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Integration of Machine Learning 
Methods to Calculate the Remaining 
Useful Life of Mandrels
A Feasibility Study

Predicting the service life of tools offers many advantages in manufacturing, 
such as reduced maintenance and fewer machine failures. The advances in 
machine learning methods, representing a sub-area of AI, are constantly cre-
ating new potentials in this field. However, process data with a sufficiently 
high information density are required to use machine learning for service 
life predictions. In many instances, a primary requirement is to map the en-
tire use of the considered tool. Therefore, this article examines the suitability 
of an existing process data set of a ring rolling process that maps the whole 
use of the tool. The considered tools are mandrels, which are used to produce 
rings in the hot-forming industry. In the first step, the fracture pattern of a 
mandrel is microstructurally investigated. Subsequently, a machine learning 
model is developed to examine the suitability of this dataset to predict ser-
vice life in an initial feasibility study.
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Introduction

The advancing digitalization and estab-
lishment of smart manufacturing in pro-
duction create greater availability of pro-
duction data. The potential of the collected 
data is often not fully exploited, whilst the 
establishment of machine learning ap-
proaches, in particular, is constantly open-
ing up new ways to create benefits from 
the given data [1]. Especially in predictive 
maintenance, a high optimization poten-
tial is expected in the upcoming years [2], 

product quality are already exploited [5–
7]. This creates an optimal base for fur-
ther research.

A ring blank is heated to approximately 
1,200 °C within the radial-axial ring roll-
ing process. Afterward, the heated blank 
is placed on a ring-rolling machine. The 
machine (Figure 1) contains two rolling 
pairs. The axial roller pairs are two conical 
rollers that adjust the ring height. The ra-
dial roller pair consists of the main roller, 
which is in contact with the ring on the 
outside, and the mandrel, which is in con-
tact with the ring on the inside. The pair of 
radial rollers form the ring wall thickness 
and diameter according to the customer‘s 
requirements. In addition, the system has 
centering rollers on the outside, stabilizing 
the entire rolling process.

A critical point in the development of a 
machine learning project is the underes-
timation of the complexity of the consid-
ered process. Often, the complexity of the 
task cannot be covered by the data col-

resulting in an increased research inter-
est. It motivates the content discussed in 
this article. The considered process for 
the predictive maintenance use case is 
the radial-axial ring rolling process, a 
procedure in the field of hot forming to 
produce seamless rings. Areas of applica-
tion include, for example, the manufac-
turing of bearings, railroad wheels, wind 
turbines, and aircraft turbines [3]. The 
process is primarily digitized [4], and the 
first optimization potentials with ma-
chine learning approaches regarding 
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data. A deeper understanding of the pro-
cess is often required here, necessitating 
a close exchange with process experts. 
Moreover, initial data analyses can be 
performed to detect and quantify rela-
tionships in the data. The newly gained 
knowledge can also lead to revising the 
objectives defined in Step 1. Any data 
quality problems that may arise must 
also be resolved before the next process 
phase can be entered, which aims to pre-
pare the data set for the actual machine 
learning application (“Data Prepara-
tion”). This includes the selection of rele-
vant data and the removal of incorrect in-
formation. Another critical step is to 
increase the information quality in the 
data, which can be achieved by eliminat-
ing information redundancy and by a 
problem-specific data transformation that 
highlights the relevant information for 
solving the problem. In the “Modeling” 

ment of machine learning applications. 
One of these standardized development 
processes is the Cross-Industry Standard 
Process for Data Mining (CRISP-DM), 
which originated in the late 1990 s for 
data mining applications [8] but can also 
be applied to machine learning applica-
tions due to the similarity of these meth-
ods. It essentially consists of six different 
phases, as shown in Figure 2.

The first phase is “Business Under-
standing”. It describes the basic under-
standing of the problem from a business 
perspective. The project objectives, re-
quirements, and risks are defined, and 
the business problem is converted into a 
machine-learning problem. Finally, a 
project plan is drawn up, and individual 
milestones and goals are defined. In the 
subsequent phase, a fundamental “Data 
Understanding” is formed. This includes 
a validation after collecting the initial 

lected and the model created does not sat-
isfy the requirements to solve the problem. 
Therefore, it is a challenge to estimate the 
functionality of machine learning ap-
proaches in advance. This is especially 
true for predictive maintenance tasks, as 
in practice early maintenance is often car-
ried out regardless of whether this mainte-
nance is necessary, meaning that faults 
rarely or never occur. As a result, it is even 
more difficult to create a suitable database.

To assess the functionality of machine 
learning approaches, this article pres-
ents a feasibility study that evaluates the 
suitability of the data set for the predic-
tive maintenance use case of predicting 
mandrel failures. For this purpose, a gen-
eral procedural model for developing ma-
chine learning applications, such as the 
CRISP-DM approach, is applied. The sub-
sequent feasibility study comprises two 
stages. The first stage includes a failure 
investigation into the type of fracture and 
the number of different fracture types 
that impact the design of the machine 
learning approach. In the subsequent 
stage, a model concept is developed, the 
first phase of the idea is evaluated, and 
further research questions are derived.

Procedure Model for Machine 
Learning Applications

In recent years, increased attention to the 
development and commercialization of 
machine learning algorithms has also led 
to the establishment of standardized con-
cepts, aspiring to the efficient develop-

Figure 1. The radial-axial ring rolling machine at the Chair for Production Systems,  
Ruhr-University Bochum, Germany

Figure 2. The CRISP-
DM Process [8]
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view, reflecting the state of the art in in-
vestigations into rolling fatigue [11]. 
Nevertheless, both studies motivate fur-
ther investigations into the database and 
its suitability for machine learning appli-
cations. Before a more in-depth analysis 
can be carried out, the problem should be 
checked for machine learning capability. 
For suitability, it is advantageous that the 
mandrel rollers have a similar failure case. 
If there are several different failure cases, 
patterns and relations in the data cannot 
be clearly identified. This would make a 
solution approach using a machine learn-
ing algorithm more difficult. To investi-
gate the suitability of the problem, four 
mandrel rolls were procured from two 
different industrial ring rolling compa-
nies and examined regarding failure. The 
damage pattern investigation of a man-
drel roll is shown in Figure 3.

Fatigue crack areas (marked in red) 
can be seen along the entire circumfer-
ence of the mandrel, as well as a propa-
gating crack from area 1. This crack 
spreads over the whole cross-section 
(marked in green) and merges into a re-
sidual stress fracture. The time of crack 
initiation cannot be determined. In addi-
tion, the fracture surface shows stria-
tions, which, combined with the alternat-
ing stress on the mandrel during the ring 
rolling process, indicate vibration fa-
tigue. All four mandrel rolls show the 
same fatigue pattern, which makes it eas-
ier to solve the problem using machine 
learning algorithms.

Development of a Concept to 
Predict the Service Life

The concept used is based on the stan-
dard procedure for research in predictive 
maintenance, which is already frequent-
ly used in the service life of ball bearings 
and the calculation of maintenance inter-
vals for aircraft engines [12–14]. These 
concepts are illustrated in Figure 4. They 
can be divided into two phases. The first 
phase deals with determining a health in-
dicator, which describes a variable that 
provides insight into the current service 
life. In the second phase, the calculated 
health indicator is used to predict the fu-
ture course of the service life, using his-
torical and current service life conditions 
and other relevant information.

consolidate the experience and knowl-
edge gained.

Examination of the Mandrels

As explained in the previous section, the 
CRISP-DM process provides a structured 
approach to developing machine learning 
applications and data analysis. A crucial 
aspect of developing the application is en-
suring that the data is appropriate and the 
problem is well-suited for a machine learn-
ing approach [1]. This can only be evaluat-
ed in phase 4 or 5, whereby a large part of 
the work has already been completed. In 
particular, preliminary investigations are 
advantageous in research as they can as-
sess the suitability of the data situation 
and the problem to be investigated.

Preliminary work can be used to assess 
the data situation. As part of a Six Sigma 
study in ring rolling, process experts se-
lected individual process parameters, and 
their effects on the service life of the man-
drels were investigated. None of the pro-
cess parameters considered here could be 
identified as decisive factors on their own 
[9], which is why a combination of several 
parameters must be taken into consider-
ation. Furthermore, Behrens et al. devel-
oped a FEM simulation that maps the 
wear rate of mandrel rolls as a function of 
various process parameters, such as the 
angular speeds of the primary roll, man-
drel roll temperatures, and the resulting 
forming forces. It was confirmed that 
many parameters influence the wear 
rate. However, it is impossible to weight 
the individual process parameters and 
transfer them to the entire service life of 
a mandrel [10]. Similar results were ob-
tained from an extensive literature re-

phase, various models are developed, 
evaluated, and reviewed for suitability af-
ter creating a test design. Here, not only 
machine learning models should be eval-
uated, also analytical models, among oth-
ers, can be considered. Machine learning 
methods function according to the princi-
ple of pattern recognition. Patterns, rela-
tions, dependencies, and hidden struc-
tures are recognized in the historical 
data, and the outcome of the problem un-
der consideration is described. In the 
context of this article, the focus is on the 
quality condition of the mandrel. If pat-
terns indicating the quality state of the 
mandrel are identified in historical data, 
these patterns could potentially be recog-
nized in future data as well. This would 
enable the prediction of the respective 
outcomes for the problem at hand or 
serve as a foundation for decision-mak-
ing. As such, pattern recognition is 
strongly dependent on the pre-process-
ing of the data basis; this phase is in con-
stant communication with the “Data 
Preparation” phase. Finally, the best 
models are selected and compared with 
the business objectives established in the 
first step of the evaluation phase. If none 
of the models meet the business objec-
tives, a decision must be made on wheth-
er to continue or revise the project. If a 
model is suitable, the project moves on to 
the “Deployment” phase, where the com-
missioning is prepared and carried out. 
Here, issues such as the automation of 
the process and linking the new applica-
tion with existing interfaces, and the 
need for a user interface and a suitable 
monitoring and maintenance plan, must 
be drawn up. Finally, a project review is 
carried out to evaluate the project and 

Figure 3. Examination of mandrel fatigue (Quelle:  Ruhr-Universität Bochum, Institut für  
Werkstoffe, Lehr- und Forschungsgebiet Werkstoffprüfung)
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There are various options for determin-
ing the health indicator in the first phase. 
For instance, the determination is carried 
out during the ball bearing investigation 
using a test setup where sensors record 
the vibrations of the ball bearing through-
out its entire service life. As the service 
life progresses, changes in the vibration 
profile enable the derivation of a health 
indicator [14]. Within Turbofan Engines, 
the health indicators are determined via 
the legally prescribed, manually per-
formed maintenance intervals of the en-
gines, which allows the service life to be 
derived [12, 13]. Both methods are not 
feasible for the present case. Vibrations 
of the ring rolling mill are superimposed 
on possible vibration changes of the man-
drel roll, which are due to the wear of the 
roll. Complex visual inspections are not 
economically viable and, unlike drive 
units, are not mandatory for the plant op-
erator, which is why this method is not 
considered. In addition, this initial feasi-
bility study works with historical data, 
which makes it difficult to add a label lat-
er. Accordingly, machine learning models 
are used for both phases in this study. In 
the first phase, the model is provided 

entire lifespan of each mandrel, from the 
first initial ring rolled to the point of 
mandrel breakdown. The data from 9 of 
the 11 mandrels were used to train the 
model; the remaining two mandrels were 
used to test the model and evaluate the 
mapping capability of a functioning health 
indicator. A random forest approach con-
sisting of an ensemble of decision trees 
was chosen for the feasibility analysis. 
The chosen approach also offers the possi-
bility of weighting the individual variables 
in further studies to determine whether 
they have added value for predicting the 
remaining service life of mandrels. The 
approach is based on an elaboration by 
Deng et al. [15], which enables time-de-
pendent process data, as in the case of 
the ring roller, to be processed effectively 
in such models using interval-based met-
rics. The Python library sktime is used 
for the implementation, providing a frame-
work for processing time series data with 
machine learning methods. A detailed de-
scription of this methodology can be found 
in [16, 17]. The model requires a classifi-
cation as a target variable, so a logarith-
mic function is applied to divide the num-
ber of rolls processed by each mandrel 

with information about process parame-
ters created during the rolling of individ-
ual rings. Furthermore, the model is pro-
vided with information about the mandrel 
roll. This includes, for example, the num-
ber of rings previously rolled on this 
mandrel roll or the cumulative time of 
high radial forces acting on the mandrel 
roll. A self-created logarithmic function 
is used as the target variable, which acts 
as a health indicator.

Creation of the  
Health Indicator

The first phase of the model was checked 
for feasibility to verify the chosen ap-
proach‘s suitability for creating a health 
indicator. For the study, an industrial 
data set of 11 mandrels with similar ge-
ometries were used, on which a total of 
3,835 rings were rolled. Process data 
have been recorded for each rolled ring. 
The process data include the radial and 
axial rolling forces, the rotational speed 
of the various rolls, and the rolling tem-
peratures that have occurred. A total of 
131 variables were recorded for each 
rolled ring. The process data captures the 

Figure 4. Developed machine learning model concept
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data set. Nevertheless, a final statement 
on the suitability of the chosen approach 
can only be made once the model has 
been fully developed, and, therefore, only 
then a final conclusion can be drawn on 
the selected approach. However, the re-
sults presented here reinforce the contin-
uation of the strategy that has been start-
ed, which is why the second phase of the 
model will be developed and validated in 
the following steps. Given that all avail-
able parameters have been incorporated 
into the input space, the subsequent ob-
jective is to ascertain which parameters 
are significant in predicting mandrel 
breakage. This will facilitate the future 
presentation of an input space with en-
hanced information density to the perti-
nent model. The developed random forest 
approach is used here because it offers 
the possibility for future work to evaluate 
the relevance of the input values and 
thus increase the information density of 
the input space. Based on this, more com-
plex models for predicting the health in-
dicator will be evaluated with a reduced 
input space, which may further increase 
the overall accuracy. Irrespective of this, 
the exclusive prediction of a health indi-
cator also passes on significant devia-
tions from the ‘true’ health indicator to 
the second modeling phase described in 
Figure 4. Therefore, a potentially import-
ant question is how this false information 
can be detected so that the model’s over-
all performance is affected only slightly 
or not at all. Such questions will be evalu-
ated in further research work.
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tween the predicted classes and the actu-
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mean absolute error =  
∑ |ypred − ytrue|n

i=1
n  

mean absolute error =  
∑ |ypred − ytrue|n

i=1
n  	

(1)

The corresponding accuracy was calcula-
ted to facilitate a better understanding of 
the loss. It presents the results in relation 
to the optimal loss value (0.0000) and the 
calculated worst-case loss, which is 
0.7957. The confusion matrix of the para-
meter combination with the highest accu-
racy is shown in Figure 5 b. It shows the 
distribution of the results predicted by 
the random forest approach and the ‘true’ 
class given by the logarithmic function. 
With a 100 percent match, all values 
would be on the diagonal. Overall, the 
model shown in the confusion matrix has 
an accuracy of 88.97 percent. The mean 
absolute error from the actual and predic-

Figure 5. Creation (a) and prediction (b) of the health indicator [16]
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Abstract
Einsatz von maschinellen Lernverfahren zur 
Lebensdauerberechnung von Dornwalzen – 
Eine Machbarkeitsanalyse. Die Vorhersage 
der Lebensdauer von Werkzeugen bietet in der 
verarbeitenden Industrie viele Vorteile hin-
sichtlich eines wartungsreduzierten Betriebes 
und weniger Standzeiten durch Maschinenaus-
fälle. Vor allem durch die Weiterentwicklung 
von maschinellen Lernverfahren, die einen Teil-
bereich der künstlichen Intelligenz darstellen, 
werden neue Potentiale in diesem Bereich er-
schlossen. Zur Anwendung und Nutzung dieser 
Verfahren werden Prozessdaten mit einer aus-
reichend hohen Informationsdichte benötigt, 
welche in vielen Fällen den gesamten Nutzungs-
zeitraum des betrachteten Werkzeugs abbilden 
müssen. Innerhalb dieses Artikels wird daher 
die Eignung eines bereits bestehenden Prozess-
datensatzes eines Ringwalzprozesses, welcher 
den Nutzungszeitraum des Werkzeugs abbildet, 
untersucht. Die betrachteten Werkzeuge sind 
hierbei Dornwalzen, welche zur Herstellung 
von Ringen in der Warmumform-industrie ein-
gesetzt werden. In einem ersten Schritt wird 
das Bruchbild der Dornwalze untersucht und 
darauf aufbauend ein maschinelles Lernmodell 
entwickelt, welches in einer Machbarkeitsunter-
suchung die Eignung des Datensatzes für die 
Lebensdauervorhersage überprüft.
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