Home Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
Article
Licensed
Unlicensed Requires Authentication

Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells

  • Pavithrakumar Palanichamy ORCID logo EMAIL logo , Venkatraman Madurai Ramakrishnan ORCID logo , Rajesh Govindaraj ORCID logo , Agilan Santhanam and Dhayalan Velauthapillai
Published/Copyright: December 10, 2024

Abstract

Bismuth is one of the promising elements that can replace toxic lead in perovskite solar cells. However, surface roughness and inhomogeneous morphology with voids on the bismuth perovskite films limits their photovoltaic performance. In the present work, a scalable doctor-blade technique is employed to prepare perovskite thin film with high surface coverage. Methylammonium bismuth halide (MABiH) ((CH3NH3)3Bi2ClxI9-x) nanoparticles were synthesized by conventional sol-gel technique. The formation of perovskite structure was confirmed by X-ray diffraction measurement which confirmed that MABiH perovskite films were in hexagonal symmetry with polycrystalline nature. The prepared perovskite nanoparticles were deposited on mesoporous TiO2-coated FTO substrates through the spin coating technique and doctor blade method. Morphology analysis of MABiH perovskite revealed the formation of an orange Lily-like structure with higher surface coverage. Lead-free mesoporous perovskite solar cells prepared using MABiH perovskite material with carbon as hole extraction layer showed a maximum power conversion efficiency (PCE) of 0.004 %, with short circuit current density of 89 μA/cm2, open circuit voltage of 0.12 V and fill factor of 38 %. These results allow us to step toward fabricating bulk MABiH lead-free perovskite solar cells.


Corresponding author: Pavithrakumar Palanichamy, Department of Physics, Erode Sengunthar Engineering College, Perundurai, 638057, Tamil Nadu, India, E-mail:

  1. Research ethics: The research work submitted here is done by the author and the data are original.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors gratefully acknowledge the financial support provided by the TEQIP–III, Government of India and Western Norway University of Applied Sciences Bergen, Norway (Indo-Norwegian Collaborative Project – UTFORSK-10051).

  7. Data availability: The data analyzed during the current study are available from corresponding author on reasonable request.

References

1. Sanders, S.; Stümmler, D.; Pfeiffer, P.; Ackermann, N.; Schimkat, F.; Simkus, G.; Heuken, M.; Baumann, P. K.; Vescan, A.; Kalisch, H. Morphology Control of Organic–Inorganic Bismuth-Based Perovskites for Solar Cell Application. Phys. Status Solidi Appl. Mater. Sci. 2018, 215, 1–6; https://doi.org/10.1002/pssa.201800409.Search in Google Scholar

2. Waykar, R.; Bhorde, A.; Nair, S.; Pandharkar, S.; Gabhale, B.; Aher, R.; Rondiya, S.; Waghmare, A.; Doiphode, V.; Punde, A.; Vairale, P.; Prasad, M.; Jadkar, S. Environmentally Stable Lead-free Cesium Bismuth Iodide (Cs3Bi2I9) Perovskite: Synthesis to Solar Cell Application. J. Phys. Chem. Solids 2020, 146, 109608; https://doi.org/10.1016/j.jpcs.2020.109608.Search in Google Scholar

3. Bator, G.; Jakubas, R.; Baran, J.; Ratajczak, H. Infrared Studies of Structural Phase Transitions in (CH3NH3)3Bi2I9 (MAIB). J. Mol. Struct. 1994, 325, 45–51; https://doi.org/10.1016/0022-2860(94)80016-2.Search in Google Scholar

4. Wang, H.; Tian, J.; Jiang, K.; Zhang, Y.; Fan, H.; Huang, J.; Yang, L. M.; Guan, B.; Song, Y. Fabrication of Methylammonium Bismuth Iodide Through Interdiffusion of Solution-Processed BiI3/CH3NH3I Stacking Layers. RSC Adv. 2017, 7, 43826–43830; https://doi.org/10.1039/c7ra07123j.Search in Google Scholar

5. Mariyappan, P.; Pandian, M. G. M.; Chowdhury, T. H.; Babu, S. M.; Subashchandran, S. Investigations on the Stability of the Ambient Processed Bismuth Based Lead-free A3Bi2I9 (A = MA; Cs) Perovskite Thin-Films for Optoelectronic Applications. Mater. Sci. Eng. B 2023, 297, 116706; https://doi.org/10.1016/j.mseb.2023.116706.Search in Google Scholar

6. Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K. H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent Advancements in Supercapacitor Technology. Nano Energy 2018, 52, 441–473; https://doi.org/10.1016/j.nanoen.2018.08.013.Search in Google Scholar

7. Srivastava, A.; Satrughna, J. A. K.; Tiwari, M. K.; Kanwade, A.; Yadav, S. C.; Bala, K.; Shirage, P. M. Lead Metal Halide Perovskite Solar Cells: Fabrication, Advancement Strategies, Alternatives, and Future Perspectives. Mater. Today Commun. 2023, 35, 105686; https://doi.org/10.1016/j.mtcomm.2023.105686.Search in Google Scholar

8. Yuan, Y.; Robertson, N. A Bismuth Silver Pnictohalide Alternative to Perovskite in Fully-Printable Triple-Mesoscopic Solar Cells. Sustain. Energy Fuels 2023, 7, 1067–1076; https://doi.org/10.1039/d2se01324j.Search in Google Scholar

9. Podapangi, S. K.; Jafarzadeh, F.; Mattiello, S.; Korukonda, T. B.; Singh, A.; Beverina, L.; Brown, T. M. Green Solvents, Materials, and Lead-Free Semiconductors for Sustainable Fabrication of Perovskite Solar Cells. RSC Adv. 2023, 13, 18165–18206; https://doi.org/10.1039/d3ra01692g.Search in Google Scholar PubMed PubMed Central

10. Que, M.; Zhang, B.; Chen, J.; Yin, X.; Yun, S. Carbon-Based Electrodes for Perovskite Solar Cells. Mater. Adv. 2021, 2, 5560–5579; https://doi.org/10.1039/d1ma00352f.Search in Google Scholar

11. Ju, M. G.; Dai, J.; Ma, L.; Zeng, X. C. Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. J. Am. Chem. Soc. 2017, 139, 8038–8043; https://doi.org/10.1021/jacs.7b04219.Search in Google Scholar PubMed

12. Zi, W.; Ren, X.; Ren, X.; Wei, Q.; Gao, F.; Liu, S. F. Perovskite/Germanium Tandem: A Potential High Efficiency Thin Film Solar Cell Design. Opt. Commun. 2016, 380, 1–5; https://doi.org/10.1016/j.optcom.2016.05.074.Search in Google Scholar

13. Hebig, J. C.; Kühn, I.; Flohre, J.; Kirchartz, T. Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications. ACS Energy Lett. 2016, 1, 309–314; https://doi.org/10.1021/acsenergylett.6b00170.Search in Google Scholar

14. Benabdallah, I.; Boujnah, M.; El Kenz, A.; Benyoussef, A.; Abatal, M.; Bassam, A. Lead-Free Perovskite Based Bismuth for Solar Cells Absorbers. J. Alloys Compd. 2019, 773, 796–801; https://doi.org/10.1016/j.jallcom.2018.09.332.Search in Google Scholar

15. Boopathi, K. M.; Karuppuswamy, P.; Singh, A.; Hanmandlu, C.; Lin, L.; Abbas, S. A.; Chang, C. C.; Wang, P. C.; Chu, C. W. Solution-Processable Antimony-Based Light-Absorbing Materials Beyond Lead Halide Perovskites. J. Mater. Chem. A 2017, 5, 20843–20850; https://doi.org/10.1039/c7ta06679a.Search in Google Scholar

16. Okano, T.; Suzuki, Y. Gas-Assisted Coating of Bi-Based (CH3NH3)3Bi2I9 Active Layer in Perovskite Solar Cells. Mater. Lett. 2017, 191, 77–79; https://doi.org/10.1016/j.matlet.2017.01.047.Search in Google Scholar

17. Park, B. W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application. Adv. Mater. 2015, 27, 6806–6813; https://doi.org/10.1002/adma.201501978.Search in Google Scholar PubMed

18. Pitchaiya, S.; Eswaramoorthy, N.; Natarajan, M.; Santhanam, A.; Ramakrishnan, V. M.; Asokan, V.; Palanichamy, P.; Palanisamy, B.; Kalimuthu, A.; Velauthapillai, D. Interfacing Green Synthesized Flake Like-ZnO with TiO2 for Bilayer Electron Extraction in Perovskite Solar Cells. New J. Chem. 2020, 44, 8422–8433; https://doi.org/10.1039/d0nj01559h.Search in Google Scholar

19. Wang, L.; Li, G. R.; Zhao, Q.; Gao, X. P. Non-Precious Transition Metals as Counter Electrode of Perovskite Solar Cells. Energy Storage Mater 2017, 7, 40–47; https://doi.org/10.1016/j.ensm.2016.11.007.Search in Google Scholar

20. Masawa, S. M.; Zhao, C.; Liu, J.; Xu, J.; Yao, J. Fabrication and Characterization of a Lead-Free Cesium Bismuth Iodide Perovskite through Antisolvent-Assisted Crystallization. Nanomaterials 2024, 14; https://doi.org/10.3390/nano14070626.Search in Google Scholar PubMed PubMed Central

21. Pantaler, M.; Cho, K. T.; Queloz, V. I. E.; García Benito, I.; Fettkenhauer, C.; Anusca, I.; Nazeeruddin, M. K.; Lupascu, D. C.; Grancini, G. Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. ACS Energy Lett. 2018, 3, 1781–1786; https://doi.org/10.1021/acsenergylett.8b00871.Search in Google Scholar

22. Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7; https://doi.org/10.3390/gels7040275.Search in Google Scholar PubMed PubMed Central

23. Hoye, R. L. Z.; Brandt, R. E.; Osherov, A.; Stevanović, V.; Stranks, S. D.; Wilson, M. W. B.; Kim, H.; Akey, A. J.; Perkins, J. D.; Kurchin, R. C.; Poindexter, J. R.; Wang, E. N.; Bawendi, M. G.; Bulović, V.; Buonassisi, T. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber. Chem. - A Eur. J. 2016, 22, 2605–2610; https://doi.org/10.1002/chem.201505055.Search in Google Scholar PubMed

24. Dey, P.; Khorwal, V.; Sen, P.; Biswas, K.; Maiti, T. Spectral Studies of Lead-Free Organic-Inorganic Hybrid Solid-State Perovskites CH3NH3Bi2/3I3 and CH3NH3Pb1/2Bi1/3I3: Potential Photo Absorbers. ChemistrySelect 2018, 3, 794–800; https://doi.org/10.1002/slct.201702745.Search in Google Scholar

25. Jain, S. M.; Phuyal, D.; Davies, M. L.; Li, M.; Philippe, B.; De Castro, C.; Qiu, Z.; Kim, J.; Watson, T.; Tsoi, W. C.; Karis, O.; Rensmo, H.; Boschloo, G.; Edvinsson, T.; Durrant, J. R. An Effective Approach of Vapour Assisted Morphological Tailoring for Reducing Metal Defect Sites in Lead-free, (CH3NH3)3Bi2I9 Bismuth-Based Perovskite Solar Cells for Improved Performance and Long-Term Stability. Nano Energy 2018, 49, 614–624; https://doi.org/10.1016/j.nanoen.2018.05.003.Search in Google Scholar

26. Nelson, R. D.; Santra, K.; Wang, Y.; Hadi, A.; Petrich, J. W.; Panthani, M. G. Synthesis and Optical Properties of Ordered-Vacancy Perovskite Cesium Bismuth Halide Nanocrystals. Chem. Commun. 2018, 54, 3640–3643; https://doi.org/10.1039/c7cc07223f.Search in Google Scholar PubMed

27. Stümmler, D.; Sanders, S.; Gerstenberger, F.; Pfeiffer, P.; Simkus, G.; Baumann, P. K.; Heuken, M.; Vescan, A.; Kalisch, H. Reaction Engineering of CVD Methylammonium Bismuth Iodide Layers for Photovoltaic Applications. J. Mater. Res. 2019, 34, 608–615; https://doi.org/10.1557/jmr.2018.497.Search in Google Scholar

28. Jin, Z.; Zhang, Z.; Xiu, J.; Song, H.; Gatti, T.; He, Z. A Critical Review on Bismuth and Antimony Halide Based Perovskites and Their Derivatives for Photovoltaic Applications: Recent Advances and Challenges. J. Mater. Chem. A 2020, 8, 16166–16188; https://doi.org/10.1039/d0ta05433j.Search in Google Scholar

29. Zhang, Y.; Pathak, R.; Zheng, D.; Cheng, P.; Chen, T.; Chen, X.; Wei, K.; Wang, R.; Wu, F. Synthesis of Cesium Bismuth Iodide Perovskite Using Toluene as Anti-solvent with Higher Photocurrent Response. Mater. Lett. 2022, 310, 131514; https://doi.org/10.1016/j.matlet.2021.131514.Search in Google Scholar

30. Chandra, P.; Saha, S.; Mandal, S. K. A Dielectric Study of Br-Doped Lead-free Methylammonium Bismuth Chloride (CH3NH3)3Bi2BrxCl9−x. Appl. Phys. A Mater. Sci. Process. 2022, 128, 1–10; https://doi.org/10.1007/s00339-022-05677-9.Search in Google Scholar

31. Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Madurai Ramakrishnan, V.; Selvaraj, Y.; Yuvapragasam, A.; Rangasamy, B.; Sundaram, S.; Velauthapillai, D. The Performance of CH3NH3PbI3 - Nanoparticles Based – Perovskite Solar Cells Fabricated by Facile Powder Press Technique. Mater. Res. Bull. 2018, 108, 61–72; https://doi.org/10.1016/j.materresbull.2018.08.022.Search in Google Scholar

32. Chen, M.; Wan, L.; Kong, M.; Hu, H.; Gan, Y.; Wang, J.; Chen, F.; Guo, Z.; Eder, D.; Wang, S. Influence of Rutile-TiO2 Nanorod Arrays on Pb-free (CH3NH3)3Bi2I9-Based Hybrid Perovskite Solar Cells Fabricated through Two-Step Sequential Solution Process. J. Alloys Compd. 2018, 738, 422–431; https://doi.org/10.1016/j.jallcom.2017.12.188.Search in Google Scholar

33. Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D. M.; Carpenter, M. A.; Bristowe, P. D.; Cheetham, A. K. The Synthesis, Structure and Electronic Properties of a Lead-Free Hybrid Inorganic-Organic Double Perovskite (MA)2KBiCl6 (MA = Methylammonium). Mater. Horizons 2016, 3, 328–332; https://doi.org/10.1039/c6mh00053c.Search in Google Scholar

34. Abulikemu, M.; Ould-Chikh, S.; Miao, X.; Alarousu, E.; Murali, B.; Ngongang Ndjawa, G. O.; Barbé, J.; El Labban, A.; Amassian, A.; Del Gobbo, S. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A 2016, 4, 12504–12515; https://doi.org/10.1039/c6ta04657f.Search in Google Scholar

35. Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3Bi2I9 for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2016, 8, 14542–14547; https://doi.org/10.1021/acsami.6b02843.Search in Google Scholar PubMed

36. Kwak, C. K.; Barrows, A. T.; Pearson, A. J.; Lidzey, D. G.; Dunbar, A. D. F. An X-Ray Scattering and Electron Microscopy Study of Methylammonium Bismuth Perovskites for Solar Cell Applications. J. Mater. Res. 2017, 32, 1888–1898; https://doi.org/10.1557/jmr.2016.499.Search in Google Scholar

37. Sun, S.; Tominaka, S.; Lee, J. H.; Xie, F.; Bristowe, P. D.; Cheetham, A. K. Synthesis, Crystal Structure and Properties of a Perovskite-Related Bismuth Phase. (NH4)3Bi2I9. APL Mater. 2016, 4 (3), 031101; https://doi.org/10.1063/1.4943680.Search in Google Scholar

38. Bresolin, B. M.; Hammouda, S. B.; Sillanpää, M. Methylammonium Iodo Bismuthate Perovskite (CH3NH3)3Bi2I9 as New Effective Visible Light-Responsive Photocatalyst for Degradation of Environment Pollutants. J. Photochem. Photobiol. A Chem. 2019, 376, 116–126; https://doi.org/10.1016/j.jphotochem.2019.03.009.Search in Google Scholar

39. Khadka, D. B.; Shirai, Y.; Yanagida, M.; Miyano, K. Tailoring the Film Morphology and Interface Band Offset of Caesium Bismuth Iodide-Based Pb-free Perovskite Solar Cells. J. Mater. Chem. C 2019, 7, 8335–8343; https://doi.org/10.1039/c9tc02181g.Search in Google Scholar

40. Jain, S. M.; Edvinsson, T.; Durrant, J. R. Green Fabrication of Stable Lead-free Bismuth Based Perovskite Solar Cells Using a Non-toxic Solvent. Commun. Chem. 2019, 2, 1–7; https://doi.org/10.1038/s42004-019-0195-3.Search in Google Scholar

Received: 2024-03-03
Accepted: 2024-10-30
Published Online: 2024-12-10
Published in Print: 2025-08-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0744/html?lang=en
Scroll to top button