3 zwr | KI IN PRODUKTION

ChatPLC -

Potenziale der Generativen Kl
fFUr die Steuerungsentwicklung

In diesem Beitrag werden Ansdtze untersucht, um ProgrammiererIn-
nen von speicherprogrammierbaren Steuerungen (SPS) entlang des
gesamten Softwareentwicklungszyklus durch den Einsatz von genera-
tiver kiinstlicher Intelligenz (KI) zu unterstiitzen. Konkret wird dabei
auf die Umsetzung eines lokalen Sprachmodells fiir die Generierung
von strukturiertem Text (ST) nach IEC 61131-3 und eines Retrieval
Augmented Generation-(RAG)-Systeme als Assistent fiir die Enginee-
ring-Software von SPS eingegangen. Diese Beispiele zeigen Potenziale
auf, die durch den Einsatz von Sprachmodellen im Umfeld der SPS-Pro-
grammierung bereits jetzt greifbar sind.

Dennis Reinhardt,
Jorg Jeschin,

Jiirgen Jasperneite und
Gesa Benndorf*

I Einleitung

Die rasante Entwicklung der generativen
KI und die damit einhergehenden Verdn-
derungen in Wirtschaft und Gesellschaft
durch den Einsatz von groBen Sprachmo-
dellen, bzw. Large Language Models (LLM)
haben weitreichende Auswirkungen. Ins-
besondere moderne LLM wie ChatGPT [1],
BERT [2], LLaMA [3, 4] und Gemini [5]
sind zu zentralen Akteuren in der digita-
len Transformation geworden. Mit ihren
Fahigkeiten, natiirliche Sprache zu verar-
beiten, bieten sie das Potenzial, Geschafts-
prozesse durch die Analyse umfangreicher

Datenmengen zu optimieren. AuBerdem
konnen sie die Schaffung personalisierter
Kundenerlebnisse und die Automatisie-
rung von Routineaufgaben grundlegend
verdandern [6]. Diese Potenziale sind ins-
besondere angesichts aktueller globaler
Herausforderungen wie dem Fachkréfte-
mangel und der Deglobalisierung von Be-
deutung, da sie die Chance bieten, die Wett-
bewerbsfahigkeit und technologische
Souveranitiat Deutschlands zu stiarken [7].
Ein zentrales Standbein fiir die technologi-
sche Souverdnitat Deutschlands im Zuge
der Industrie 4.0 bildet die Automatisie-
rungstechnik. Sie wird als Integrationswis-

* Korrespondenzautorin

Dr. Gesa Benndorf; Fraunhofer IOSB-INA; Campusallee 1, 32657 Lemgo;
Tel.: +49 (0) 5261 942-9048, E-Mail: gesa.benndorf@iosb-ina.fraunhofer.de

Weitere Autoren
Dennis Reinhardt, B. Sc.; Universitit Bielefeld

Jorg Jeschin; Phoenix Contact GmbH & Co KG, Blomberg
Prof. Dr-Ing. Jiirgen Jasperneite; Fraunhofer IOSB-INA

Hinweis

Bei diesem Beitrag handelt es sich um einen von den Mitgliedern des ZWF-Advisory Board fiir
dieses Sonderheft wissenschaftlich begutachteten Fachaufsatz (Peer-Review).

senschaft verstanden und fungiert als Brii-
cke zwischen den Bereichen Maschinenbau,
Elektrotechnik und Informatik [8]. Eine
Herausforderung in der Automatisie-
rungstechnik sind manuelle Engineering-
Tatigkeiten, die im Bereich der Software-
entwicklung mehr als 10 Prozent der
Gesamtkosten fiir die Planung und Reali-
sierung von Produktionssystemen ausma-
chen [9]. Um die Effizienz des Entwick-
lungsprozesses zu steigern, konnen LLM
eine entscheidende Rolle spielen. Die
Grundidee, den Softwareprozess durch
LLM zu unterstiitzen, wurde in aktuellen
Arbeiten fiir Teilgebiete der IT bereits un-
tersucht [10, 11], jedoch noch nicht um-
fassend fiir die Automatisierungstechnik
betrachtet. Es ist daher entscheidend, die
tatséchlichen Potenziale und die prakti-
schen Anwendungsmoglichkeiten dieser
Technologien im Kontext der Automatisie-
rungstechnik zu ermitteln.

In diesem Beitrag soll daher das Poten-
zial von LLM innerhalb des Felds der Au-
tomatisierungstechnik mit einem Fokus
auf die SPS-Programmierung betrachtet
werden. Im ersten Schritt erfolgt dazu
eine Analyse des gesamten Softwareent-
wicklungszyklus. AnschlieBend werden

3 Open Access. © 2025 bei den Autoren, publiziert von De Gruyter. [(c) X2 Dieses Werk ist lizensiert unter der Creative Commons

Namensnennung 4.0 International Lizenz.

Jahrg. 120 (2025) Special Issue

DE GRUYTER

zwei konkrete Umsetzungsbeispiele il-
lustriert und schlieBlich ein Ausblick auf
zukiinftige Entwicklungen gegeben.

Generative Kl im
Softwareentwicklungszyklus

Im vorliegenden Abschnitt wird der ge-
samte Software-Lebenszyklus aus der
Perspektive der Automatisierungstech-
nik betrachtet und auf Arbeitsschritte
hin analysiert, die durch den Einsatz von
LLM eine Steigerung hinsichtlich Effekti-
vitat, Effizienz und Qualitit erfahren
konnen. Die gewonnenen Erkenntnisse
sind in Bild 1 zusammengefasst und il-
lustrieren die potentiellen Anwendungs-
fille von LLM in den verschiedenen Pha-
sen des Lebenszyklus. Aus der grafischen
Darstellung geht hervor, dass sich die An-
wendungspotenziale von LLM grundsatz-
lich in zwei Kategorien einteilen lassen:
den generativen und den unterstiitzen-
den Bereich (Support). Der generative Be-
reich umfasst sdmtliche Applikationen
von LLM, die auf Basis vorhandenen Kon-
textes neue Inhalte generieren. Dagegen
bezieht sich der unterstiitzende Bereich
auf die Aufbereitung existierender Wis-
sensbestdnde in einer interaktiven, mul-
timodalen Form (z.B. durch Texte, Bilder
oder Audio-/Video-Inhalte), was die Zu-
ganglichkeit fiir Nutzer verbessert.

Im Folgenden werden einzelne An-
wendungsbereiche kurz exemplarisch
dargestellt, eine tiefergehende Erlaute-
rung erfolgt fiir die beiden in Bild 1 her-
vorgehobenen Anwendungsfille in den
néachsten beiden Kapiteln.

Anforderungsanalyse

Die Anforderungsanalyse ist ein zentra-
les Element im Prozess der Softwareent-
wicklung. Sie dient als essenzielles Ver-
bindungsglied zwischen den technischen
Spezifikationen der von Entwicklern kon-
zipierten Systeme und den Anwendungs-
zwecken dieser Systeme. In diesem Kon-
text wird, basierend auf Lastenheften
und ergdnzt durch spezifisches Wissen
aus dem Bereich der Automatisierungs-
technik, ein Pflichtenheft erstellt. Dieses
Pflichtenheft enthélt beispielsweise Uni-
fied Modeling Language (UML)-Diagram-
me mit funktionalen und nicht-funktio-
nalen Anforderungen. Es dient als Basis
fiir die Erzeugung diverser Softwarearte-

DE GRUYTER

KI IN PRODUKTION

Anforderungen Design Entwicklung Inbetriebnahme

Pflichtenheft

E-Pléne (.aml)
HMI (Statisch)
Programmiercode (ST)
Entwicklerdokumentation

Kundendokumentation

Testen

Refaktorierung & Reparatur

e e e

Support (Forum, Hardware, Online-Hilfen)

Support (Projektebene)

HMI (dynamisch, logs, security)

Bild 1. Anwendungspotenziale von LLM entlang des Software-Lebenszyklus von der Anforderungs-
definition bis zum Betrieb. Es wird zwischen dem generativen Bereich (oben) und dem unterstiit
zenden Bereich (unten) unterschieden, je nachdem ob neue Inhalte generiert oder bestehende
Inhalte kontextspezifisch aufbereitet werden. Die beiden hervorgehobenen Anwendungsfiille

werden in den folgenden Kapiteln néher erldutert

fakte wie Programmcode und Testfélle. Da
die meisten Pflichtenhefte in natiirlicher
Sprache geschrieben sind und Grafiken
enthalten, besteht das Ziel der Integration
von LLM darin, die Fahigkeiten der Text-
analyse und -erstellung zu nutzen, um die
Qualitdt der Anforderungsdokumente zu
steigern und den Entwicklungsprozess ef-
fizienter zu gestalten. Unter dem Begriff
Natural Language Processing for Require-
ments Engineering (NLP4RE) wird der
Einsatz von verschiedenen Modellen er-
forscht [12]. Trotz der multiplen Anwen-
dungsmdoglichkeiten von NLP4RE ist die
Forschung in diesem Bereich noch nicht
weit fortgeschritten [13]. Zum jetzigen
Zeitpunkt gibt es Potenzialanalysen [14,
15], welche darauf hindeuten, dass die von
ChatGPT generierten Anforderungen viel-
versprechende Ansitze bieten. Grundle-
gende Qualitatsmerkmale wie Verstand-
lichkeit, Konsistenz und Korrektheit
wurden gezeigt. Jedoch deuten die Studien
auch auf Ambiguitat in der Formulierung
der Anforderungen und potentielle Her-
ausforderungen in der praktischen Imple-
mentierung hin.

Elektroplanung

Elektroplane (E-Plane) und Rohrleitungs-
und Instrumenten (R&I)-FlieBschemata
stellen zentrale Dokumente in der Design-
phase des Software-Lebenszyklus dar,
denn in ihnen werden die verschiedenen
Engineering-Disziplinen IT, Elektrotechnik

Jahrg. 120 (2025) Special Issue

und Maschinenbau zusammengefiihrt und
in Einklang gebracht. Ein E-Plan umfasst
die elektrische Verkabelung sowie das
Kommunikationssystem einschlieBlich der
zugehorigen Hardware-Komponenten. Zu-
dem werden entsprechende Signallisten
fiir die Steuerungstechnik erzeugt. Um eine
Kompatibilitat mit verschiedenen Enginee-
ring-Tools im Fertigungsbereich zu ermog-
lichen, wurde der Standard AutomationML
entwickelt, welcher auf einem Extensible
Markup Language (XML)-Datenformat be-
ruht und Informationen gemiB dem objekt-
orientierten Design anordnet [16].

In der Literatur existieren verschiede-
ne Ansatze, Graphen und Schemata auto-
matisiert zu erzeugen [17, 18]. Die automa-
tische Erstellung von E-Planen in der
Automatisierungstechnik ist durch diese
Vorarbeiten und die aktuellen Entwicklun-
gen im Feld der multimodalen LLM greif-
barer geworden, jedoch aktuell noch relativ
weit von der praktischen Anwendung ent-
fernt. Dies liegt nicht zuletzt daran, dass
fiir die Implementierung dieses Ansatzes
zundchst die Erstellung umfassender Da-
tensatze erforderlich ist, die E-Pline, tech-
nische Spezifikationen, Hardwaredoku-
mentationen und Normen beinhalten.
Weiterhin ist zu beachten, dass die automa-
tische Erstellung von E-Plinen durch
LLM eine sorgféltige Abwdgung von
Faktoren wie Genauigkeit, Generalisier-
barkeit und Anpassungsfdhigkeit an
spezifische Projektanforderungen erfor-

ZIWF

197

ZIWF

198

Kl IN PRODUKTION

dert. Dartiber hinaus stellt die Sicher-
stellung der Einhaltung von Industrie-
standards und Normen eine weitere
Herausforderung dar. Angesichts des-
sen befindet sich die Forschung und
Entwicklung in diesem Bereich noch in
den Anfangsstadien und bedarf weiter-
fihrender Studien und experimenteller
Validierungen.

Human-Machine Interface (HMI)

HMlIs dienen als Schnittstellen zwischen
Mensch und Maschine in der Automati-
sierungstechnik und ermoglichen es den
Werkern, Maschinen zu steuern, Prozess-
informationen zu iiberwachen und auf
Systemereignisse zu reagieren. Zur Er-
stellung wird zuerst eine Designphase
durchlaufen. AnschlieBend wird dieses
Design durch verschiedene Editoren um-
gesetzt. Zum Schluss werden Variablen
an die grafischen Elemente gebunden
und das fertige Produkt blicherweise
durch eine Webtechnologie bereitgestellt.
Die Komplexitat der HMI-Designprozesse
kann durch den Einsatz von LLM redu-
ziert werden. Gegenwartig sind zwei Sze-
narien fiir HMI-Designprozesse vorherr-
schend. Die erste Methode umfasst das
Nachbauen eines bereits durch den Kun-
den gelieferten Prototypen. Die zweite,
héufiger auftretende Methode ist die
freie Erstellung von HMIs, die insbeson-
dere dann zum Tragen kommt, wenn auf
Kundenseite kein Designprototyp vor-
handen ist. Beide Ansdtze beinhalten
zahlreiche Routineaufgaben, wie z.B. das
Erstellen von Buttons und das Hinzufi-
gen von Bildern oder die Verkniipfung
der Signale, welche an Variablen gebun-
den sind, mit den entsprechenden grafi-
schen Elementen. Fiir die grafische Um-
setzung und das Verbinden der Variablen
stehen verschiedene Editoren zur Verfi-
gung, die von XML-basierten Verfahren
bis hin zu HTML5 und OPC UA reichen.
HTMLS5 ist die aktuellste Version der Hy-
pertext Markup Language, mit der sich
digitale Dokumente strukturieren und
hierarchisieren lassen. OPC UA steht fiir
Open Platform Communications Unified
Architecture und ist ein industrieller
Kommunikationsstandard. Beide Metho-
den konnen durch Technologien der gene-
rativen KI automatisiert und beschleunigt
werden. Fiir die Umsetzung lassen sich
dabei die Konzepte der Generierung von

Programmiercode ibertragen, da die zu-
grunde liegenden Sprachen Skript- oder
Programmiersprachen sind. Ergdnzend
mit einer umfassenden Datensammlung
lassen sich LLM nachtrainieren, sodass
spezifische Designs fiir den Sektor der Au-
tomatisierungstechnik generiert werden
konnen. Eine besondere Herausforderung
besteht bei der Analyse von grafischen
Elementen. Zum Beispiel konnen Recht-
ecke mit einem Symbol und Text sowohl
Fensterelemente als auch Bedienfelder
darstellen. Eine weitere Herausforderung
stellt die Verkniipfung von Variablen mit
grafischen Elementen dar. Bei diesem As-
pekt der HMI-Generierung besteht derzeit
ebenfalls noch Forschungsbedarf.

Anwendungsbeispiel 1:
Generierung von ST-Code

Ein Anwendungsbeispiel fiir LLM im
Software-Lebenszyklus ist die automati-
sierte Generierung von Steuerungs-Code.
Steuerungen werden in einer nach der
Norm IEC 61131-3 standardisierten Pro-
grammiersprache geschrieben, wobei ST
in Deutschland am weitesten verbreitet
ist. Ziel ist es, den Programmierer bei der
Implementierung der Steuerung nach die-
ser IEC-Norm zu unterstiitzen, indem
Code erginzt, erzeugt oder Kkorrigiert
wird. Grundsatzlich konnen alle diese An-
wendungsfélle durch Sprachmodelle reali-

es .

siert werden, wobei im Folgenden die Ge-
nerierung von ST-Code im Fokus steht.
Zum Zeitpunkt der Durchfiihrung der
Studie im Jahr 2023 erzielte GPT 3.5 im
Vergleich zu anderen groBen Sprachmo-
dellen (z.B. Bard, Llama 2, Bloom) die mit
Abstand besten Ergebnisse fiir die Erzeu-
gung von ST-Code. Unter dem Gesichts-
punkt der Vertraulichkeit der zu verwen-
denden Daten kam jedoch nur ein
Open-Source-Modell fiir die Nutzung im
Projekt in Frage. Llama 2 und CodeT5+
lieferten bereits sehr gute Ergebnisse fiir
die Generierung von Python-Code und kon-
nen aufgrund ihrer Grofie und Verfiigbar-
keit grundsatzlich lokal gehostet und nach-
trainiert werden. Fiir das weitere Vorgehen
wurde daher ein auf Python vortrainiertes
CodeT5+-Modell verwendet und mithilfe
von unternehmensspezifischen Trainings-
daten auf strukturierten Text nachtrainiert.
Nach aufwéndiger Datenaufbereitung
durch manuelles Dokumentieren der ST-
Codeblocke und mehreren Trainingsitera-
tionen konnte trotz relativ geringer Trai-
ningsdatenmenge (ca. 300 Beispiele) eine
akzeptable Modellgiite erzielt werden. Das
bedeutet, dass einfache Anfragen fiir typi-
sche Steuerungsfunktionen (z.B. Zeitfunk-
tionen oder Typenumwandlungen) in ver-
schiedenen Varianten valide generiert
werden konnten. Die Validitat wurde von
Experten und durch Ausfiihrung des gene-
rierten Codes in der Softwareumgebung

@Einsfei\ungen Valiablen DCode [1 @Dﬂdtﬂ 21 ﬁ B g IZ\E‘;"‘ + v 0O
Code ¥ - 0O X
& B = fel
1 // AI GENERATED ~
2
3 (* check if an error exists and save the status ¥)
s lmp
L] errorExists: BOOL := FALSE; // set error exists to FALSE
&8 status; STRING(50) := 'warning'? // set status to warning
7 END VAR
9/ [HIF errorExi=ts THEN
10 f/ code to execute if error is detected
11 f/ Example: Trigger an error
12 TRIGGER ERROR():
13| | ELSE
14 // code to execute if no error is detected
15 [/ Example: Normal operation
16 NORMAL OPERATION () :
17| “END IF

Bild 2. Ansicht des generierten ST Codes in der Steuerungsentwicklungsumgebung am Beispiel
des PLCnext Engineer von Phoenix Contact. Der Kommentar (**) entspricht der Anweisung an das
LLM, der darunter stehende Baustein dem produzierten ST Code. Die Kommunikation zwischen
Entwicklungsumgebung und LLM erfolgt Giber das Editieren bzw. Neuladen einer Text-Datei

Jahrg. 120 (2025) Special Issue

DE GRUYTER

gepriift. Komplexere Anfragen, die grofBe-
re Programme mit mehreren verkniipften
Funktionen beinhalteten, lieferten teilwei-
se noch unzureichende Ergebnisse. Den-
noch konnte gezeigt werden, dass grund-
satzlich kleine Modelle fiir spezifische
Aufgaben lokal trainiert und im Fall von
CodeT5+ sogar auf einem herkommlichen
Laptop ausgefiihrt werden konnen. Dies
ermoglicht die Auslieferung spezifischer
trainierter Modelle beispielsweise an den
Nutzer von Steuerungsentwicklungsumge-
bungen, wobei die Daten jederzeit lokal blei-
ben und der Modellaufruf ohne signifikante
Latenz erfolgt. Eine mogliche Kopplung der
ST-Generierung durch das CodeT5+-Modell
mit einer Steuerungsentwicklungssoftware
ist in Bild 2 illustriert - das generierte Er-
gebnis wird (nach Neuladen der Datei) di-
rekt im Editor angezeigt.

Es ist zu erwarten, dass die Giite des
lokalen Modells durch eine Erweiterung
des Trainingsdatensatzes deutlich gestei-
gert werden kann. Fiir Ausgaben, die kei-
ne Spezifika bzgl. Nomenklatur oder Stil
beinhalten, kann auch eine Anreiche-
rung der Daten mit generischen Beispie-
len vorgenommen werden. Eine weitere
Verbesserung der Performance und Vali-
ditdt kann durch eine integrierte Feed-
backschleife mit dem Nutzer bzw. der
Software (bspw. Beriicksichtigung von
Fehlermeldungen bei Ausfiihrung des
Codes oder Registrierung von Anderun-
gen durch den Nutzer) realisiert werden.

Anwendungsbeispiel 2:
RAG-basiertes Assistenzsystem
fir Engineering-Software

Ein weiteres Beispiel stellt die direkte
Unterstiitzung des Nutzers der Enginee-
ring-Software durch die Beantwortung
spezifischer Fragen (z.B. durch ein Chat-

HTM

Rohdaten Vorverarbeitung

Generatormodul

KI IN PRODUKTION

Bild 3. Schematischer Aufbau eines RAG-Systems zur Beantwortung spezifischer Nutzeranfragen
im Engineering Kontext. Das Retrieval-Modul enthdlt eine Vektordatenbank mit Texten aus Foren
und Hilfe-Seiten, welche bei einer Anfrage passend ausgewdihlt und dem Generatormodul als

Kontext mitgegeben werden

fenster in der Software) dar. Der Aufbau
eines derartigen RAG-Systems ist in
Bild 3 schematisch gezeigt. Das System
nutzt ein Sprachmodell (z.B. GPT-4) zur
Verarbeitung von Anfragen, wobei die
Anfragen mithilfe einer Datenbank durch
spezifischen Kontext erganzt werden. Im
vorliegenden Fall werden als spezifischer
Kontext Hilfeseiten und Online-Tutorials
zu einer bestimmten Softwareentwick-
lungsumgebung in einer Vektordaten-
bank hinterlegt. Bei jeder Abfrage wer-
den dann dhnliche Textstellen aus den
hinterlegten Dokumenten in den Prompt

Effizienter mit Generativer Kl

Zunehmender Fachkréaftemangel und der Bedarf an profitablen, skalierbaren Lo-
sungen lasst generative KI im Bereich der Automatisierungstechnik in den Fokus
riicken. Wir prasentieren Ansatze, um SPS-Programmierer:innen entlang des ge-
samten Softwareentwicklungszyklus durch den Einsatz von groBen Sprachmodel-
len zu unterstiitzen. Durch automatisierte SPS- Code-Generierung und kontextsen-
sitive Beantwortung spezifischer Nutzeranfragen bei der Bedienung von Engineering
Software werden Effizienzgewinne und Qualitdtssteigerungen ermoglicht.

DE GRUYTER

Jahrg. 120 (2025) Special Issue

eingefligt, so dass das Sprachmodell,
auch wenn die Texte nicht Teil der Trai-
ningsmenge waren, spezifische Antwor-
ten zu diesen Dokumenten generieren
kann. In diesem Fall kann ein groBes
kommerzielles Sprachmodell verwendet
werden, da die verwendeten hinterlegten
Dokumente ohnehin offentlich zugdng-
lich sind. Fir die Umsetzung des RAG-
Systems wurden verschiedene Methoden
fiir die Vorverarbeitung der Daten, das
Retrieval und die Generierung getestet
und gegeniibergestellt. Beispielsweise
wurde bei der Vorverarbeitung die Auf-
teilung der Dokumente in Abschnitte
(Chunks) entweder nach einer fixen Gro-
Be, satzweise oder entsprechend dem se-
mantischen Kontext vorgenommen. Beim
Retrieval wurden u.a. die Anzahl der re-
levantesten Chunks und das verwendete
AhnlichkeitsmaB und bei der Generie-
rung die Reihenfolge der ermittelten
Chunks variiert. Zur Evaluation diente
ein Satz von Fragen, der durch Experten
beantwortet und deren generierte Ant-
worten auf ihre Richtigkeit hin gepriift
wurden. Ein GroBteil der Fragen konnte,

ZIWF

199

ZIWF

200

Kl IN PRODUKTION

Wie kann ich ein Projekt auf die Steuerung laden?

v/ Generating

Um ein Projekt auf die Steuerung zu laden, gehen Sie wie folgt vor:

1. Doppelklicken Sie auf den Steuerungsknoten im PLANT-Bereich.

2. Der Steuerungseditor 6ffnet sich.

3. Wahlen Sie den Cockpit-Editor aus.

4, Klicken Sie auf die Schaltflache "Projekt schreiben und starten" (F5).

Hinweis: Wenn die Benutzerauthentifizierung aktiviert ist, miissen Sie sich mit einem

Benutzernamen und Passwort authentifizieren.

Bild 4. GUI des RAG-Systems mit Beispielfrage. Eine mdgliche Anfrage, fiir deren Beantwortung
spezifischer Kontext aus der Vektordatenbank des Retrieval-Moduls herangezogen wird

unabhédngig von ihrem Schwierigkeits-
grad (von befragten Experten eingestuft),
zufriedenstellend beantwortet werden.
Ein geringer Anteil der Fragen (< 10 %)
konnte durch das System nicht zufrie-
denstellend beantwortet werden, was je-
doch auf eine zweideutige Fragestellung
zuriickzuflihren ist. Eine beispielhafte
Frage und die zugehorige Antwort in der
entwickelten GUI sind in Bild 4 darge-
stellt. Um weiterfilhrende Unterstiitzung
innerhalb der Softwareentwicklungsum-
gebung zu realisieren, konnen der Pro-
jektkontext oder die Nutzerhistorie zur
Beantwortung der Fragestellung hinzu-
gezogen werden. Eine solche Losung
miisste dann zur Wahrung der Vertrau-
lichkeit mittels lokaler Modelle oder in-
nerhalb einer abgesicherten Umgebung
implementiert werden.

I Zusammenfassung und Ausblick

In diesem Beitrag wurden Potenziale fiir
den Einsatz generativer KI entlang des ge-
samten Softwareentwicklungszyklus in
der Automatisierungstechnik dargestellt.
Es zeichnet sich ab, dass die Moglichkei-
ten vielfaltig sind, durch generative KI
derzeit miihsame und langwierige Tatig-
keiten zu unterstiitzen. Das Spektrum
reicht von der automatisierten Erstellung
von Pflichtenheften iiber die Generierung
von E-Planen und HMI-Layouts bis hin zur
automatisierten SPS-Code-Erstellung, Test
und Dokumentation. Dabei ist der Reife-

grad derzeit verfiigharer Losungen sehr
unterschiedlich und héngt von der Verfiig-
barkeit groBer kuratierter Datenmengen
und deren Verwertbarkeit in groBen kom-
merziellen Sprachmodellen ab. Insbeson-
dere stellt die Beriicksichtigung von Da-
tenschutzaspekten bei der Verwendung
sensibler Daten mit groBen kommerziel-
len Sprachmodellen noch eine Hiirde dar.
Es ist daher zu erwarten, dass LLM-basier-
te Assistenzsysteme fiir die Softwareent-
wicklung in der Automatisierungstechnik
zukiinftig auf hybriden Architekturen auf-
setzen, welche im Hintergrund unter-
schiedliche Sprachmodelle verwenden, je
nach Art und Klassifizierung der Frage-
stellung. Weiterhin besteht derzeit noch
groBer Bedarf an der Feinjustierung exis-
tierender Verfahren, z.B. Embedding-Mo-
dellen in RAG-Systemen und multimoda-
len Modellen fiir Bildverarbeitung speziell
fiir automatisierungstechnische Bedarfe.

I Literatur

1. Achiam, J.; Adler, S.; Agarwal, S. et al.:
GPT-4 Technical Report. OpenAl, 2023
DOI:10.48550/arXiv.2303.08774

2. Devlin, J.; Chang, M.-W.; Lee, K. et al.: BERT:
Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In:
Proceedings of the 2019 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies (2019), S. 4171-4186
DOI:10.48550/arXiv.1810.04805

3. Touvron, H.; Martin, L.; Stone, K. et al.:
Llama 2: Open Foundation and Fine-Tuned

Jahrg. 120 (2025) Special Issue

Chat Models. 2023
DOI:10.48550/arXiv.2307.09288
4. Touvron, H.; Lavril, T.; Izacard, G. et al.:
LLaMA: Open and Efficient Foundation
Language Models. 2023
DOI:10.48550/arXiv.2302.13971
5. Anil, R. et al.: Gemini: A Family of Highly
Capable Multimodal Models. 2023
DOI:10.48550/arXiv.2312.11805
6. Zhao, W.X.; Zhou, K.; Li, J. et al.: A Survey
of Large Language Models. 2023
DOI:10.48550/arXiv.2303.18223
7. Dukino, C.; Friedrich, M.; Ganz, W. et al.:
Kiinstliche Intelligenz in der Unternehmens-
praxis. Fraunhofer-Institut fiir Arbeitswirt-
schaft und Organisation IAO, Fraunhofer-
Verlag, Stuttgart 2019
DOI:10.24406/publica-thg-300040
8. Weyrich, M.: Industrielle Automatisierungs-
und Informationstechnik. Springer, Berlin
und Heidelberg 2023
DOI:10.1007/978-3-662-56355-7
9. Holm, T.: Aufwandsbewertung im Enginee-
ring modularer Prozessanlagen. Dissertation.
Helmut-Schmidt-Universitat, Hamburg 2016
DOI:10.51202/9783186465207
10. Tufano, M.; Agarwal, A.; Jang, J. et al.: Auto-
Dev: Automated Al-Driven Development.
2024
DOI:10.48550/arXiv.2403.08299
.Fan, A.; Gokkaya, B.; Harman, M. et al.:
Large Language Models for Software Engi-
neering: Survey and Open Problems. In:
International Conference on Software Engi-
neering: Future of Software Engineering.
IEEE/ACM 2023, S. 31-53
DOI:10.1109/ICSE-FoSE59343.2023.00008
12. Abualhaija, S.; Arora, C.; Dell’Anna, D. et al.:
Preface: 7" Workshop on Natural Language
Processing for Requirements Engineering.
In: CEUR Workshop Proceedings 3672
(2024)
13.Dalpiaz, F.; Ferrari, A.; Franch, X. et al.:
Natural Language Processing for Require-
ments Engineering: The Best Is Yet to Come.
IEEE Software 35 (2018) 5, S. 115-119
DOI:10.1109/MS.2018.3571242
14.Ronanki, K.; Berger, C.; Horkoff, J.: Investi-
gating ChatGPT’s Potential to Assist in
Requirements Elicitation Processes. In:
49t Euromicro Conference on Software
Engineering and Advanced Applications
(SEAA). IEEE 2023, S. 354-361
DOI:10.48550/arXiv.2307.07381
15.Ruan, K.; Chen, X.; Jin, Z.: Requirements
Modeling Aided by ChatGPT: An Experience
in Embedded Systems. In: 315 International
Requirements Engineering Conference
Workshops (REW). IEEE 2023, S. 170-177
DOI:10.1109/REW57809.2023.00035
16.Drath, R.; Luder, A.; Peschke, J. et al.:
AutomationML - the Glue for Seamless
Automation Engineering. In: International
Conference on Emerging Technologies and

1

—_

DE GRUYTER

Factory Automation. IEEE 2008, S. 616-623
DOI:10.1109/ETFA.2008.4638461

17. Vogel, G.; Schulze Balhorn, L.; Schweidtmann,
A.M.: Learning from Flowsheets: A Genera-
tive Transformer Model for Autocompletion
of Flowsheets. Computers & Chemical
Engineering 171 (2023) 1
DOI:10.1016/j.compchemeng.2023.108162

18. Mattmidiller, J.; Benndorf, A.G.; Preintner, P.:
Automatisierte Generierung von digitalen
Anlagenschemata. 9" BauSim Conference
(2022), IBPSA-Germany and Austria, 2022
DOI:10.26868/29761662.2022.57

| Die Autor:innen dieses Beitrags

Dennis Reinhardt erlangte im Jahr 2024 den
akademischen Grad Bachelor of Science. Er
studierte zwischen 2021 und 2024 Data Science
an der TH OWL und war zeitgleich dualer Student
am Fraunhofer IOSB-INA. Seit 2024 ist er dualer
Masterstudent an der Universitit Bielefeld im
Bereich Intelligente Interaktive Systeme.

Jorg Jeschin studierte Elektrotechnik an der
Technischen Universitit Braunschweig und
begann 1996 seine Laufbahn bei Phoenix Contact
als Softwareentwickler. Ab 2003 ibernahm er
Flihrungspositionen im Bereich Research &
Development in der Automatisierungssparte
des Unternehmens. Seit 2011 fiihrt er als
Director die Produktlinie Software and Safety
in der Business Area Industriemanagement
und Automation (IMA).

DE GRUYTER

Prof. Dr. Jiirgen Jasperneite studierte Elektro-
technik und Informationstechnik und promo-
vierte 2002 an der Otto-von-Guericke-Universitat
Magdeburg. Von 1988 bis 1990 war er als
Entwicklungsingenieur bei der Robert Bosch
GmbH beschiftigt. Von 1990 bis 2005 war er
in unterschiedlichen Funktionen im Entwick-
lungsbereich der Phoenix Contact GmbH tétig,
zuletzt als Entwicklungsleiter des Geschéfts-
bereiches Automation Systems. Seit 2005 ist
Jiirgen Jasperneite Professor fiir Computernetz-
werke der TH OWL in Lemgo. 2009 griindete er
das Fraunhofer IOSB-INA, dessen Institutslei-
tung er seitdem innehat.

Dr. Gesa Benndorf studierte Physik an der
Friedrich-Schiller-Universitét Jena, promovierte
2013 an der TU Dresden und dem Max-Planck-
Institut fiir Physik komplexer Systeme und war
anschlieBend 10 Jahre am Fraunhofer ISE in
Freiburg titig bevor sie 2023 die Gruppenlei-
tung fiir Maschinelles Lernen am Fraunhofer
IOSB-INA in Lemgo iibernahm.

| Abstract

ChatPLC - Potential of Generative Al for PLC
Engineering. In this article we discuss ap-
proaches to support automation engineering
through generative artificial intelligence (AI)
across the entire software development cycle.
In particular, the implementation of a local
language model for structured text generation
according to the IEC 61131-3 norm and the

Jahrg. 120 (2025) Special Issue

KI IN PRODUKTION

development of a Retrieval Augmented Genera-
tion (RAG) system to assist the user with the
engineering software is described here. These
examples highlight the great potential of
employing Large Language Models (LLM) in
the area of automation engineering which are
already within reach.

I Schlisselworter

Generative KI, Steuerungsentwicklung, SPS,
Sprachmodelle, Softwareentwicklungszyklus

| Keywords

Gen Al, Software Development, PLC, Large
Language Models, Engineering Automation,
Retrieval Augmented Generation

| Bibliography

DOI:10.1515/zwf-2024-0121

ZWF 120 (2025) Special Issue; page 196 -201
3 Open Access. © 2025 bei den Autoren,
publiziert von De Gruyter.
Dieses Werk ist lizensiert unter der Creative
Commons Namensnennung 4.0 International
Lizenz.

ISSN 0947-0085 - e-ISSN 2511-0896

ZIWF

201

