Abstract
The objective of this work is to synthesize new set of nanoceramics that improves structural integrity and dielectric performance while maintaining the desired characteristics of ZnO with the introduction of regulated Ni-doping. By using the sol-gel process, Ni-doped ZnO nanoceramics were successfully synthesized. Zn1–xNixO (x = 0, 0.05, 0.01, 0.15) wt % of Ni in to Zn precursor salts were added. Doping levels are considered to be low to moderate level, which typically lead to considerable changes in structural, optical, morphological and dielectric properties without modification of the nature of host ZnO. Higher concentrations greater than 15 % can result in the precipitation of isolated Ni or NiO phases which may negatively influence uniformity and consistency of the doped material. By using XRD for structural study, phase purity and the hexagonal wurtzite structure were confirmed. The integration of Ni2+ ions into the ZnO lattice is indicated by the change in lattice parameters and bond length for the Ni-doped ZnO sample. Samples follow almost same c/a ratio of an average of 1.601. An increase in “Ni” content results a decrease in crystallite size. Average crystallite size has been calculated ranging from 43.88 nm to 17.01 nm for ZnO to Zn0.85Ni0.15O samples. According to SEM analysis, the grains of the samples are uniformly dispersed. When the produced NPs were examined for purity using EDAX analysis, it was found that the beginning stoichiometries and the chemical composition of Zn, Ni, and O agreed well. The development of the ZnO phase was verified by the presence of a peak at 523 cm−1 in the FTIR spectra. According to the findings of X-ray photoelectron spectroscopy (XPS), Ni was observed to be present in the ZnO lattice in the form of Ni2+.The Koops phenomenological theory and the Maxwell-Wagner model provide an explanation for the observed dielectric behaviour. It is noted that for pure ZnO, the dielectric constant and dielectric loss have maximum values, whereas for doped samples, these values decreases. Our sample is suitable for high frequency device application due to a negligible dielectric loss of 0.047 at 15 % Ni concentration in the high-frequency region. Ni-doping affects AC conductivity. At 10 MHz, Zn0.9Ni0.1O has the highest AC conductivity (2.654 × 10⁻⁴ (Ω cm)⁻1), while Zn0.85Ni0.15O shows a lower value (1.048 × 10⁻⁴ (Ω cm)⁻1), indicating a balance between doping level and grain boundary influence on conduction. The impedance study reveals that just one semicircle in all samples, indicating that the influence of grain boundaries is more significant than the contribution of individual grains.
Acknowledgments
I would like to thank KSCSTE (Kerala State Council for Science Technology and Environment) for providing fellowship to facilitate my work. Facilities provided by DST – FIST, UGC, SERB, KSCSTE SARD are deeply acknowledged.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: KSCSTE (Kerala State Council for Science Technology and Environment).
-
Data availability: Not applicable.
References
1. Klingshirn, C.; Fallert, J.; Zhou, H.; Sartor, J.; Thiele, C.; Flaig, F. M.; Schneider, D.; Kalt, H. Phys. Status Solidi B 2010, 247, 1424; https://doi.org/10.1002/pssb.201090010.Suche in Google Scholar
2. McCluskey, M. D.; Jokela, S. J. J. Appl. Phys. 2009, 106, 071101; https://doi.org/10.1063/1.3216464.Suche in Google Scholar
3. Wu, D.; Xu, Q. Y.; Zhang, F. M.; Liu, X. S.; Du, Y. W. AAPPS Bull. 2008, 18, 52.Suche in Google Scholar
4. Dietl, T. J. Phys. Condens. Matter 2007, 19, 165204; https://doi.org/10.1088/0953-8984/19/16/165204.Suche in Google Scholar
5. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Prog. Mater. Sci. 2005, 50, 293; https://doi.org/10.1016/j.pmatsci.2004.04.001.Suche in Google Scholar
6. Grigorjeva, L.; Millers, D.; Smits, K.; Monty, C.; Kouam, J.; El Mir, L. Solid State Phenom 2007, 128, 135–140; https://doi.org/10.4028/www.scientific.net/ssp.128.135.Suche in Google Scholar
7. Yan, L.; Ong, C. K.; Rao, X. S. J. Appl. Phys. 2004, 96, 508–511; https://doi.org/10.1063/1.1757652.Suche in Google Scholar
8. Kim, D. H.; Woo, S. I.; Moon, S. H.; Kim, H. D.; Kim, B. Y.; Cho, J. H.; Joh, Y. G.; Kim, E. C. Solid State Commun. 2005, 136, 554–558; https://doi.org/10.1016/j.ssc.2005.09.012.Suche in Google Scholar
9. Choopun, S.; Vispute, R. D.; Noch, W.; Balasamo, A.; Sharma, R. P.; Venkatesan, T.; Lliadies, A.; Look, D. C. Appl. Phys. Lett. 1999, 75, 3947–3949; https://doi.org/10.1063/1.125503.Suche in Google Scholar
10. Ueda, K.; Tabata, H.; Kawai, T. Appl. Phys. Lett. 2001, 79, 988–990; https://doi.org/10.1063/1.1384478.Suche in Google Scholar
11. Nunes, P.; Fortunadeo, E.; Martins, R. Thin Solid Films 2001, 383, 277–280.10.1016/S0040-6090(00)01577-7Suche in Google Scholar
12. Lin, Y. H.; Ying, M. H.; Li, M.; Wang, X. H.; Nan, C. W. Appl. Phys. Lett. 2007, 90, 222110–222112; https://doi.org/10.1063/1.2745247.Suche in Google Scholar
13. Yang, Y. C.; Zhong, C. F.; Wang, X. H.; He, B.; Wei, S. Q.; Zeng, F.; Pan, F. J. Appl. Phys. 2008, 104, 064102–064105; https://doi.org/10.1063/1.2978221.Suche in Google Scholar
14. Chen, K. X.; Wang, H. J. Colloid Interface Sci. 2009, 330, 380.Suche in Google Scholar
15. Lia, B. B.; Xiua, X. Q.; Zhanga, R.; Taoa, Z. K.; Chena, L.; Xie, Z. L.; Zheng, Y. D. Mater. Sci. Semicond. Proc. 2006, 9, 141.Suche in Google Scholar
16. Wu, D.; Yang, M.; Huang, Z.; Yin, G.; Liao, X.; Kang, Y.; Chen, X.; Wang, H. Yunqing. J. Colloid Interface Sci. 2009, 330, 380; https://doi.org/10.1016/j.jcis.2008.10.067.Suche in Google Scholar PubMed
17. Cheng, C. W.; Xu, G. Y.; Zhang, H. Q.; Luo, Y. Mater. Lett. 2008, 62, 1617; https://doi.org/10.1016/j.matlet.2007.09.035.Suche in Google Scholar
18. Ghosh, S.; Srivastava, P.; Pandey, B.; Saurav, M.; Bharadwaj, P.; Avasthi, D. K.; Kabiraj, D.; Shivaprasad, S. M. Appl. Phys. A 2008, 90, 765; https://doi.org/10.1007/s00339-007-4353-6.Suche in Google Scholar
19. Cong, C. J.; Hong, J. H.; Liu, Q. Y.; Liao, L.; Zhang, K. L. Solid State Commun. 2006, 138, 511; https://doi.org/10.1016/j.ssc.2006.04.020.Suche in Google Scholar
20. Wu, D. W.; Yang, M.; Huang, Z. B.; Yin, G. F.; Liao, X. M.; Kang, Y. Q.; Chen, X. F.; Wang, H. J. Colloid Interface Sci. 2009, 330, 380; https://doi.org/10.1016/j.jcis.2008.10.067.Suche in Google Scholar
21. El-Nahass, M. M.; Farag, A. A. M.; Atta, A. A. Synth. Met. 2009, 159, 589; https://doi.org/10.1016/j.synthmet.2008.11.029.Suche in Google Scholar
22. Banerjee, P. P. Proc. IEEE 2005, 73, 1859; https://doi.org/10.1109/proc.1985.13378.Suche in Google Scholar
23. Moghaddam, A. B.; Nazari, T.; Badraghi, J.; Kazemzad, M. Int. J. Electrochem. Sci. 2009, 4, 247; https://doi.org/10.1016/s1452-3981(23)15125-x.Suche in Google Scholar
24. Baron, R.; Campbell, F. W.; Streeter, I.; Xiao, L.; Compton, R. G. Int. J. Electrochem. Sci. 2008, 3, 556; https://doi.org/10.1016/s1452-3981(23)15543-x.Suche in Google Scholar
25. Khorsand Zak, A.; Mjid, W. H. A.; Abrishami, M. E.; Yousef, R. Solid State Sci. 2011, 13, 251–256.10.1016/j.solidstatesciences.2010.11.024Suche in Google Scholar
26. Saleem, M.; Fang, L.; Ruan, H. B.; Wu, F.; Huang, Q. L.; Xu, C. L.; Kong, C. Y. Intl. J. Phy. Sci. 2012, 7, 2971–2979.Suche in Google Scholar
27. Shukla, P.; Shukla, J. K. J. Supercond. Nov. Magn. 2019, 32, 721; https://doi.org/10.1007/s10948-018-4706-8.Suche in Google Scholar
28. Anbuselvan, D.; Muthukumaran, S. Opt. Mater. (Amst) 2015, 42, 124; https://doi.org/10.1016/j.optmat.2014.12.030.Suche in Google Scholar
29. Kannan, P. K.; Saraswathi, R.; Rayappan, J. B. B. Ceram. Int. 2014, 40, 13115; https://doi.org/10.1016/j.ceramint.2014.05.011.Suche in Google Scholar
30. He, Y.; Yang, B.; Cheng, G. Catal. Today 2004, 98, 595–600; https://doi.org/10.1016/j.cattod.2004.09.014.Suche in Google Scholar
31. Pandey, B.; Ghosh, S.; Srivastava, P.; Kabiraj, D.; Shripati, T.; Lalla, N. P. Physica E 2009, 41, 1164; https://doi.org/10.1016/j.physe.2009.01.016.Suche in Google Scholar
32. Ghosh, S.; Srivastava, P.; Saurav, P. M.; Bharadwaj, P.; Avasthi, D. K.; Kabiraj, D.; Shivaprasad, S. M. Appl. Phys. A 2008, 90, 765.10.1007/s00339-007-4353-6Suche in Google Scholar
33. Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. Surf. Sci. 2006, 600, 1771; https://doi.org/10.1016/j.susc.2006.01.041.Suche in Google Scholar
34. Kim, K. T.; Kim, G. H.; Woo, J. C.; Kim, C. I. Surf. Coat. Techn. 2008, 202, 5650; https://doi.org/10.1016/j.surfcoat.2008.06.078.Suche in Google Scholar
35. Kumar, E. S.; Venkatesh, S.; Rao1, M. S. R. Appl. Phys. Lett. 2010, 96, 232504.Suche in Google Scholar
36. Jeong, Y.; Bae, C.; Kim, D.; Song, K.; Woo, K.; Shin, H.; Cao, G.; Moon, J. ACS Appl. Mater. Interfaces 2010, 2, 611; https://doi.org/10.1021/am900787k.Suche in Google Scholar PubMed
37. Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. Appl. Surf. Sci. 2000, 158, 134; https://doi.org/10.1016/s0169-4332(99)00601-7.Suche in Google Scholar
38. Yin, Z. G.; Chen, N.; Yang, F.; Song, S. L.; Chai, C. L.; Zhong, J.; Qian, H. J.; Ibrahim, K. Solid State Commun. 2005, 135, 430–433; https://doi.org/10.1016/j.ssc.2005.05.024.Suche in Google Scholar
39. Mishra, D. K.; Kumar, P.; Kumar, S.; Mohapatra, S.; Sulania, I.; Tripathi, A.; Varma, S.; Sharma, M. K.; Chatterjee, R.; Kanjilal, D. Adv. Sci. Lett. 2009, 2, 324; https://doi.org/10.1166/asl.2009.1067.Suche in Google Scholar
40. Maxwell, J. Oxford Univ. Press 1873, 1, 328.Suche in Google Scholar
41. Wanger, K. W. Ann. Phys. (Leipzig) 1913, 40, 817.Suche in Google Scholar
42. Sivaprakash, P.; Divya, S.; Esakki Muthu, S.; Ali, A.; Jaglicic, Z.; Hwan Oh, T.; Kim, I. Mater. Sci. Eng. B 2024, 301, 117200; https://doi.org/10.1016/j.mseb.2024.117200.Suche in Google Scholar
43. Koops, C. G. Phys. Rev. 1951, 83, 121–124; https://doi.org/10.1103/physrev.83.121.Suche in Google Scholar
44. El Hiti, M. A. J. Magn. Magn. Mater. 1999, 192, 305–313; https://doi.org/10.1016/s0304-8853(98)00356-4.Suche in Google Scholar
45. Sivapraksh, P.; Divya, S.; Parameshwari, R.; Saravanan, C. J. Mater. Sci.: Mater. Electron. 2020, 31, 16369–16378.10.1007/s10854-020-04187-9Suche in Google Scholar
46. Divya, S.; Sivapraksh, P.; Raja, S.; Esakki Muthu, S.; Ikhyun Kim, J.; Renuka, N.; Arumugam, S.; Oh, T. H. Ceram. Int. 2022, 48, 33208–33218; https://doi.org/10.1016/j.ceramint.2022.07.263.Suche in Google Scholar
47. Reddy, P.; Rao, T. J. Less-Common Met. 1982, 86, 255–261; https://doi.org/10.1016/0022-5088(82)90211-9.Suche in Google Scholar
48. Dutta, S.; Choudhary, R. N. P.; Sinha, P. K. Phys. Status Solidi A 2005, 202, 1172; https://doi.org/10.1002/pssa.200406932.Suche in Google Scholar
49. Maddalena, A.; Maschio, R. D.; Dire, S.; Raccanelli, A. Non-Cryst. Solids 1990, 121, 365.10.1016/0022-3093(90)90159-JSuche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”