
Abstand besten Ergebnisse für die Erzeu-
gung von ST-Code. Unter dem Gesichts-
punkt der Vertraulichkeit der zu verwen-
denden Daten kam jedoch nur ein 
Open-Source-Modell für die Nutzung im 
Projekt in Frage. Llama 2 und CodeT5+ 
lieferten bereits sehr gute Ergebnisse für 
die Generierung von Python-Code und kön-
nen aufgrund ihrer Größe und Verfügbar-
keit grundsätzlich lokal gehostet und nach-
trainiert werden. Für das weitere Vorgehen 
wurde daher ein auf Python vortrainiertes 
CodeT5+-Modell verwendet und mithilfe 
von unternehmensspezifischen Trainings-
daten auf strukturierten Text nachtrainiert. 
Nach aufwändiger Datenaufbereitung 
durch manuelles Dokumentieren der ST-
Codeblöcke und mehreren Trainingsitera-
tionen konnte trotz relativ geringer Trai-
ningsdatenmenge (ca. 300 Beispiele) eine 
akzeptable Modellgüte erzielt werden. Das 
bedeutet, dass einfache Anfragen für typi-
sche Steuerungsfunktionen (z. B. Zeitfunk-
tionen oder Typenumwandlungen) in ver-
schiedenen Varianten valide generiert 
werden konnten. Die Validität wurde von 
Experten und durch Ausführung des gene-
rierten Codes in der Softwareumgebung 

Programmiercode übertragen, da die zu-
grunde liegenden Sprachen Skript- oder 
Programmiersprachen sind. Ergänzend 
mit einer umfassenden Datensammlung 
lassen sich LLM nachtrainieren, sodass 
spezifische Designs für den Sektor der Au-
tomatisierungstechnik generiert werden 
können. Eine besondere Herausforderung 
besteht bei der Analyse von grafischen 
Elementen. Zum Beispiel können Recht
ecke mit einem Symbol und Text sowohl 
Fensterelemente als auch Bedienfelder 
darstellen. Eine weitere Herausforderung 
stellt die Verknüpfung von Variablen mit 
grafischen Elementen dar. Bei diesem As-
pekt der HMI-Generierung besteht derzeit 
ebenfalls noch Forschungsbedarf.

Anwendungsbeispiel 1: 
Generierung von ST-Code

Ein Anwendungsbeispiel für LLM im 
Software-Lebenszyklus ist die automati-
sierte Generierung von Steuerungs-Code. 
Steuerungen werden in einer nach der 
Norm IEC 61131-3 standardisierten Pro-
grammiersprache geschrieben, wobei ST 
in Deutschland am weitesten verbreitet 
ist. Ziel ist es, den Programmierer bei der 
Implementierung der Steuerung nach die-
ser IEC-Norm zu unterstützen, indem 
Code ergänzt, erzeugt oder korrigiert 
wird. Grundsätzlich können alle diese An-
wendungsfälle durch Sprachmodelle reali-

dert. Darüber hinaus stellt die Sicher-
stellung der Einhaltung von Industrie-
standards und Normen eine weitere 
Herausforderung dar. Angesichts des-
sen befindet sich die Forschung und 
Entwicklung in diesem Bereich noch in 
den Anfangsstadien und bedarf weiter-
führender Studien und experimenteller 
Validierungen.

Human-Machine Interface (HMI)
HMIs dienen als Schnittstellen zwischen 
Mensch und Maschine in der Automati-
sierungstechnik und ermöglichen es den 
Werkern, Maschinen zu steuern, Prozess-
informationen zu überwachen und auf 
Systemereignisse zu reagieren. Zur Er-
stellung wird zuerst eine Designphase 
durchlaufen. Anschließend wird dieses 
Design durch verschiedene Editoren um-
gesetzt. Zum Schluss werden Variablen 
an die grafischen Elemente gebunden 
und das fertige Produkt üblicherweise 
durch eine Webtechnologie bereitgestellt. 
Die Komplexität der HMI-Designprozesse 
kann durch den Einsatz von LLM redu-
ziert werden. Gegenwärtig sind zwei Sze-
narien für HMI-Designprozesse vorherr-
schend. Die erste Methode umfasst das 
Nachbauen eines bereits durch den Kun-
den gelieferten Prototypen. Die zweite, 
häufiger auftretende Methode ist die 
freie Erstellung von HMIs, die insbeson-
dere dann zum Tragen kommt, wenn auf 
Kundenseite kein Designprototyp vor-
handen ist. Beide Ansätze beinhalten 
zahlreiche Routineaufgaben, wie z. B. das 
Erstellen von Buttons und das Hinzufü-
gen von Bildern oder die Verknüpfung 
der Signale, welche an Variablen gebun-
den sind, mit den entsprechenden grafi-
schen Elementen. Für die grafische Um-
setzung und das Verbinden der Variablen 
stehen verschiedene Editoren zur Verfü-
gung, die von XML-basierten Verfahren 
bis hin zu HTML5 und OPC UA reichen. 
HTML5 ist die aktuellste Version der Hy-
pertext Markup Language, mit der sich 
digitale Dokumente strukturieren und 
hierarchisieren lassen. OPC UA steht für 
Open Platform Communications Unified 
Architecture und ist ein industrieller 
Kommunikationsstandard. Beide Metho-
den können durch Technologien der gene-
rativen KI automatisiert und beschleunigt 
werden. Für die Umsetzung lassen sich 
dabei die Konzepte der Generierung von 

Bild 2. Ansicht des generierten ST Codes in der Steuerungsentwicklungsumgebung am Beispiel 
des PLCnext Engineer von Phoenix Contact. Der Kommentar (**) entspricht der Anweisung an das 
LLM, der darunter stehende Baustein dem produzierten ST Code. Die Kommunikation zwischen 
Entwicklungsumgebung und LLM erfolgt über das Editieren bzw. Neuladen einer Text-Datei
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geprüft. Komplexere Anfragen, die größe-
re Programme mit mehreren verknüpften 
Funktionen beinhalteten, lieferten teilwei-
se noch unzureichende Ergebnisse. Den-
noch konnte gezeigt werden, dass grund-
sätzlich kleine Modelle für spezifische 
Aufgaben lokal trainiert und im Fall von 
CodeT5+ sogar auf einem herkömmlichen 
Laptop ausgeführt werden können. Dies 
ermöglicht die Auslieferung spezifischer 
trainierter Modelle beispielsweise an den 
Nutzer von Steuerungsentwicklungsumge-
bungen, wobei die Daten jederzeit lokal blei-
ben und der Modellaufruf ohne signifikante 
Latenz erfolgt. Eine mögliche Kopplung der 
ST-Generierung durch das CodeT5+-Modell 
mit einer Steuerungsentwicklungssoftware 
ist in Bild 2 illustriert – das generierte Er-
gebnis wird (nach Neuladen der Datei) di-
rekt im Editor angezeigt.

Es ist zu erwarten, dass die Güte des 
lokalen Modells durch eine Erweiterung 
des Trainingsdatensatzes deutlich gestei-
gert werden kann. Für Ausgaben, die kei-
ne Spezifika bzgl. Nomenklatur oder Stil 
beinhalten, kann auch eine Anreiche-
rung der Daten mit generischen Beispie-
len vorgenommen werden. Eine weitere 
Verbesserung der Performance und Vali-
dität kann durch eine integrierte Feed-
backschleife mit dem Nutzer bzw. der 
Software (bspw. Berücksichtigung von 
Fehlermeldungen bei Ausführung des 
Codes oder Registrierung von Änderun-
gen durch den Nutzer) realisiert werden.

Anwendungsbeispiel 2: 
RAG-basiertes Assistenzsystem 
für Engineering-Software

Ein weiteres Beispiel stellt die direkte 
Unterstützung des Nutzers der Enginee-
ring-Software durch die Beantwortung 
spezifischer Fragen (z. B. durch ein Chat-

eingefügt, so dass das Sprachmodell, 
auch wenn die Texte nicht Teil der Trai-
ningsmenge waren, spezifische Antwor-
ten zu diesen Dokumenten generieren 
kann. In diesem Fall kann ein großes 
kommerzielles Sprachmodell verwendet 
werden, da die verwendeten hinterlegten 
Dokumente ohnehin öffentlich zugäng-
lich sind. Für die Umsetzung des RAG-
Systems wurden verschiedene Methoden 
für die Vorverarbeitung der Daten, das 
Retrieval und die Generierung getestet 
und gegenübergestellt. Beispielsweise 
wurde bei der Vorverarbeitung die Auf-
teilung der Dokumente in Abschnitte 
(Chunks) entweder nach einer fixen Grö-
ße, satzweise oder entsprechend dem se-
mantischen Kontext vorgenommen. Beim 
Retrieval wurden u. a. die Anzahl der re-
levantesten Chunks und das verwendete 
Ähnlichkeitsmaß und bei der Generie-
rung die Reihenfolge der ermittelten 
Chunks variiert. Zur Evaluation diente 
ein Satz von Fragen, der durch Experten 
beantwortet und deren generierte Ant-
worten auf ihre Richtigkeit hin geprüft 
wurden. Ein Großteil der Fragen konnte, 

fenster in der Software) dar. Der Aufbau 
eines derartigen RAG-Systems ist in 
Bild 3 schematisch gezeigt. Das System 
nutzt ein Sprachmodell (z. B. GPT-4) zur 
Verarbeitung von Anfragen, wobei die 
Anfragen mithilfe einer Datenbank durch 
spezifischen Kontext ergänzt werden. Im 
vorliegenden Fall werden als spezifischer 
Kontext Hilfeseiten und Online-Tutorials 
zu einer bestimmten Softwareentwick-
lungsumgebung in einer Vektordaten-
bank hinterlegt. Bei jeder Abfrage wer-
den dann ähnliche Textstellen aus den 
hinterlegten Dokumenten in den Prompt 

Effizienter mit Generativer KI 

Zunehmender Fachkräftemangel und der Bedarf an profitablen, skalierbaren Lö-
sungen lässt generative KI im Bereich der Automatisierungstechnik in den Fokus 
rücken. Wir präsentieren Ansätze, um SPS-Programmierer:innen entlang des ge-
samten Softwareentwicklungszyklus durch den Einsatz von großen Sprachmodel-
len zu unterstützen. Durch automatisierte SPS- Code-Generierung und kontextsen-
sitive Beantwortung spezifischer Nutzeranfragen bei der Bedienung von Engineering 
Software werden Effizienzgewinne und Qualitätssteigerungen ermöglicht.

Bild 3. Schematischer Aufbau eines RAG-Systems zur Beantwortung spezifischer Nutzeranfragen 
im Engineering Kontext. Das Retrieval-Modul enthält eine Vektordatenbank mit Texten aus Foren 
und Hilfe-Seiten, welche bei einer Anfrage passend ausgewählt und dem Generatormodul als  
Kontext mitgegeben werden
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grad derzeit verfügbarer Lösungen sehr 
unterschiedlich und hängt von der Verfüg-
barkeit großer kuratierter Datenmengen 
und deren Verwertbarkeit in großen kom-
merziellen Sprachmodellen ab. Insbeson-
dere stellt die Berücksichtigung von Da-
tenschutzaspekten bei der Verwendung 
sensibler Daten mit großen kommerziel-
len Sprachmodellen noch eine Hürde dar. 
Es ist daher zu erwarten, dass LLM-basier-
te Assistenzsysteme für die Softwareent-
wicklung in der Automatisierungstechnik 
zukünftig auf hybriden Architekturen auf-
setzen, welche im Hintergrund unter-
schiedliche Sprachmodelle verwenden, je 
nach Art und Klassifizierung der Frage-
stellung. Weiterhin besteht derzeit noch 
großer Bedarf an der Feinjustierung exis-
tierender Verfahren, z. B. Embedding-Mo-
dellen in RAG-Systemen und multimoda-
len Modellen für Bildverarbeitung speziell 
für automatisierungstechnische Bedarfe.
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development of a Retrieval Augmented Genera-
tion (RAG) system to assist the user with the 
engineering software is described here. These 
examples highlight the great potential of  
employing Large Language Models (LLM) in 
the area of automation engineering which are 
already within reach.
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Abstract
ChatPLC – Potential of Generative AI for PLC 
Engineering. In this article we discuss ap-
proaches to support automation engineering 
through generative artificial intelligence (AI) 
across the entire software development cycle. 
In particular, the implementation of a local  
language model for structured text generation 
according to the IEC 61131-3 norm and the  


