Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
-
Anandhu Mohan
, Madhappan Santhamoorthy , Ranganathan Suresh, Munusamy Ashwini
, Natarajan Arumugam , Abdulrahman I. Almansour , Loganathan Guganathan , Tamiloli Devendhiran , Mei-Ching Lin , Seong-Cheol Kim , Keerthika Kumarasamyund Thi Tuong Vy Phan
Abstract
This work describes the synthesis of periodic mesoporous organosilica (PMO@Py NPs) nanocarriers that integrate the hydroxyl-pyridyl (HP) ligand and could be used as an efficient drug delivery system in the presence of varying pH stimuli. PMO@Py NPs were produced by adapting the sol-gel co-condensation process. X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption analysis, particle size analysis, and zeta potential measurements were used to characterize the produced PMO@Py NPs. The developed silica nanocarriers’ surface morphology was observed by scanning electron microscopy (SEM) study. The content of integrated organic functional groups in the PMO@Py NPs was determined using elemental analysis and thermogravimetric (TG) analysis. To ascertain the loading and pH-responsive release efficiency of the PMO@Py NPs under various pH (pH 7.4, 6.2, and 4.5) circumstances, respectively, the hydrophilic anticancer agent 5-Fu was utilized as a model drug. Furthermore, in MDA-MB-231 cells, the biocompatibility of the PMO@Py NPs was assessed. Additionally, utilizing samples of red blood cells, produced PMO@Py NPs’ hemocompatibility was assessed and compared with that of the positive control, Triton-X. Overall, the results showed that the HP-PMO@Py NPs that have been generated are biocompatible, have a high drug loading capacity (about 85 %), and release the drugs that were loaded under different pH stimulation conditions.
Acknowledgments
This project was carried out with the support of the “2024 System Semiconductor Technology Development Support Project” of Chungbuk Technopark. The project was funded by Researchers Supporting Project number (RSP2025R143), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Anandhu Mohan, Munusamy Ashwini, Madhappan Santhamoorthy, Ranganathan Suresh, Nataraj Arumugam, Loganathan Guganathan, Tamiloli Devendhiran: Conceptualization, Methodology, Characterization and data analysis, original draft writing. Mei-Ching Lin, Keerthika Kumarasamy, Mei-Ching Lin, Thi Tuong vy Phan: Data curation and rearrangement, Draft revising. Abdulrahman I. Almansour, Seong-Cheol Kim: Supervision, review, and editing.
-
Use of Large Language Models, AI and Machine Learning Tools: The authors declares that have not used any AI-based tools.
-
Conflict of interest: The authors have no conflicts to declare.
-
Research funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3052258). The project was funded by Researchers Supporting Project number (RSP2024R143), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: Data availability on request.
References
1. Yusef, A.; Almotairy, A. R. Z.; Henidi, H.; Alshehri, O. Y.; Aldughaim, S. Polymers 2023, 15 (7), 1596; https://doi.org/10.3390/polym15071596.Suche in Google Scholar PubMed PubMed Central
2. Baig, N.; Kammakakam, I.; Falath, W. Mater. Mater. Adv. 2021, 2, 1821–1871; https://doi.org/10.1039/d0ma00807a.Suche in Google Scholar
3. Cheng, X.; Xie, Q.; Sun, Y. Front Bioeng. Biotechnol. 2023, 11, 1177151; https://doi.org/10.3389/fbioe.2023.1177151.Suche in Google Scholar PubMed PubMed Central
4. Moorthy, M. S.; Cho, H. J.; Yu, E. J.; Jung, Y. S.; Ha, C. S. Chem. Commun. 2013, 49, 8758; https://doi.org/10.1039/c3cc42513d.Suche in Google Scholar PubMed
5. Moorthy, M. S.; Park, J. H.; Bae, J. H.; Kim, S. H.; Ha, C. S. J. Mater. Chem. B 2014, 2, 6487; https://doi.org/10.1039/c4tb00808a.Suche in Google Scholar PubMed
6. Parambadath, S.; Rana, V. K.; Moorthy, S.; Chu, S. W.; Park, S. K.; Lee, D.; Sung, G.; Ha, C. S. J. Solid State Chem. 2011, 184, 1208; https://doi.org/10.1016/j.jssc.2011.03.003.Suche in Google Scholar
7. Moorthy, M. S.; Park, S. S.; Selvaraj, M.; Ha, C. S. J. Nanosci. Nanotechnol. 2014, 14, 8891; https://doi.org/10.1166/jnn.2014.9957.Suche in Google Scholar PubMed
8. Croissant, G. J.; Fatieiev, Y.; Almalik, A.; Khashab, N. M. Adv. Healthc. Mater. 2018, 7, 1700831; https://doi.org/10.1002/adhm.201700831.Suche in Google Scholar PubMed
9. Tsai, M. J.; Chang, C. Y.; Wu, J. Y.. J. Solid State Chem. 2022, 307, 122863; https://doi.org/10.1016/j.jssc.2021.122863.Suche in Google Scholar
10. Li, H.; Yu, H.; Zhu, C.; Hu, J.; Du, M.; Zhang, F.; Yang, D. RSC Adv. 2016, 6, 94160; https://doi.org/10.1039/c6ra17213j.Suche in Google Scholar
11. Moorthy, M. S.; Park, S. S.; Fuping, D.; Hong, S. H.; Selvaraj, M.; Ha, C. S.. J. Mater. Chem. 2012, 22, 9100; https://doi.org/10.1039/c2jm16341a.Suche in Google Scholar
12. Ramkumar, V.; Raorane, C. J.; Christy, H. J.; Anandhi, S.; Santhamoorthy, M.; Kamachiyappan, P.; Ashokkumar, A.; Balamurugan, S.; Kim, S. C. J. Mol. Struct. 2023, 1292, 136109; https://doi.org/10.1016/j.molstruc.2023.136109.Suche in Google Scholar
13. Moorthy, M. S.; Kim, M. J.; Bae, J. H.; Park, S. S.; Saravanan, N.; Kim, S. H.; Ha, C. S. Eur. J. Inorg. Chem. 2013, 2013, 3028; https://doi.org/10.1002/ejic.201300118.Suche in Google Scholar
14. Jang, B.; Moorthy, M. S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K. D.; Kwak, M.; Oh, J.; Jin, J. O. Oncotarget 2018, 9, 12649; https://doi.org/10.18632/oncotarget.23898.Suche in Google Scholar PubMed PubMed Central
15. Thirupathi, K.; Santhamoorthy, M.; Radhakrishnan, S.; Ulagesan, S.; Nam, T. J.; Phan, T. T. V.; Kim, S. C. Pharmaceutics 2023, 15, 795; https://doi.org/10.3390/pharmaceutics15030795.Suche in Google Scholar PubMed PubMed Central
16. Moritz, M.; Laniecki, M. Appl. Surface Sci. 2012, 258, 7523.10.1016/j.apsusc.2012.04.076Suche in Google Scholar
17. Moorthy, M. S.; Bae, J. H.; Kim, M. J.; Kim, S. H.; Ha, C. S. Part. Part. Syst. Charact. 2013, 12, 1044.10.1002/ppsc.201300164Suche in Google Scholar
18. Bharathiraja, S.; Seo, H.; Manivasagan, P.; Moorthy, M. S.; Park, S.; Oh, J. Molecules 2016, 21, 1470; https://doi.org/10.3390/molecules21111470.Suche in Google Scholar PubMed PubMed Central
19. Phan, T. T. V.; Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Lee, K. D.; Oh, J. RSC Adv. 2017, 7, 35027; https://doi.org/10.1039/c7ra02140b.Suche in Google Scholar
20. Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Int. J. Nanomed. 2016, 12, 87; https://doi.org/10.2147/ijn.s117495.Suche in Google Scholar PubMed PubMed Central
21. Thenmozhi, R.; Moorthy, M. S.; Sivaguru, J.; Manivasagan, P.; Bharathiraja, S.; Oh, Y.; Oh, J. J. Nanosci. Nanotechnol. 2019, 19, 1951; https://doi.org/10.1166/jnn.2019.15399.Suche in Google Scholar PubMed
22. Bui, N. Q.; Cho, S. W.; Moorthy, M. S.; Park, S. M.; Piao, Z.; Nam, S. Y.; Kang, H. W.; Kim, C. S.; Oh, J. Sci. Rep. 2018, 8, 2000; https://doi.org/10.1038/s41598-018-20139-0.Suche in Google Scholar PubMed PubMed Central
23. Mishra, A.; Sharma, S.; Gupta, B. J. Appl. Polym. Sci. 2011, 121, 2705; https://doi.org/10.1002/app.33884.Suche in Google Scholar
24. Zhenbang, H.; Yongchun, D.; Siming, D. Mater. Design. 2010, 31, 2784.Suche in Google Scholar
25. Bharathiraja, S.; Manivasagan, P.; Oh, Y. O.; Moorthy, M. S.; Seo, H.; Bui, N. Q.; Oh, J. Int. J. Pharm. 2017, 517, 216; https://doi.org/10.1016/j.ijpharm.2016.12.020.Suche in Google Scholar PubMed
26. Moorthy, M. S.; Kim, H. B.; Bae, J. H.; Kim, S. H.; Ha, C. S. RSC Adv. 2016, 6, 29106; https://doi.org/10.1039/c5ra28143a.Suche in Google Scholar
27. Oh, Y.; Moorthy, M. S.; Manivasagan, P.; Bharathiraja, S.; Oh, J. Biochimie 2017, 133, 7; https://doi.org/10.1016/j.biochi.2016.11.012.Suche in Google Scholar PubMed
28. Manivasagan, P.; Bui, N. Q.; Bharathiraja, S.; Moorthy, M. S.; Oh, Y. O.; Song, K.; Seo, H.; Yoon, M.; Oh, J. Sci. Rep. 2017, 7, 43593.10.1038/srep43593Suche in Google Scholar PubMed PubMed Central
29. Moorthy, M. S.; Kim, H. B.; Sung, A. R.; Bae, J. H.; Kim, S. H.; Ha, C. S. Micropor. Mesopor. Mater. 2014, 194, 219; https://doi.org/10.1016/j.micromeso.2014.03.043.Suche in Google Scholar
30. Santhamoorthy, M.; Thirupathi, K.; Periyasamy, T.; Thirumalai, D.; Ramkumar, V.; Kim, S. C. New J. Chem. 2021, 45, 20641; https://doi.org/10.1039/d1nj03520g.Suche in Google Scholar
31. Santhamoorthy, M.; Kunasekaran, U.; Thirupathi, K.; Thirumalai, D.; Kim, S. C. Mater. Lett. 2022, 313, 131786; https://doi.org/10.1016/j.matlet.2022.131786.Suche in Google Scholar
32. Madhappan, S.; Kim, S. H.; Huh, P.; Jung, Y. S.; Kim, S. C. Env. Res. 2023, 231, 116171.10.1016/j.envres.2023.116172Suche in Google Scholar PubMed
33. Santhamoorthy, M.; Thirupathi, K.; Kumar, S. S. D.; Pandiaraj, S.; Rahaman, M.; Phan, T. T. V.; Kim, S. C. Int. J. Biomacromol. 2023, 244, 125467; https://doi.org/10.1016/j.ijbiomac.2023.125467.Suche in Google Scholar PubMed
34. Santhamoorthy, M.; Thirupathi, K.; Krishnan, S.; Guganathan, L.; Dave, S.; Phan, T. T. V.; Kim, S. C. Magnetochem 2023, 9, 81; https://doi.org/10.3390/magnetochemistry9030081.Suche in Google Scholar
35. Moorthy, M. S.; Oh, Y.; Bharathiraja, S.; Manivasagan, P.; Rajarathinam, T.; Jang, B.; Phan, T. T. V.; Jang, H.; Oh, J. RSC Adv. 2016, 6, 110444; https://doi.org/10.1039/c6ra23470d.Suche in Google Scholar
36. Thirupathi, K.; Raorane, C. J.; Ramkumar, V.; Ulagesan, S.; Moorthy, M. S.; Raj, V.; Krishnakumar, G. S.; Phan, T. T. V.; Kim, S. C. Gels 2023, 9, 35; https://doi.org/10.3390/gels9010035.Suche in Google Scholar PubMed PubMed Central
37. Sana, S. S.; Santhamoorthy, M.; Haldar, R.; Raorane, C. J.; Iravani, S.; Varma, R. S.; Kim, S. C. Process Biochem. 2023, 132, 200; https://doi.org/10.1016/j.procbio.2023.06.022.Suche in Google Scholar
38. Phan, T. T. V.; Santhamoorthy, M. Mater. Proceedings 2023, 14, 71.10.3390/IOCN2023-14468Suche in Google Scholar
39. Thirupathi, K.; Phan, T. T. V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S. C. Polymers 2022, 15, 167; https://doi.org/10.3390/polym15010167.Suche in Google Scholar PubMed PubMed Central
40. Phan, T. T. V.; Bui, N. Q.; Moorthy, M. S.; Lee, K. D.; Oh, J. Nanoscale Res. Lett. 2017, 12, 1.10.1186/s11671-017-2337-9Suche in Google Scholar PubMed PubMed Central
41. Moorthy, M. S.; Bharathiraja, S.; Manivasagan, P.; Oh, Y.; Jang, B.; Phan, T. T. V.; Oh, J. J. Porous Mater. 2018, 25, 119; https://doi.org/10.1007/s10934-017-0425-y.Suche in Google Scholar
42. Moorthy, M. S.; Bharathiraja, S.; Manivasagan, P.; Lee, K. D.; Oh, J. MedChemComm. 2017, 8, 1797; https://doi.org/10.1039/c7md00270j.Suche in Google Scholar PubMed PubMed Central
43. Park, S. S.; Moorthy, M. S.; Ha, C. S. NPG Asia Mater. 2014, 6, e96.10.1038/am.2014.13Suche in Google Scholar
44. Tapaswi, P. K.; Moorthy, M. S.; Park, S. S.; Ha, C. S. J. Solid State Chem. 2014, 211, 191; https://doi.org/10.1016/j.jssc.2013.12.028.Suche in Google Scholar
45. Santhamoorthy, M.; Vanaraj, R.; Thirupathi, K.; Ulagesan, S.; Nam, T. J.; Phan, T. T. V.; Kim, S. C. Gels 2023, 9, 363; https://doi.org/10.3390/gels9050363.Suche in Google Scholar PubMed PubMed Central
46. Santhamoorthy, M.; Phan, T. T. V.; Ramkumar, V.; Raorane, C. J.; Thirupathi, K.; Kim, S. C. Polymers 2022, 14, 4128.10.3390/polym14194128Suche in Google Scholar PubMed PubMed Central
47. Gisbert-Garzaran, M.; Lozano, D.; Matsumoto, K.; Komatsu, A.; Manzano, M.; Tamanoi, F.; Vallet-Regi, M. ACS Appl. Mater. Interfaces 2021, 13, 9656; https://doi.org/10.1021/acsami.0c21507.Suche in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”