
KI IN PRODUKTION

196 Jahrg. 120 (2025) Special Issue

 Open Access. © 2025 bei den Autoren, publiziert von De Gruyter. Dieses Werk ist lizensiert unter der Creative Commons
Namensnennung 4.0 International Lizenz.

ChatPLC –
Potenziale der Generativen KI
für die Steuerungsentwicklung

In diesem Beitrag werden Ansätze untersucht, um ProgrammiererIn-
nen von speicherprogrammierbaren Steuerungen (SPS) entlang des
gesamten Softwareentwicklungszyklus durch den Einsatz von genera-
tiver künstlicher Intelligenz (KI) zu unterstützen. Konkret wird dabei
auf die Umsetzung eines lokalen Sprachmodells für die Generierung
von strukturiertem Text (ST) nach IEC 61131-3 und eines Retrieval
Augmented Generation-(RAG)-Systeme als Assistent für die Enginee-
ring-Software von SPS eingegangen. Diese Beispiele zeigen Potenziale
auf, die durch den Einsatz von Sprachmodellen im Umfeld der SPS-Pro-
grammierung bereits jetzt greifbar sind.

Dennis Reinhardt,
Jörg Jeschin,
Jürgen Jasperneite und
Gesa Benndorf*

Einleitung

Die rasante Entwicklung der generativen
KI und die damit einhergehenden Verän-
derungen in Wirtschaft und Gesellschaft
durch den Einsatz von großen Sprachmo-
dellen, bzw. Large Language Models (LLM)
haben weitreichende Auswirkungen. Ins-
besondere moderne LLM wie ChatGPT [1],
BERT [2], LLaMA [3, 4] und Gemini [5]
sind zu zentralen Akteuren in der digita-
len Transformation geworden. Mit ihren
Fähigkeiten, natürliche Sprache zu verar-
beiten, bieten sie das Potenzial, Geschäfts-
prozesse durch die Analyse umfangreicher

senschaft verstanden und fungiert als Brü-
cke zwischen den Bereichen Maschinenbau,
Elektrotechnik und Informatik [8]. Eine
Herausforderung in der Automatisie-
rungstechnik sind manuelle Engineering-
Tätigkeiten, die im Bereich der Software-
entwicklung mehr als 10 Prozent der
Gesamtkosten für die Planung und Reali-
sierung von Produktionssystemen ausma-
chen [9]. Um die Effizienz des Entwick-
lungsprozesses zu steigern, können LLM
eine entscheidende Rolle spielen. Die
Grundidee, den Softwareprozess durch
LLM zu unterstützen, wurde in aktuellen
Arbeiten für Teilgebiete der IT bereits un-
tersucht [10, 11], jedoch noch nicht um-
fassend für die Automatisierungstechnik
betrachtet. Es ist daher entscheidend, die
tatsächlichen Potenziale und die prakti-
schen Anwendungsmöglichkeiten dieser
Technologien im Kontext der Automatisie-
rungstechnik zu ermitteln.

In diesem Beitrag soll daher das Poten-
zial von LLM innerhalb des Felds der Au-
tomatisierungstechnik mit einem Fokus
auf die SPS-Programmierung betrachtet
werden. Im ersten Schritt erfolgt dazu
eine Analyse des gesamten Softwareent-
wicklungszyklus. Anschließend werden

Datenmengen zu optimieren. Außerdem
können sie die Schaffung personalisierter
Kundenerlebnisse und die Automatisie-
rung von Routineaufgaben grundlegend
verändern [6]. Diese Potenziale sind ins-
besondere angesichts aktueller globaler
Herausforderungen wie dem Fachkräfte-
mangel und der Deglobalisierung von Be-
deutung, da sie die Chance bieten, die Wett-
bewerbsfähigkeit und technologische
Souveränität Deutschlands zu stärken [7].
Ein zentrales Standbein für die technologi-
sche Souveränität Deutschlands im Zuge
der Industrie 4.0 bildet die Automatisie-
rungstechnik. Sie wird als Integrationswis-

	 Hinweis
	� Bei diesem Beitrag handelt es sich um einen von den Mitgliedern des ZWF-Advisory Board für

dieses Sonderheft wissenschaftlich begutachteten Fachaufsatz (Peer-Review).

*	 Korrespondenzautorin
Dr. Gesa Benndorf; Fraunhofer IOSB-INA; Campusallee 1, 32657 Lemgo;
Tel.: +49 (0) 5261 942-9048, E-Mail: gesa.benndorf@iosb-ina.fraunhofer.de

	 Weitere Autoren
Dennis Reinhardt, B. Sc.; Universität Bielefeld
Jörg Jeschin; Phoenix Contact GmbH & Co KG, Blomberg
Prof. Dr.-Ing. Jürgen Jasperneite; Fraunhofer IOSB-INA

197

KI IN PRODUKTION

Jahrg. 120 (2025) Special Issue

und Maschinenbau zusammengeführt und
in Einklang gebracht. Ein E-Plan umfasst
die elektrische Verkabelung sowie das
Kommunikationssystem einschließlich der
zugehörigen Hardware-Komponenten. Zu-
dem werden entsprechende Signallisten
für die Steuerungstechnik erzeugt. Um eine
Kompatibilität mit verschiedenen Enginee-
ring-Tools im Fertigungsbereich zu ermög-
lichen, wurde der Standard AutomationML
entwickelt, welcher auf einem Extensible
Markup Language (XML)-Datenformat be-
ruht und Informationen gemäß dem objekt-
orientierten Design anordnet [16].

In der Literatur existieren verschiede-
ne Ansätze, Graphen und Schemata auto-
matisiert zu erzeugen [17, 18]. Die automa-
tische Erstellung von E-Plänen in der
Automatisierungstechnik ist durch diese
Vorarbeiten und die aktuellen Entwicklun-
gen im Feld der multimodalen LLM greif-
barer geworden, jedoch aktuell noch relativ
weit von der praktischen Anwendung ent-
fernt. Dies liegt nicht zuletzt daran, dass
für die Implementierung dieses Ansatzes
zunächst die Erstellung umfassender Da-
tensätze erforderlich ist, die E-Pläne, tech-
nische Spezifikationen, Hardwaredoku-
mentationen und Normen beinhalten.
Weiterhin ist zu beachten, dass die automa-
tische Erstellung von E-Plänen durch
LLM eine sorgfältige Abwägung von
Faktoren wie Genauigkeit, Generalisier-
barkeit und Anpassungsfähigkeit an
spezifische Projektanforderungen erfor-

fakte wie Programmcode und Testfälle. Da
die meisten Pflichtenhefte in natürlicher
Sprache geschrieben sind und Grafiken
enthalten, besteht das Ziel der Integration
von LLM darin, die Fähigkeiten der Text-
analyse und -erstellung zu nutzen, um die
Qualität der Anforderungsdokumente zu
steigern und den Entwicklungsprozess ef-
fizienter zu gestalten. Unter dem Begriff
Natural Language Processing for Require-
ments Engineering (NLP4RE) wird der
Einsatz von verschiedenen Modellen er-
forscht [12]. Trotz der multiplen Anwen-
dungsmöglichkeiten von NLP4RE ist die
Forschung in diesem Bereich noch nicht
weit fortgeschritten [13]. Zum jetzigen
Zeitpunkt gibt es Potenzialanalysen [14,
15], welche darauf hindeuten, dass die von
ChatGPT generierten Anforderungen viel-
versprechende Ansätze bieten. Grundle-
gende Qualitätsmerkmale wie Verständ-
lichkeit, Konsistenz und Korrektheit
wurden gezeigt. Jedoch deuten die Studien
auch auf Ambiguität in der Formulierung
der Anforderungen und potentielle Her-
ausforderungen in der praktischen Imple-
mentierung hin.

Elektroplanung
Elektropläne (E-Pläne) und Rohrleitungs-
und Instrumenten (R & I)-Fließschemata
stellen zentrale Dokumente in der Design-
phase des Software-Lebenszyklus dar,
denn in ihnen werden die verschiedenen
Engineering-Disziplinen IT, Elektrotechnik

zwei konkrete Umsetzungsbeispiele il-
lustriert und schließlich ein Ausblick auf
zukünftige Entwicklungen gegeben.

Generative KI im
Softwareentwicklungszyklus

Im vorliegenden Abschnitt wird der ge-
samte Software-Lebenszyklus aus der
Perspektive der Automatisierungstech-
nik betrachtet und auf Arbeitsschritte
hin analysiert, die durch den Einsatz von
LLM eine Steigerung hinsichtlich Effekti-
vität, Effizienz und Qualität erfahren
können. Die gewonnenen Erkenntnisse
sind in Bild 1 zusammengefasst und il-
lustrieren die potentiellen Anwendungs-
fälle von LLM in den verschiedenen Pha-
sen des Lebenszyklus. Aus der grafischen
Darstellung geht hervor, dass sich die An-
wendungspotenziale von LLM grundsätz-
lich in zwei Kategorien einteilen lassen:
den generativen und den unterstützen-
den Bereich (Support). Der generative Be-
reich umfasst sämtliche Applikationen
von LLM, die auf Basis vorhandenen Kon-
textes neue Inhalte generieren. Dagegen
bezieht sich der unterstützende Bereich
auf die Aufbereitung existierender Wis-
sensbestände in einer interaktiven, mul-
timodalen Form (z. B. durch Texte, Bilder
oder Audio-/Video-Inhalte), was die Zu-
gänglichkeit für Nutzer verbessert.

Im Folgenden werden einzelne An-
wendungsbereiche kurz exemplarisch
dargestellt, eine tiefergehende Erläute-
rung erfolgt für die beiden in Bild 1 her-
vorgehobenen Anwendungsfälle in den
nächsten beiden Kapiteln.

Anforderungsanalyse
Die Anforderungsanalyse ist ein zentra-
les Element im Prozess der Softwareent-
wicklung. Sie dient als essenzielles Ver-
bindungsglied zwischen den technischen
Spezifikationen der von Entwicklern kon-
zipierten Systeme und den Anwendungs-
zwecken dieser Systeme. In diesem Kon-
text wird, basierend auf Lastenheften
und ergänzt durch spezifisches Wissen
aus dem Bereich der Automatisierungs-
technik, ein Pflichtenheft erstellt. Dieses
Pflichtenheft enthält beispielsweise Uni-
fied Modeling Language (UML)-Diagram-
me mit funktionalen und nicht-funktio-
nalen Anforderungen. Es dient als Basis
für die Erzeugung diverser Softwarearte-

Bild 1. Anwendungspotenziale von LLM entlang des Software-Lebenszyklus von der Anforderungs-
definition bis zum Betrieb. Es wird zwischen dem generativen Bereich (oben) und dem unterstüt-
zenden Bereich (unten) unterschieden, je nachdem ob neue Inhalte generiert oder bestehende
Inhalte kontextspezifisch aufbereitet werden. Die beiden hervorgehobenen Anwendungsfälle
werden in den folgenden Kapiteln näher erläutert

KI IN PRODUKTION

198 Jahrg. 120 (2025) Special Issue

siert werden, wobei im Folgenden die Ge-
nerierung von ST-Code im Fokus steht.

Zum Zeitpunkt der Durchführung der
Studie im Jahr 2023 erzielte GPT 3.5 im
Vergleich zu anderen großen Sprachmo-
dellen (z. B. Bard, Llama 2, Bloom) die mit
Abstand besten Ergebnisse für die Erzeu-
gung von ST-Code. Unter dem Gesichts-
punkt der Vertraulichkeit der zu verwen-
denden Daten kam jedoch nur ein
Open-Source-Modell für die Nutzung im
Projekt in Frage. Llama 2 und CodeT5+
lieferten bereits sehr gute Ergebnisse für
die Generierung von Python-Code und kön-
nen aufgrund ihrer Größe und Verfügbar-
keit grundsätzlich lokal gehostet und nach-
trainiert werden. Für das weitere Vorgehen
wurde daher ein auf Python vortrainiertes
CodeT5+-Modell verwendet und mithilfe
von unternehmensspezifischen Trainings-
daten auf strukturierten Text nachtrainiert.
Nach aufwändiger Datenaufbereitung
durch manuelles Dokumentieren der ST-
Codeblöcke und mehreren Trainingsitera-
tionen konnte trotz relativ geringer Trai-
ningsdatenmenge (ca. 300 Beispiele) eine
akzeptable Modellgüte erzielt werden. Das
bedeutet, dass einfache Anfragen für typi-
sche Steuerungsfunktionen (z. B. Zeitfunk-
tionen oder Typenumwandlungen) in ver-
schiedenen Varianten valide generiert
werden konnten. Die Validität wurde von
Experten und durch Ausführung des gene-
rierten Codes in der Softwareumgebung

Programmiercode übertragen, da die zu-
grunde liegenden Sprachen Skript- oder
Programmiersprachen sind. Ergänzend
mit einer umfassenden Datensammlung
lassen sich LLM nachtrainieren, sodass
spezifische Designs für den Sektor der Au-
tomatisierungstechnik generiert werden
können. Eine besondere Herausforderung
besteht bei der Analyse von grafischen
Elementen. Zum Beispiel können Recht
ecke mit einem Symbol und Text sowohl
Fensterelemente als auch Bedienfelder
darstellen. Eine weitere Herausforderung
stellt die Verknüpfung von Variablen mit
grafischen Elementen dar. Bei diesem As-
pekt der HMI-Generierung besteht derzeit
ebenfalls noch Forschungsbedarf.

Anwendungsbeispiel 1:
Generierung von ST-Code

Ein Anwendungsbeispiel für LLM im
Software-Lebenszyklus ist die automati-
sierte Generierung von Steuerungs-Code.
Steuerungen werden in einer nach der
Norm IEC 61131-3 standardisierten Pro-
grammiersprache geschrieben, wobei ST
in Deutschland am weitesten verbreitet
ist. Ziel ist es, den Programmierer bei der
Implementierung der Steuerung nach die-
ser IEC-Norm zu unterstützen, indem
Code ergänzt, erzeugt oder korrigiert
wird. Grundsätzlich können alle diese An-
wendungsfälle durch Sprachmodelle reali-

dert. Darüber hinaus stellt die Sicher-
stellung der Einhaltung von Industrie-
standards und Normen eine weitere
Herausforderung dar. Angesichts des-
sen befindet sich die Forschung und
Entwicklung in diesem Bereich noch in
den Anfangsstadien und bedarf weiter-
führender Studien und experimenteller
Validierungen.

Human-Machine Interface (HMI)
HMIs dienen als Schnittstellen zwischen
Mensch und Maschine in der Automati-
sierungstechnik und ermöglichen es den
Werkern, Maschinen zu steuern, Prozess-
informationen zu überwachen und auf
Systemereignisse zu reagieren. Zur Er-
stellung wird zuerst eine Designphase
durchlaufen. Anschließend wird dieses
Design durch verschiedene Editoren um-
gesetzt. Zum Schluss werden Variablen
an die grafischen Elemente gebunden
und das fertige Produkt üblicherweise
durch eine Webtechnologie bereitgestellt.
Die Komplexität der HMI-Designprozesse
kann durch den Einsatz von LLM redu-
ziert werden. Gegenwärtig sind zwei Sze-
narien für HMI-Designprozesse vorherr-
schend. Die erste Methode umfasst das
Nachbauen eines bereits durch den Kun-
den gelieferten Prototypen. Die zweite,
häufiger auftretende Methode ist die
freie Erstellung von HMIs, die insbeson-
dere dann zum Tragen kommt, wenn auf
Kundenseite kein Designprototyp vor-
handen ist. Beide Ansätze beinhalten
zahlreiche Routineaufgaben, wie z. B. das
Erstellen von Buttons und das Hinzufü-
gen von Bildern oder die Verknüpfung
der Signale, welche an Variablen gebun-
den sind, mit den entsprechenden grafi-
schen Elementen. Für die grafische Um-
setzung und das Verbinden der Variablen
stehen verschiedene Editoren zur Verfü-
gung, die von XML-basierten Verfahren
bis hin zu HTML5 und OPC UA reichen.
HTML5 ist die aktuellste Version der Hy-
pertext Markup Language, mit der sich
digitale Dokumente strukturieren und
hierarchisieren lassen. OPC UA steht für
Open Platform Communications Unified
Architecture und ist ein industrieller
Kommunikationsstandard. Beide Metho-
den können durch Technologien der gene-
rativen KI automatisiert und beschleunigt
werden. Für die Umsetzung lassen sich
dabei die Konzepte der Generierung von

Bild 2. Ansicht des generierten ST Codes in der Steuerungsentwicklungsumgebung am Beispiel
des PLCnext Engineer von Phoenix Contact. Der Kommentar (**) entspricht der Anweisung an das
LLM, der darunter stehende Baustein dem produzierten ST Code. Die Kommunikation zwischen
Entwicklungsumgebung und LLM erfolgt über das Editieren bzw. Neuladen einer Text-Datei

199

KI IN PRODUKTION

Jahrg. 120 (2025) Special Issue

geprüft. Komplexere Anfragen, die größe-
re Programme mit mehreren verknüpften
Funktionen beinhalteten, lieferten teilwei-
se noch unzureichende Ergebnisse. Den-
noch konnte gezeigt werden, dass grund-
sätzlich kleine Modelle für spezifische
Aufgaben lokal trainiert und im Fall von
CodeT5+ sogar auf einem herkömmlichen
Laptop ausgeführt werden können. Dies
ermöglicht die Auslieferung spezifischer
trainierter Modelle beispielsweise an den
Nutzer von Steuerungsentwicklungsumge-
bungen, wobei die Daten jederzeit lokal blei-
ben und der Modellaufruf ohne signifikante
Latenz erfolgt. Eine mögliche Kopplung der
ST-Generierung durch das CodeT5+-Modell
mit einer Steuerungsentwicklungssoftware
ist in Bild 2 illustriert – das generierte Er-
gebnis wird (nach Neuladen der Datei) di-
rekt im Editor angezeigt.

Es ist zu erwarten, dass die Güte des
lokalen Modells durch eine Erweiterung
des Trainingsdatensatzes deutlich gestei-
gert werden kann. Für Ausgaben, die kei-
ne Spezifika bzgl. Nomenklatur oder Stil
beinhalten, kann auch eine Anreiche-
rung der Daten mit generischen Beispie-
len vorgenommen werden. Eine weitere
Verbesserung der Performance und Vali-
dität kann durch eine integrierte Feed-
backschleife mit dem Nutzer bzw. der
Software (bspw. Berücksichtigung von
Fehlermeldungen bei Ausführung des
Codes oder Registrierung von Änderun-
gen durch den Nutzer) realisiert werden.

Anwendungsbeispiel 2:
RAG-basiertes Assistenzsystem
für Engineering-Software

Ein weiteres Beispiel stellt die direkte
Unterstützung des Nutzers der Enginee-
ring-Software durch die Beantwortung
spezifischer Fragen (z. B. durch ein Chat-

eingefügt, so dass das Sprachmodell,
auch wenn die Texte nicht Teil der Trai-
ningsmenge waren, spezifische Antwor-
ten zu diesen Dokumenten generieren
kann. In diesem Fall kann ein großes
kommerzielles Sprachmodell verwendet
werden, da die verwendeten hinterlegten
Dokumente ohnehin öffentlich zugäng-
lich sind. Für die Umsetzung des RAG-
Systems wurden verschiedene Methoden
für die Vorverarbeitung der Daten, das
Retrieval und die Generierung getestet
und gegenübergestellt. Beispielsweise
wurde bei der Vorverarbeitung die Auf-
teilung der Dokumente in Abschnitte
(Chunks) entweder nach einer fixen Grö-
ße, satzweise oder entsprechend dem se-
mantischen Kontext vorgenommen. Beim
Retrieval wurden u. a. die Anzahl der re-
levantesten Chunks und das verwendete
Ähnlichkeitsmaß und bei der Generie-
rung die Reihenfolge der ermittelten
Chunks variiert. Zur Evaluation diente
ein Satz von Fragen, der durch Experten
beantwortet und deren generierte Ant-
worten auf ihre Richtigkeit hin geprüft
wurden. Ein Großteil der Fragen konnte,

fenster in der Software) dar. Der Aufbau
eines derartigen RAG-Systems ist in
Bild 3 schematisch gezeigt. Das System
nutzt ein Sprachmodell (z. B. GPT-4) zur
Verarbeitung von Anfragen, wobei die
Anfragen mithilfe einer Datenbank durch
spezifischen Kontext ergänzt werden. Im
vorliegenden Fall werden als spezifischer
Kontext Hilfeseiten und Online-Tutorials
zu einer bestimmten Softwareentwick-
lungsumgebung in einer Vektordaten-
bank hinterlegt. Bei jeder Abfrage wer-
den dann ähnliche Textstellen aus den
hinterlegten Dokumenten in den Prompt

Effizienter mit Generativer KI

Zunehmender Fachkräftemangel und der Bedarf an profitablen, skalierbaren Lö-
sungen lässt generative KI im Bereich der Automatisierungstechnik in den Fokus
rücken. Wir präsentieren Ansätze, um SPS-Programmierer:innen entlang des ge-
samten Softwareentwicklungszyklus durch den Einsatz von großen Sprachmodel-
len zu unterstützen. Durch automatisierte SPS- Code-Generierung und kontextsen-
sitive Beantwortung spezifischer Nutzeranfragen bei der Bedienung von Engineering
Software werden Effizienzgewinne und Qualitätssteigerungen ermöglicht.

Bild 3. Schematischer Aufbau eines RAG-Systems zur Beantwortung spezifischer Nutzeranfragen
im Engineering Kontext. Das Retrieval-Modul enthält eine Vektordatenbank mit Texten aus Foren
und Hilfe-Seiten, welche bei einer Anfrage passend ausgewählt und dem Generatormodul als
Kontext mitgegeben werden

KI IN PRODUKTION

200 Jahrg. 120 (2025) Special Issue

Chat Models. 2023
DOI:10.48550/arXiv.2307.09288

4.	 Touvron, H.; Lavril, T.; Izacard, G. et al.:
LLaMA: Open and Efficient Foundation
Language Models. 2023
DOI:10.48550/arXiv.2302.13971

5.	 Anil, R. et al.: Gemini: A Family of Highly
Capable Multimodal Models. 2023
DOI:10.48550/arXiv.2312.11805

6.	 Zhao, W. X.; Zhou, K.; Li, J. et al.: A Survey
of Large Language Models. 2023
DOI:10.48550/arXiv.2303.18223

7.	 Dukino, C.; Friedrich, M.; Ganz, W. et al.:
Künstliche Intelligenz in der Unternehmens-
praxis. Fraunhofer-Institut für Arbeitswirt-
schaft und Organisation IAO, Fraunhofer-
Verlag, Stuttgart 2019
DOI:10.24406/publica-fhg-300040

8.	 Weyrich, M.: Industrielle Automatisierungs-
und Informationstechnik. Springer, Berlin
und Heidelberg 2023
DOI:10.1007/978-3-662-56355-7

9.	 Holm, T.: Aufwandsbewertung im Enginee-
ring modularer Prozessanlagen. Dissertation.
Helmut-Schmidt-Universität, Hamburg 2016
DOI:10.51202/9783186465207

10.	Tufano, M.; Agarwal, A.; Jang, J. et al.: Auto-
Dev: Automated AI-Driven Development.
2024
DOI:10.48550/arXiv.2403.08299

11.	Fan, A.; Gokkaya, B.; Harman, M. et al.:
Large Language Models for Software Engi-
neering: Survey and Open Problems. In:
International Conference on Software Engi-
neering: Future of Software Engineering.
IEEE/ACM 2023, S. 31–53
DOI:10.1109/ICSE-FoSE59343.2023.00008

12.	Abualhaija, S.; Arora, C.; Dell’Anna, D. et al.:
Preface: 7th Workshop on Natural Language
Processing for Requirements Engineering.
In: CEUR Workshop Proceedings 3672
(2024)

13.	Dalpiaz, F.; Ferrari, A.; Franch, X. et al.:
Natural Language Processing for Require-
ments Engineering: The Best Is Yet to Come.
IEEE Software 35 (2018) 5, S. 115–119
DOI:10.1109/MS.2018.3571242

14.	Ronanki, K.; Berger, C.; Horkoff, J.: Investi-
gating ChatGPT’s Potential to Assist in
Requirements Elicitation Processes. In:
49th Euromicro Conference on Software
Engineering and Advanced Applications
(SEAA). IEEE 2023, S. 354–361
DOI:10.48550/arXiv.2307.07381

15.	Ruan, K.; Chen, X.; Jin, Z.: Requirements
Modeling Aided by ChatGPT: An Experience
in Embedded Systems. In: 31st International
Requirements Engineering Conference
Workshops (REW). IEEE 2023, S. 170–177
DOI:10.1109/REW57809.2023.00035

16.	Drath, R.; Luder, A.; Peschke, J. et al.:
AutomationML – the Glue for Seamless
Automation Engineering. In: International
Conference on Emerging Technologies and

grad derzeit verfügbarer Lösungen sehr
unterschiedlich und hängt von der Verfüg-
barkeit großer kuratierter Datenmengen
und deren Verwertbarkeit in großen kom-
merziellen Sprachmodellen ab. Insbeson-
dere stellt die Berücksichtigung von Da-
tenschutzaspekten bei der Verwendung
sensibler Daten mit großen kommerziel-
len Sprachmodellen noch eine Hürde dar.
Es ist daher zu erwarten, dass LLM-basier-
te Assistenzsysteme für die Softwareent-
wicklung in der Automatisierungstechnik
zukünftig auf hybriden Architekturen auf-
setzen, welche im Hintergrund unter-
schiedliche Sprachmodelle verwenden, je
nach Art und Klassifizierung der Frage-
stellung. Weiterhin besteht derzeit noch
großer Bedarf an der Feinjustierung exis-
tierender Verfahren, z. B. Embedding-Mo-
dellen in RAG-Systemen und multimoda-
len Modellen für Bildverarbeitung speziell
für automatisierungstechnische Bedarfe.

Literatur
1.	 Achiam, J.; Adler, S.; Agarwal, S. et al.:

GPT-4 Technical Report. OpenAI, 2023
DOI:10.48550/arXiv.2303.08774

2.	 Devlin, J.; Chang, M.-W.; Lee, K. et al.: BERT:
Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In:
Proceedings of the 2019 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies (2019), S. 4171–4186
DOI:10.48550/arXiv.1810.04805

3.	 Touvron, H.; Martin, L.; Stone, K. et al.:
Llama 2: Open Foundation and Fine-Tuned

unabhängig von ihrem Schwierigkeits-
grad (von befragten Experten eingestuft),
zufriedenstellend beantwortet werden.
Ein geringer Anteil der Fragen (< 10 %)
konnte durch das System nicht zufrie-
denstellend beantwortet werden, was je-
doch auf eine zweideutige Fragestellung
zurückzuführen ist. Eine beispielhafte
Frage und die zugehörige Antwort in der
entwickelten GUI sind in Bild 4 darge-
stellt. Um weiterführende Unterstützung
innerhalb der Softwareentwicklungsum-
gebung zu realisieren, können der Pro-
jektkontext oder die Nutzerhistorie zur
Beantwortung der Fragestellung hinzu-
gezogen werden. Eine solche Lösung
müsste dann zur Wahrung der Vertrau-
lichkeit mittels lokaler Modelle oder in-
nerhalb einer abgesicherten Umgebung
implementiert werden.

Zusammenfassung und Ausblick

In diesem Beitrag wurden Potenziale für
den Einsatz generativer KI entlang des ge-
samten Softwareentwicklungszyklus in
der Automatisierungstechnik dargestellt.
Es zeichnet sich ab, dass die Möglichkei-
ten vielfältig sind, durch generative KI
derzeit mühsame und langwierige Tätig-
keiten zu unterstützen. Das Spektrum
reicht von der automatisierten Erstellung
von Pflichtenheften über die Generierung
von E-Plänen und HMI-Layouts bis hin zur
automatisierten SPS-Code-Erstellung, Test
und Dokumentation. Dabei ist der Reife-

Bild 4. GUI des RAG-Systems mit Beispielfrage. Eine mögliche Anfrage, für deren Beantwortung
spezifischer Kontext aus der Vektordatenbank des Retrieval-Moduls herangezogen wird

201

KI IN PRODUKTION

Jahrg. 120 (2025) Special Issue

Factory Automation. IEEE 2008, S. 616–623
DOI:10.1109/ETFA.2008.4638461

17.	Vogel, G.; Schulze Balhorn, L.; Schweidtmann,
A. M.: Learning from Flowsheets: A Genera-
tive Transformer Model for Autocompletion
of Flowsheets. Computers & Chemical
Engineering 171 (2023) 1
DOI:10.1016/j.compchemeng.2023.108162

18.	Mattmüller, J.; Benndorf, A. G.; Preintner, P.:
Automatisierte Generierung von digitalen
Anlagenschemata. 9th BauSim Conference
(2022), IBPSA-Germany and Austria, 2022
DOI:10.26868/29761662.2022.57

Die Autor:innen dieses Beitrags
Dennis Reinhardt erlangte im Jahr 2024 den
akademischen Grad Bachelor of Science. Er
studierte zwischen 2021 und 2024 Data Science
an der TH OWL und war zeitgleich dualer Student
am Fraunhofer IOSB-INA. Seit 2024 ist er dualer
Masterstudent an der Universität Bielefeld im
Bereich Intelligente Interaktive Systeme.

Jörg Jeschin studierte Elektrotechnik an der
Technischen Universität Braunschweig und
begann 1996 seine Laufbahn bei Phoenix Contact
als Softwareentwickler. Ab 2003 übernahm er
Führungspositionen im Bereich Research &
Development in der Automatisierungssparte
des Unternehmens. Seit 2011 führt er als
Director die Produktlinie Software and Safety
in der Business Area Industriemanagement
und Automation (IMA).

development of a Retrieval Augmented Genera-
tion (RAG) system to assist the user with the
engineering software is described here. These
examples highlight the great potential of
employing Large Language Models (LLM) in
the area of automation engineering which are
already within reach.

Schlüsselwörter
Generative KI, Steuerungsentwicklung, SPS,
Sprachmodelle, Softwareentwicklungszyklus

Keywords
Gen AI, Software Development, PLC, Large
Language Models, Engineering Automation,
Retrieval Augmented Generation

Bibliography
DOI:10.1515/zwf-2024-0121
ZWF 120 (2025) Special Issue; page 196 – 201

 Open Access. © 2025 bei den Autoren,
publiziert von De Gruyter.
Dieses Werk ist lizensiert unter der Creative
Commons Namensnennung 4.0 International
Lizenz.
ISSN 0947-0085 · e-ISSN 2511-0896

Prof. Dr. Jürgen Jasperneite studierte Elektro-
technik und Informationstechnik und promo-
vierte 2002 an der Otto-von-Guericke-Universität
Magdeburg. Von 1988 bis 1990 war er als
Entwicklungsingenieur bei der Robert Bosch
GmbH beschäftigt. Von 1990 bis 2005 war er
in unterschiedlichen Funktionen im Entwick-
lungsbereich der Phoenix Contact GmbH tätig,
zuletzt als Entwicklungsleiter des Geschäfts
bereiches Automation Systems. Seit 2005 ist
Jürgen Jasperneite Professor für Computernetz-
werke der TH OWL in Lemgo. 2009 gründete er
das Fraunhofer IOSB-INA, dessen Institutslei-
tung er seitdem innehat.

Dr. Gesa Benndorf studierte Physik an der
Friedrich-Schiller-Universität Jena, promovierte
2013 an der TU Dresden und dem Max-Planck-
Institut für Physik komplexer Systeme und war
anschließend 10 Jahre am Fraunhofer ISE in
Freiburg tätig bevor sie 2023 die Gruppenlei-
tung für Maschinelles Lernen am Fraunhofer
IOSB-INA in Lemgo übernahm.

Abstract
ChatPLC – Potential of Generative AI for PLC
Engineering. In this article we discuss ap-
proaches to support automation engineering
through generative artificial intelligence (AI)
across the entire software development cycle.
In particular, the implementation of a local
language model for structured text generation
according to the IEC 61131-3 norm and the

