Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
-
Pavithrakumar Palanichamy
, Venkatraman Madurai Ramakrishnan
, Rajesh Govindaraj
, Agilan Santhanam
und Dhayalan Velauthapillai
Abstract
Bismuth is one of the promising elements that can replace toxic lead in perovskite solar cells. However, surface roughness and inhomogeneous morphology with voids on the bismuth perovskite films limits their photovoltaic performance. In the present work, a scalable doctor-blade technique is employed to prepare perovskite thin film with high surface coverage. Methylammonium bismuth halide (MABiH) ((CH3NH3)3Bi2ClxI9-x) nanoparticles were synthesized by conventional sol-gel technique. The formation of perovskite structure was confirmed by X-ray diffraction measurement which confirmed that MABiH perovskite films were in hexagonal symmetry with polycrystalline nature. The prepared perovskite nanoparticles were deposited on mesoporous TiO2-coated FTO substrates through the spin coating technique and doctor blade method. Morphology analysis of MABiH perovskite revealed the formation of an orange Lily-like structure with higher surface coverage. Lead-free mesoporous perovskite solar cells prepared using MABiH perovskite material with carbon as hole extraction layer showed a maximum power conversion efficiency (PCE) of 0.004 %, with short circuit current density of 89 μA/cm2, open circuit voltage of 0.12 V and fill factor of 38 %. These results allow us to step toward fabricating bulk MABiH lead-free perovskite solar cells.
-
Research ethics: The research work submitted here is done by the author and the data are original.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors gratefully acknowledge the financial support provided by the TEQIP–III, Government of India and Western Norway University of Applied Sciences Bergen, Norway (Indo-Norwegian Collaborative Project – UTFORSK-10051).
-
Data availability: The data analyzed during the current study are available from corresponding author on reasonable request.
References
1. Sanders, S.; Stümmler, D.; Pfeiffer, P.; Ackermann, N.; Schimkat, F.; Simkus, G.; Heuken, M.; Baumann, P. K.; Vescan, A.; Kalisch, H. Morphology Control of Organic–Inorganic Bismuth-Based Perovskites for Solar Cell Application. Phys. Status Solidi Appl. Mater. Sci. 2018, 215, 1–6; https://doi.org/10.1002/pssa.201800409.Suche in Google Scholar
2. Waykar, R.; Bhorde, A.; Nair, S.; Pandharkar, S.; Gabhale, B.; Aher, R.; Rondiya, S.; Waghmare, A.; Doiphode, V.; Punde, A.; Vairale, P.; Prasad, M.; Jadkar, S. Environmentally Stable Lead-free Cesium Bismuth Iodide (Cs3Bi2I9) Perovskite: Synthesis to Solar Cell Application. J. Phys. Chem. Solids 2020, 146, 109608; https://doi.org/10.1016/j.jpcs.2020.109608.Suche in Google Scholar
3. Bator, G.; Jakubas, R.; Baran, J.; Ratajczak, H. Infrared Studies of Structural Phase Transitions in (CH3NH3)3Bi2I9 (MAIB). J. Mol. Struct. 1994, 325, 45–51; https://doi.org/10.1016/0022-2860(94)80016-2.Suche in Google Scholar
4. Wang, H.; Tian, J.; Jiang, K.; Zhang, Y.; Fan, H.; Huang, J.; Yang, L. M.; Guan, B.; Song, Y. Fabrication of Methylammonium Bismuth Iodide Through Interdiffusion of Solution-Processed BiI3/CH3NH3I Stacking Layers. RSC Adv. 2017, 7, 43826–43830; https://doi.org/10.1039/c7ra07123j.Suche in Google Scholar
5. Mariyappan, P.; Pandian, M. G. M.; Chowdhury, T. H.; Babu, S. M.; Subashchandran, S. Investigations on the Stability of the Ambient Processed Bismuth Based Lead-free A3Bi2I9 (A = MA; Cs) Perovskite Thin-Films for Optoelectronic Applications. Mater. Sci. Eng. B 2023, 297, 116706; https://doi.org/10.1016/j.mseb.2023.116706.Suche in Google Scholar
6. Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K. H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent Advancements in Supercapacitor Technology. Nano Energy 2018, 52, 441–473; https://doi.org/10.1016/j.nanoen.2018.08.013.Suche in Google Scholar
7. Srivastava, A.; Satrughna, J. A. K.; Tiwari, M. K.; Kanwade, A.; Yadav, S. C.; Bala, K.; Shirage, P. M. Lead Metal Halide Perovskite Solar Cells: Fabrication, Advancement Strategies, Alternatives, and Future Perspectives. Mater. Today Commun. 2023, 35, 105686; https://doi.org/10.1016/j.mtcomm.2023.105686.Suche in Google Scholar
8. Yuan, Y.; Robertson, N. A Bismuth Silver Pnictohalide Alternative to Perovskite in Fully-Printable Triple-Mesoscopic Solar Cells. Sustain. Energy Fuels 2023, 7, 1067–1076; https://doi.org/10.1039/d2se01324j.Suche in Google Scholar
9. Podapangi, S. K.; Jafarzadeh, F.; Mattiello, S.; Korukonda, T. B.; Singh, A.; Beverina, L.; Brown, T. M. Green Solvents, Materials, and Lead-Free Semiconductors for Sustainable Fabrication of Perovskite Solar Cells. RSC Adv. 2023, 13, 18165–18206; https://doi.org/10.1039/d3ra01692g.Suche in Google Scholar PubMed PubMed Central
10. Que, M.; Zhang, B.; Chen, J.; Yin, X.; Yun, S. Carbon-Based Electrodes for Perovskite Solar Cells. Mater. Adv. 2021, 2, 5560–5579; https://doi.org/10.1039/d1ma00352f.Suche in Google Scholar
11. Ju, M. G.; Dai, J.; Ma, L.; Zeng, X. C. Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. J. Am. Chem. Soc. 2017, 139, 8038–8043; https://doi.org/10.1021/jacs.7b04219.Suche in Google Scholar PubMed
12. Zi, W.; Ren, X.; Ren, X.; Wei, Q.; Gao, F.; Liu, S. F. Perovskite/Germanium Tandem: A Potential High Efficiency Thin Film Solar Cell Design. Opt. Commun. 2016, 380, 1–5; https://doi.org/10.1016/j.optcom.2016.05.074.Suche in Google Scholar
13. Hebig, J. C.; Kühn, I.; Flohre, J.; Kirchartz, T. Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications. ACS Energy Lett. 2016, 1, 309–314; https://doi.org/10.1021/acsenergylett.6b00170.Suche in Google Scholar
14. Benabdallah, I.; Boujnah, M.; El Kenz, A.; Benyoussef, A.; Abatal, M.; Bassam, A. Lead-Free Perovskite Based Bismuth for Solar Cells Absorbers. J. Alloys Compd. 2019, 773, 796–801; https://doi.org/10.1016/j.jallcom.2018.09.332.Suche in Google Scholar
15. Boopathi, K. M.; Karuppuswamy, P.; Singh, A.; Hanmandlu, C.; Lin, L.; Abbas, S. A.; Chang, C. C.; Wang, P. C.; Chu, C. W. Solution-Processable Antimony-Based Light-Absorbing Materials Beyond Lead Halide Perovskites. J. Mater. Chem. A 2017, 5, 20843–20850; https://doi.org/10.1039/c7ta06679a.Suche in Google Scholar
16. Okano, T.; Suzuki, Y. Gas-Assisted Coating of Bi-Based (CH3NH3)3Bi2I9 Active Layer in Perovskite Solar Cells. Mater. Lett. 2017, 191, 77–79; https://doi.org/10.1016/j.matlet.2017.01.047.Suche in Google Scholar
17. Park, B. W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application. Adv. Mater. 2015, 27, 6806–6813; https://doi.org/10.1002/adma.201501978.Suche in Google Scholar PubMed
18. Pitchaiya, S.; Eswaramoorthy, N.; Natarajan, M.; Santhanam, A.; Ramakrishnan, V. M.; Asokan, V.; Palanichamy, P.; Palanisamy, B.; Kalimuthu, A.; Velauthapillai, D. Interfacing Green Synthesized Flake Like-ZnO with TiO2 for Bilayer Electron Extraction in Perovskite Solar Cells. New J. Chem. 2020, 44, 8422–8433; https://doi.org/10.1039/d0nj01559h.Suche in Google Scholar
19. Wang, L.; Li, G. R.; Zhao, Q.; Gao, X. P. Non-Precious Transition Metals as Counter Electrode of Perovskite Solar Cells. Energy Storage Mater 2017, 7, 40–47; https://doi.org/10.1016/j.ensm.2016.11.007.Suche in Google Scholar
20. Masawa, S. M.; Zhao, C.; Liu, J.; Xu, J.; Yao, J. Fabrication and Characterization of a Lead-Free Cesium Bismuth Iodide Perovskite through Antisolvent-Assisted Crystallization. Nanomaterials 2024, 14; https://doi.org/10.3390/nano14070626.Suche in Google Scholar PubMed PubMed Central
21. Pantaler, M.; Cho, K. T.; Queloz, V. I. E.; García Benito, I.; Fettkenhauer, C.; Anusca, I.; Nazeeruddin, M. K.; Lupascu, D. C.; Grancini, G. Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. ACS Energy Lett. 2018, 3, 1781–1786; https://doi.org/10.1021/acsenergylett.8b00871.Suche in Google Scholar
22. Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7; https://doi.org/10.3390/gels7040275.Suche in Google Scholar PubMed PubMed Central
23. Hoye, R. L. Z.; Brandt, R. E.; Osherov, A.; Stevanović, V.; Stranks, S. D.; Wilson, M. W. B.; Kim, H.; Akey, A. J.; Perkins, J. D.; Kurchin, R. C.; Poindexter, J. R.; Wang, E. N.; Bawendi, M. G.; Bulović, V.; Buonassisi, T. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber. Chem. - A Eur. J. 2016, 22, 2605–2610; https://doi.org/10.1002/chem.201505055.Suche in Google Scholar PubMed
24. Dey, P.; Khorwal, V.; Sen, P.; Biswas, K.; Maiti, T. Spectral Studies of Lead-Free Organic-Inorganic Hybrid Solid-State Perovskites CH3NH3Bi2/3I3 and CH3NH3Pb1/2Bi1/3I3: Potential Photo Absorbers. ChemistrySelect 2018, 3, 794–800; https://doi.org/10.1002/slct.201702745.Suche in Google Scholar
25. Jain, S. M.; Phuyal, D.; Davies, M. L.; Li, M.; Philippe, B.; De Castro, C.; Qiu, Z.; Kim, J.; Watson, T.; Tsoi, W. C.; Karis, O.; Rensmo, H.; Boschloo, G.; Edvinsson, T.; Durrant, J. R. An Effective Approach of Vapour Assisted Morphological Tailoring for Reducing Metal Defect Sites in Lead-free, (CH3NH3)3Bi2I9 Bismuth-Based Perovskite Solar Cells for Improved Performance and Long-Term Stability. Nano Energy 2018, 49, 614–624; https://doi.org/10.1016/j.nanoen.2018.05.003.Suche in Google Scholar
26. Nelson, R. D.; Santra, K.; Wang, Y.; Hadi, A.; Petrich, J. W.; Panthani, M. G. Synthesis and Optical Properties of Ordered-Vacancy Perovskite Cesium Bismuth Halide Nanocrystals. Chem. Commun. 2018, 54, 3640–3643; https://doi.org/10.1039/c7cc07223f.Suche in Google Scholar PubMed
27. Stümmler, D.; Sanders, S.; Gerstenberger, F.; Pfeiffer, P.; Simkus, G.; Baumann, P. K.; Heuken, M.; Vescan, A.; Kalisch, H. Reaction Engineering of CVD Methylammonium Bismuth Iodide Layers for Photovoltaic Applications. J. Mater. Res. 2019, 34, 608–615; https://doi.org/10.1557/jmr.2018.497.Suche in Google Scholar
28. Jin, Z.; Zhang, Z.; Xiu, J.; Song, H.; Gatti, T.; He, Z. A Critical Review on Bismuth and Antimony Halide Based Perovskites and Their Derivatives for Photovoltaic Applications: Recent Advances and Challenges. J. Mater. Chem. A 2020, 8, 16166–16188; https://doi.org/10.1039/d0ta05433j.Suche in Google Scholar
29. Zhang, Y.; Pathak, R.; Zheng, D.; Cheng, P.; Chen, T.; Chen, X.; Wei, K.; Wang, R.; Wu, F. Synthesis of Cesium Bismuth Iodide Perovskite Using Toluene as Anti-solvent with Higher Photocurrent Response. Mater. Lett. 2022, 310, 131514; https://doi.org/10.1016/j.matlet.2021.131514.Suche in Google Scholar
30. Chandra, P.; Saha, S.; Mandal, S. K. A Dielectric Study of Br-Doped Lead-free Methylammonium Bismuth Chloride (CH3NH3)3Bi2BrxCl9−x. Appl. Phys. A Mater. Sci. Process. 2022, 128, 1–10; https://doi.org/10.1007/s00339-022-05677-9.Suche in Google Scholar
31. Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Madurai Ramakrishnan, V.; Selvaraj, Y.; Yuvapragasam, A.; Rangasamy, B.; Sundaram, S.; Velauthapillai, D. The Performance of CH3NH3PbI3 - Nanoparticles Based – Perovskite Solar Cells Fabricated by Facile Powder Press Technique. Mater. Res. Bull. 2018, 108, 61–72; https://doi.org/10.1016/j.materresbull.2018.08.022.Suche in Google Scholar
32. Chen, M.; Wan, L.; Kong, M.; Hu, H.; Gan, Y.; Wang, J.; Chen, F.; Guo, Z.; Eder, D.; Wang, S. Influence of Rutile-TiO2 Nanorod Arrays on Pb-free (CH3NH3)3Bi2I9-Based Hybrid Perovskite Solar Cells Fabricated through Two-Step Sequential Solution Process. J. Alloys Compd. 2018, 738, 422–431; https://doi.org/10.1016/j.jallcom.2017.12.188.Suche in Google Scholar
33. Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D. M.; Carpenter, M. A.; Bristowe, P. D.; Cheetham, A. K. The Synthesis, Structure and Electronic Properties of a Lead-Free Hybrid Inorganic-Organic Double Perovskite (MA)2KBiCl6 (MA = Methylammonium). Mater. Horizons 2016, 3, 328–332; https://doi.org/10.1039/c6mh00053c.Suche in Google Scholar
34. Abulikemu, M.; Ould-Chikh, S.; Miao, X.; Alarousu, E.; Murali, B.; Ngongang Ndjawa, G. O.; Barbé, J.; El Labban, A.; Amassian, A.; Del Gobbo, S. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A 2016, 4, 12504–12515; https://doi.org/10.1039/c6ta04657f.Suche in Google Scholar
35. Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3Bi2I9 for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2016, 8, 14542–14547; https://doi.org/10.1021/acsami.6b02843.Suche in Google Scholar PubMed
36. Kwak, C. K.; Barrows, A. T.; Pearson, A. J.; Lidzey, D. G.; Dunbar, A. D. F. An X-Ray Scattering and Electron Microscopy Study of Methylammonium Bismuth Perovskites for Solar Cell Applications. J. Mater. Res. 2017, 32, 1888–1898; https://doi.org/10.1557/jmr.2016.499.Suche in Google Scholar
37. Sun, S.; Tominaka, S.; Lee, J. H.; Xie, F.; Bristowe, P. D.; Cheetham, A. K. Synthesis, Crystal Structure and Properties of a Perovskite-Related Bismuth Phase. (NH4)3Bi2I9. APL Mater. 2016, 4 (3), 031101; https://doi.org/10.1063/1.4943680.Suche in Google Scholar
38. Bresolin, B. M.; Hammouda, S. B.; Sillanpää, M. Methylammonium Iodo Bismuthate Perovskite (CH3NH3)3Bi2I9 as New Effective Visible Light-Responsive Photocatalyst for Degradation of Environment Pollutants. J. Photochem. Photobiol. A Chem. 2019, 376, 116–126; https://doi.org/10.1016/j.jphotochem.2019.03.009.Suche in Google Scholar
39. Khadka, D. B.; Shirai, Y.; Yanagida, M.; Miyano, K. Tailoring the Film Morphology and Interface Band Offset of Caesium Bismuth Iodide-Based Pb-free Perovskite Solar Cells. J. Mater. Chem. C 2019, 7, 8335–8343; https://doi.org/10.1039/c9tc02181g.Suche in Google Scholar
40. Jain, S. M.; Edvinsson, T.; Durrant, J. R. Green Fabrication of Stable Lead-free Bismuth Based Perovskite Solar Cells Using a Non-toxic Solvent. Commun. Chem. 2019, 2, 1–7; https://doi.org/10.1038/s42004-019-0195-3.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”