Startseite Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile

  • Rangarajan Nagalakshmi , Vadivel Balachandran EMAIL logo , Badiadka Narayana , Fahd Alharethy und Sivasubramani Divya
Veröffentlicht/Copyright: 3. Februar 2025

Abstract

A novel crystal of the pyridine derivative is 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1- isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile (AHMIPC). It has been synthesized and studied by computational and experimental methods. We conducted the quantum chemical investigation using DFT calculations that employed two different basis sets. The molecule under review’s potential energy distribution (PED) was determined using VEDA4 analysis. The study’s findings have been correlated to the observed FT-IR and FT-Raman spectra. Nuclear magnetic resonance (NMR) determined the molecule’s carbon (13C) and proton (1H) chemical shifts. We looked at the Local Orbital Locator (LOL) and Electron Localization Function (ELF) methods to figure out how many electrons were in the chemical’s bonding and anti-bonding regions. The reduced density gradient (RDG) has provided further characterization of the non-covalent interactions (NCI). We estimated the ultraviolet (UV) visible spectrum using the time-dependent (TD) DFT method, and demonstrated the changes in electronic structure involved in the compound’s gaseous phase by comparing the estimated and observed spectra. The compound’s stability and the redistribution of charges were evaluated through Natural Bond Orbital (NBO) studies. A comprehensive investigation of the MEP for the title molecule has been carried out using quantum chemical calculations. Reports are made on the HUMO-LUMO gap and other electronic properties. The potential biological activities of the AHMIPC compound were supported by the Bioactivity Score, Drug-Likeness, and ADMET studies, which also sparked interest in developing it as a viable candidate. The pharmacokinetics and drug ability of AHMIPC are flawless. Using molecular docking analysis to investigate antineoplastic (solid tumour) activity, it was found that the AHMIPC molecule can function as a potent lung cancer inhibitor.


Corresponding author: Vadivel Balachandran, Department of Physics, Arignar Anna Government Arts College (affiliated to Bharathidasan University), Musiri, Tiruchirappalli, 621 211, India, E-mail:

Acknowledgments

The author, RN thanks Arignar Anna Government Arts College for providing the facility. The Authors extend their thanks to the Researchers Supporting Project Number (RSP2025R160), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have read and agreed to the published version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  6. Research funding: The author, RN thanks Arignar Anna Government Arts College for providing the facility. The Authors extend their thanks to the Researchers Supporting Project Number (RSP2025R160), King Saud University, Riyadh, Saudi Arabia.

  7. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Kumar, A. D.; Vivek, H. K.; Srinivasan, B.; Naveen, S.; Kumara, K.; Lokanath, N. K.; Byrappa, K.; Kumar, K. A. Design, Synthesis, Characterization, Crystal Structure, Hirshfeld Surface Analysis, DFT Calculations, Anticancer, Angiogenic Properties of New Pyrazole Carboxamide Derivatives. J. Mol. Struct. 2021, 1235; https://doi.org/10.1016/j.molstruc.2021.130271.Suche in Google Scholar

2. Helal, M. H.; El-Awdan, S.; Salem, M.; Abd-elaziz, T.; Moahamed, Y.; El-Sherif, A.; Mohamed, G. Synthesis, Biological Evaluation and Molecular Modeling of Novel Series of Pyridine Derivatives as Anticancer, Anti-inflammatory and Analgesic Agents. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 764–773; https://doi.org/10.1016/j.saa.2014.06.145.Suche in Google Scholar PubMed

3. Sharma, S.; Kumar, D.; Singh, G.; Monga, V.; Kumar, B. Recent Advancements in the Development of Heterocyclic Anti-inflammatory Agents. Eur. J. Med. Chem. 2020, 200; https://doi.org/10.1016/j.ejmech.2020.112438.Suche in Google Scholar PubMed

4. Yerragunta, V.; Suman, D.; Swamy, K.; Anusha, V.; Patil, P.; Naresh, M. Pyrazole and its Biological Activity, 2014. [Online]. Available: https://www.researchgate.net/publication/281611182.Suche in Google Scholar

5. Pillai, A. D.; Rathod, P. D.; Px, F.; Patel, M.; Nivsarkar, M.; Vasu, K. K.; Padh, H.; Sudarsanam, V. Novel Drug Designing Approach for Dual Inhibitors as Anti-inflammatory Agents: Implication of Pyridine Template. Biochem. Biophys. Res. Commun. 2003, 301 (1), 183–186; https://doi.org/10.1016/S0006-291X(02)02996-0.Suche in Google Scholar

6. Amr, A. G. E.; Abdulla, M. M. Anti-inflammatory Profile of Some Synthesized Heterocyclic Pyridone and Pyridine Derivatives Fused with Steroidal Structure. Bioorg. Med. Chem. 2006, 14 (13), 4341–4352; https://doi.org/10.1016/j.bmc.2006.02.045.Suche in Google Scholar PubMed

7. Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S. P.; Kumar, B. K.; Sankaranarayanan, M.; Faheem; Khanapure, S.; Barretto, D. A.; Vootla, S. K. Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies. ACS Omega 2020, 5 (39), 25228–25239; https://doi.org/10.1021/acsomega.0c03386.Suche in Google Scholar PubMed PubMed Central

8. Thomas, R.; Mary, Y. S.; Resmi, K.; Narayana, B.; Sarojini, B.; Vijayakumar, G.; Van Alsenoy, C. Two Neoteric Pyrazole Compounds as Potential Anti-cancer Agents: Synthesis, Electronic Structure, Physico-Chemical Properties and Docking Analysis. J. Mol. Struct. 2019, 1181, 455–466; https://doi.org/10.1016/j.molstruc.2019.01.003.Suche in Google Scholar

9. Chauhan, A.; Kaushik, N.; Sharma, P. K. Pyrazole: A Versatile Moiety, 2011. [Online]. Available: https://www.researchgate.net/publication/280016322.Suche in Google Scholar

10. Surendra Kumar, R.; Arif, I. A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and Antimicrobial Activities of Novel Pyrazole Analogues. Saudi J. Biol. Sci. 2016, 23 (5), 614–620; https://doi.org/10.1016/j.sjbs.2015.07.005.Suche in Google Scholar PubMed PubMed Central

11. Xia, T.; Hu, Z.; Ji, W.; Zhang, S.; Shi, H.; Liu, C.; Pang, B.; Liu, G.; Liao, X. Synthesis of Withasomnine and Pyrazole Derivatives: Via Intramolecular Dehydrogenative Cyclization, as Well as Biological Evaluation of Withasomnine-Based Scaffolds. Org. Chem. Front. 2018, 5 (5), 850–854; https://doi.org/10.1039/c7qo00847c.Suche in Google Scholar

12. Jayashree, A. Synthesis and Characterization of Heterocyclic Compounds through Multicomponent Reactions and Their Biological Applications; Mangalore University: Karnataka, 2020.Suche in Google Scholar

13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Foresman, J. B.; Ortiz, J. V, Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2013.Suche in Google Scholar

14. R., K. T. and M. J. (2009) G. V. V. 5. S. Inc., S. M. Dennington, Dennington, R.; Keith, T.; Millam, J. Gauss View, Version 5; Semichem Inc.: Shawnee Mission, 2009.Suche in Google Scholar

15. Jamróz, M. H. Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230; https://doi.org/10.1016/j.saa.2013.05.096.Suche in Google Scholar PubMed

16. Altürk, S.; Avcı, D.; Tamer, Ö.; Atalay, Y. 1H–pyrazole–3–carboxylic Acid: Experimental and Computational Study. J. Mol. Struct. 2018, 1164, 28–36; https://doi.org/10.1016/j.molstruc.2018.03.032.Suche in Google Scholar

17. Viji, A.; Balachandran, V.; Babiyana, S.; Narayana, B.; Salian, V. V. FT-IR and FT-Raman Investigation, Quantum Chemical Studies, Molecular Docking Study and Antimicrobial Activity Studies on Novel Bioactive Drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-Chlorophenyl)-5-(4-(propan-2-Yl)phenyl-4,5-Dihydro-1h-Pyrazol-1-Yl]-4-Oxo-4,5-Dihydro-1,3-Thiazol-5(4h)-Ylidence]-2,3-Dihydro-1h-Indol-2-One. J. Mol. Struct. 2020, 1215, 128244. https://doi.org/10.1016/j.molstruc.2020.128244.Suche in Google Scholar

18. Ayar, A.; Aksahin, M.; Mesci, S.; Yazgan, B.; Gül, M.; Yıldırım, T. Antioxidant, Cytotoxic Activity and Pharmacokinetic Studies by Swiss Adme, Molinspiration, Osiris and DFT of PhTAD-Substituted Dihydropyrrole Derivatives. Curr. Comput. Aided Drug Des. 2021, 18 (1), 52–63; https://doi.org/10.2174/1573409917666210223105722.Suche in Google Scholar PubMed

19. Abdelrheem, D. A.; Abd El-Mageed, H. R.; Mohamed, H. S.; Rahman, A. A.; Elsayed, K. N. M.; Ahmed, S. A. Bis-indole Alkaloid Caulerpin from a New Source Sargassum Platycarpum: Isolation, Characterization, In Vitro Anticancer Activity, Binding with Nucleobases by DFT Calculations and MD Simulation. J. Biomol. Struct. Dyn. 2021, 39 (14), 5137–5147; https://doi.org/10.1080/07391102.2020.1784285.Suche in Google Scholar PubMed

20. Jayavel, P.; Ramasamy, V.; Amaladoss, N.; Renganathan, V.; Shupeniuk, V. I. A Facile Synthesis, Characterization, DFT, ADMET and In-Silico Molecular Docking Analysis of Novel 4-ethyl Acridine-1,3,9 (2,4,10H)-Trione. Chem. Phys. Impact 2024, 8; https://doi.org/10.1016/j.chphi.2024.100476.Suche in Google Scholar

21. Khare, N.; Maheshwari, S. K.; Jha, A. K. Screening and Identification of Secondary Metabolites in the Bark of Bauhinia Variegata to Treat Alzheimer’s Disease by Using Molecular Docking and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2021, 39 (16), 5988–5998; https://doi.org/10.1080/07391102.2020.1796798.Suche in Google Scholar PubMed

22. Deghady, A. M.; Hussein, R. K.; Alhamzani, A. G.; Mera, A. Article Density Functional Theory and Molecular Docking Investigations of the Chemical and Antibacterial Activities for 1-(4-Hydroxyphenyl)-3-Phenylprop-2-En-1-One. Molecules 2021, 26 (12); https://doi.org/10.3390/molecules26123631.Suche in Google Scholar PubMed PubMed Central

23. Vijayakumar, R.; Viji, A.; Vanasundari, K.; Balachandran, V.; ArockiaDass, A. P. Molecular Docking and DFT Calculations of Anthracene: Insights from Quantum Chemical Methods. Cryst. Res. Technol. 2023, 59, 2300150. https://doi.org/10.1002/crat.202300150.Suche in Google Scholar

24. Shanmugapriya, N.; Balachandran, V.; Revathi, B.; Narayana, B.; Salian, V. V.; Vanasundari, K.; Sivakumar, C. Quantum Chemical Calculation, Performance of Selective Antimicrobial Activity Using Molecular Docking Analysis, RDG and Experimental (FT-IR, FT-Raman) Investigation of 4-[{2-[3-(4-Chlorophenyl)-5-(4-Propan-2-Yl) Phenyl)-4, 5-dihydro- 1H- Pyrazol-1-Yl]-4-Oxo-1, 3- Thiazol-5(4h)-Ylidene} Methyl] Benzonitrile. Heliyon 2021, 7 (7); https://doi.org/10.1016/j.heliyon.2021.e07634.Suche in Google Scholar PubMed PubMed Central

25. Viji, A.; Revathi, B.; Balachandran, V.; Babiyana, S.; Narayana, B.; Salian, V. V. Analysis of Spectroscopic, Quantum Chemical Calculations, Molecular Docking, RDG, ELF, Anticancer and Antimicrobial Activity Studies on Bioactive Molecule 2-[3-(4-Chlorophenyl)-5-(4-(propane-2-Yl) Phenyl-4,5-Dihydro-1h-Pyrazol-1-Yl]-4-(4-Methoxyphenyl)-1,3-Thiazol. Chem. Data Collect. 2020, 30; https://doi.org/10.1016/j.cdc.2020.100585.Suche in Google Scholar

26. Sivakumar, C.; Balachandran, V.; Narayana, B.; Salian, V. V.; Revathi, B.; Shanmugapriya, N.; Vanasundari, K. Molecular Spectroscopic Assembly of 3-(4-Chlorophenyl)-5-[4-(propane-2-Yl) Phenyl] 4, 5-dihydro-1H Pyrazole-1-Carbothioamide, Antimicrobial Potential and Molecular Docking Analysis. J. Mol. Struct. 2020, 1210; https://doi.org/10.1016/j.molstruc.2020.128005.Suche in Google Scholar

27. Sivakumar, C.; Revathi, B.; Balachandran, V.; Narayana, B.; Salian, V. V.; Shanmugapriya, N.; Vanasundari, K. Molecular Structure, Spectroscopic, Quantum Chemical, Topological, Molecular Docking and Antimicrobial Activity of 3-(4-Chlorophenyl)-5-[4-Propan-2-Yl) Phenyl-4, 5-Dihydro-1h-Pyrazol-1-Yl] (Pyridin-4-yl) Methanone. J. Mol. Struct. 2021, 1224; https://doi.org/10.1016/j.molstruc.2020.129286.Suche in Google Scholar

28. Zhao, N.; Akwataghibe, K.; Pompilius, A.; Shelly, E. 3,5-Di- Tert -butyl-1 H -Pyrazole-4-Carbonitrile. IUCrdata 2016, 1 (4); https://doi.org/10.1107/s2414314616006738.Suche in Google Scholar

29. Tan, M. Y.; Crouse, K. A.; Ravoof, T. B. S. A.; Jotani, M. M.; Tiekink, E. R. T. 3-{(E)-[4-(4-Hydroxy-3-methoxyphenyl)butan-2-ylidene]amino}-1-phenylurea: Crystal Structure and Hirshfeld Surface Analysis. Acta Crystallogr. E Crystallogr. Commun. 2018, 74, 21–27; https://doi.org/10.1107/S2056989017017273.Suche in Google Scholar PubMed PubMed Central

30. Zhao, P. H.; Jiang, S. L. 2-Isonicotinoyl-N-phenylhydrazinecarbothioamide Dimethylformamide Hemisolvate. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67 (5); https://doi.org/10.1107/S1600536811011950.Suche in Google Scholar PubMed PubMed Central

31. Rahuman, M. H.; Muthu, S.; Raajaraman, B. R.; Raja, M.; Umamahesvari, H. Investigations on 2-(4-Cyanophenylamino) Acetic Acid by FT-Ir,ft-Raman, NMR and UV-Vis Spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui Function) and Molecular Docking Studies. Heliyon 2020, 6 (9); https://doi.org/10.1016/j.heliyon.2020.e04976.Suche in Google Scholar PubMed PubMed Central

32. Rizwana, F.; Prasana, J. C.; Muthu, S. Spectroscopic Investigation (FT-IR, FT-Raman, UV, NMR), Computational Analysis (DFT Method) and Molecular Docking Studies on 2-[(acetyloxy) Methyl]-4-(2-Amino-9h-Purin-9-Yl)butyl Acetate. [Online]. Available: http://www.ripublication.com.Suche in Google Scholar

33. Janani, S.; Rajagopal, H.; Muthu, S.; Aayisha, S.; Raja, M. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, NMR), HOMO-LUMO, Chemical Reactivity, AIM, ELF, LOL and Molecular Docking Studies on 1-Benzyl-4-(n-Boc-Amino)piperidine. J. Mol. Struct. 2021, 1230; https://doi.org/10.1016/j.molstruc.2020.129657.Suche in Google Scholar

34. Babiyana, S.; Balachandran, V.; Thirughanasambantham, N.; Viji, A.; Narayana, B.; Salian, V. V.; Alharbi, N. S.; Khaled, J. M. Spectroscopic Characterizations, RDG and Docking Study of 2-[3-(4-Chlorophenyl)-5-(4-(propane-2-Yl) Phenyl)-4,5-Dihydro-1h Pyrozol-1-Yl]-4-(4-Fluorophenyl)-1,3-Thiazole. Z. Phys. Chem. 2024, 238 (10), 1887–1914; https://doi.org/10.1515/zpch-2024-0598.Suche in Google Scholar

35. Szafran, M.; Komasa, A.; Bartoszak-Adamska, E. Crystal and Molecular Structure of 4-carboxypiperidinium Chloride (4-piperidinecarboxylic Acid Hydrochloride). J. Mol. Struct. 2007, 827 (1–3), 101–107; https://doi.org/10.1016/j.molstruc.2006.05.012.Suche in Google Scholar

36. Singaravel, S.; Periyasamy, V.; Kim, I.; Hasan, I.; Paramasivam, S. Single crystal of barium bis para -nitrophenolate para -nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis. Z. Phys. Chem. 2024, 238, 2101–2119; https://doi.org/10.1515/zpch-2023-0503.Suche in Google Scholar

37. Weinhold, F.; Landis, C. R. Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chem. Educ. Res. Pract., 2001, 2, 91–104.10.1039/B1RP90011KSuche in Google Scholar

38. Kuruvilla, T. K.; Prasana, J. C.; Muthu, S.; George, J. Vibrational Spectroscopic (FT-IR, FT-Raman) and Quantum Mechanical Study of 4-(2-Chlorophenyl)-2-Ethyl-9-Methyl-6h-Thieno[3,2-F] [1,2,4]triazolo[4,3-A] [1,4] Diazepine. J. Mol. Struct. 2018, 1157, 519–529; https://doi.org/10.1016/j.molstruc.2018.01.001.Suche in Google Scholar

39. Sathish, M.; Rajasekaran, L.; Shanthi, D.; Kanagathara, N.; Sarala, S.; Muthu, S. Spectroscopic (FT-IR, FT-Raman, UV-Vis) Molecular Structure, Electronic, Molecular Docking, and Thermodynamic Investigations of Indole-3-Carboxylic Acid by DFT Method. J. Mol. Struct. 2021, 1234; https://doi.org/10.1016/j.molstruc.2021.130182.Suche in Google Scholar

40. Amul, B.; Muthu, S.; Raja, M.; Sevvanthi, S. Spectral, DFT and Molecular Docking Investigations on Etodolac. J. Mol. Struct. 2019, 1195, 747–761; https://doi.org/10.1016/j.molstruc.2019.06.047.Suche in Google Scholar

41. Ramazani, A.; Sheikhi, M.; Hanifehpour, Y.; Asiabi, P. A.; Joo, S. W. Molecular Structure, Electronic Properties, Homo–Lumo, MEP and NBO Analysis of (N-Isocyanimino) Triphenylphosphorane (Ph3PNNC): DFT Calculations. J. Struct. Chem. 2018, 59 (3), 529–540; https://doi.org/10.1134/S0022476618030058.Suche in Google Scholar

42. Beatrice, M. L.; Delphine, S. M.; Amalanathan, M.; Mary, M. S. M.; Robert, H. M.; Mol, K. T. Molecular Structure, Spectroscopic, Fukui Function, RDG, Anti-microbial and Molecular Docking Analysis of Higher Concentration Star Anise Content Compound Methyl 4-Methoxybenzoate-DFT Study. J. Mol. Struct. 2021, 1238; https://doi.org/10.1016/j.molstruc.2021.130381.Suche in Google Scholar

43. Srivastava, A. K.; Pandey, A. K.; Jain, S.; Misra, N. FT-IR Spectroscopy, Intra-molecular C-H⋯O Interactions, HOMO, LUMO, MESP Analysis and Biological Activity of Two Natural Products, Triclisine and Rufescine: DFT and QTAIM Approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 (PB), 682–689; https://doi.org/10.1016/j.saa.2014.09.082.Suche in Google Scholar PubMed

44. Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105 (10), 3911–3947; https://doi.org/10.1021/cr030085x.Suche in Google Scholar PubMed

45. O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A Library for Package-independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29 (5), 839–845; https://doi.org/10.1002/jcc.20823.Suche in Google Scholar PubMed

46. Alhawarri, M. B.; Al-Thiabat, M. G.; Dubey, A.; Tufail, A.; Fouad, D.; Alrimawi, B. H.; Dayoob, M. ADME Profiling, Molecular Docking, DFT, and MEP Analysis Reveal Cissamaline, Cissamanine, and Cissamdine from Cissampelos Capensis L.F. As Potential Anti-alzheimer’s Agents. RSC Adv. 2024, 14 (14), 9878–9891; https://doi.org/10.1039/d4ra01070a.Suche in Google Scholar PubMed PubMed Central

47. Uzun, S.; Esen, Z.; Koç, E.; Usta, N. C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] Quinoline-3-Carbonitrile. J. Mol. Struct. 2019, 1178, 450–457; https://doi.org/10.1016/j.molstruc.2018.10.001.Suche in Google Scholar

48. Sharma, K.; Melavanki, R.; Patil, S. S.; Kusanur, R.; Patil, N. R.; Shelar, V. M. Spectroscopic Behavior, FMO, NLO and NBO Analysis of Two Novel Aryl Boronic Acid Derivatives: Experimental and Theoretical Insights. J. Mol. Struct. 2019, 1181, 474–487; https://doi.org/10.1016/j.molstruc.2018.12.086.Suche in Google Scholar

49. Daoui, S.; Faizi, M. S. H.; Kalai, F. E.; Saddik, R.; Dege, N.; Karrouchi, K.; Benchat, N. Crystal Structure and the DFT and MEP Study of 4-Benzyl-2-[2-(4-Fluorophenyl)-2-Oxoethyl]-6-Phenylpyridazin-3(2h)-One. Acta Crystallogr. E Crystallogr. Commun. 2019, 75, 1030–1034; https://doi.org/10.1107/S2056989019008557.Suche in Google Scholar PubMed PubMed Central

50. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498–6506; https://doi.org/10.1021/ja100936w.Suche in Google Scholar PubMed PubMed Central

51. Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph., 1996, 14, 33–38.10.1016/0263-7855(96)00018-5Suche in Google Scholar PubMed

52. Chandramohan, U. M.; Katta, P.; Prabakaran, A.; Prasath, M. QM, Molecular Docking and Molecular Dynamics Investigation on Acidic Phospholipase A2 2 Protein and Acidic Phospholipase A2 3 Protein with Silane Dimethyl. Chem. Phys. Impact 2024, 8; https://doi.org/10.1016/j.chphi.2024.100615.Suche in Google Scholar

53. Babiyana, S.; Balachandran, V.; Thirughanasambantham, N.; Viji, A.; Narayana, B.; Salian, V. V.; Alharbi, N. S.; Khaled, J. M. Spectroscopic Characterizations, RDG and Docking Study of 2-[3-(4-Chlorophenyl)-5-(4-(propane-2-Yl) Phenyl)-4,5-Dihydro-1h Pyrozol-1-Yl]-4-(4-Fluorophenyl)-1,3-Thiazole. Z. Phys. Chem. 2024, 238 (10), 1887–1914; https://doi.org/10.1515/zpch-2024-0598.Suche in Google Scholar

54. Viji, A.; Balachandran, V.; Babiyana, S.; Narayana, B.; Saliyan, V. V. Molecular Docking and Quantum Chemical Calculations of 4-Methoxy-{2-[3-(4-Chlorophenyl)-5-(4-(propane-2-yl) PHENYL)-4, 5-Dihydro-1H-Pyrazol-1-yl]- 1, 3-Thiazol-4-yl}phenol. J Mol Struct. 2020, 1203, 127452.10.1016/j.molstruc.2019.127452Suche in Google Scholar

55. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1 (1), 55–68; https://doi.org/10.1021/cc9800071.Suche in Google Scholar PubMed

56. Çapan, İ.; Servi, S.; Yıldırım, İ.; Sert, Y. Synthesis, DFT Study, Molecular Docking and Drug-Likeness Analysis of the New Hydrazine-1-Carbothioamide, Triazole and Thiadiazole Derivatives: Potential Inhibitors of HSP90. ChemistrySelect 2021, 6 (23), 5838–5846; https://doi.org/10.1002/slct.202101086.Suche in Google Scholar

57. Alnajjar, R.; Mohamed, N.; Kawafi, N. Bicyclo[1.1.1]Pentane as Phenyl Substituent in Atorvastatin Drug to Improve Physicochemical Properties: Drug-Likeness, DFT, Pharmacokinetics, Docking, and Molecular Dynamic Simulation. J. Mol. Struct. 2021, 1230; https://doi.org/10.1016/j.molstruc.2020.129628.Suche in Google Scholar

58. Manjusha, P.; Prasana, J. C.; Muthu, S.; Rizwana, B. F. Spectroscopic Elucidation (FT-IR, FT-Raman and UV-Visible) with NBO, NLO, ELF, LOL, Drug Likeness and Molecular Docking Analysis on 1-(2-Ethylsulfonylethyl)-2-Methyl-5-Nitro-Imidazole: An Antiprotozoal Agent. Comput. Biol. Chem. 2020, 88; https://doi.org/10.1016/j.compbiolchem.2020.107330.Suche in Google Scholar

59. Wang, M.; Yu, F.; Ding, H.; Wang, Y.; Li, P.; Wang, K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Mole. Ther. Nucl. Acids 2019, 16, 791–804; https://doi.org/10.1016/j.omtn.2019.04.027.Suche in Google Scholar

60. Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, NA; https://doi.org/10.1002/jcc.21334.Suche in Google Scholar

61. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem., 19 (14), 1639–1662.10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BSuche in Google Scholar

62. Gholivand, K.; Mohammadpanah, F.; Pooyan, M.; Roohzadeh, R. Evaluating Anti-coronavirus Activity of Some Phosphoramides and Their Influencing Inhibitory Factors Using Molecular Docking, DFT, QSAR, and NCI-RDG Studies. J. Mol. Struct. 2022, 1248; https://doi.org/10.1016/j.molstruc.2021.131481.Suche in Google Scholar

63. El-Deen, I. M.; Shoair, A. F.; El-Bindary, M. A. Synthesis, Structural Characterization, Molecular Docking and DNA Binding Studies of Copper Complexes. J. Mol. Liq. 2018, 249, 533–545; https://doi.org/10.1016/j.molliq.2017.11.072.Suche in Google Scholar

64. Xie, N. Z.; Du, Q. S.; Li, J. X.; Huang, R. B. Exploring Strong Interactions in Proteins with Quantum Chemistry and Examples of Their Applications in Drug Design. PLoS One 2015, 10 (9); https://doi.org/10.1371/journal.pone.0137113.Suche in Google Scholar

65. Viji, A.; Vijayakumar, R.; Balachandran, V.; Vanasundari, K.; Janaki, M. Molecular Docking and Computational Studies Investigation on a Bioactive Anti-cancer Drug: Thiazole Derivatives. Indian J. Chem. Technol. 2022, 29, 616–634. https://doi.org/10.56042/ijct.v29i6.67406.Suche in Google Scholar

66. Spassov, D. S.; Atanasova, M.; Doytchinova, I. A Role of Salt Bridges in Mediating Drug Potency: A Lesson from the N-Myristoyltransferase Inhibitors. Front. Mol. Biosci. 2023, 9; https://doi.org/10.3389/fmolb.2022.1066029.Suche in Google Scholar

Received: 2024-02-28
Accepted: 2024-10-25
Published Online: 2025-02-03
Published in Print: 2025-08-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0735/html?lang=de
Button zum nach oben scrollen