Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
-
Arif Nazir
, Sundas Zahid
, Zaid Mahmood , Farah Kanwal , Shoomaila Latif , Muhammad Imran , Faiza Hassan und Munawar Iqbal
Abstract
This study focusses on the synthesis of polyaniline (PANI) and polyaniline base adsorbent utilizing Citrus limon leaves (CL) powder. The polyaniline base adsorbent with C. limon was synthesized using the same process as polyaniline synthesis, but with the addition of leaves powder. PANI and PANI based adsorbent with C. limon leaves powder (PANI/CL) were characterized by Fourier Transform Infra-Red (FTIR), UV-Visible spectroscopy and Scanning Electron Microscopy (SEM). This synthesized material was employed for the removal of congo red (CR) dye from industrial wastewater. Furthermore, the Langmuir, Temkin and Freundlich isotherms were also applied to evaluate experimental results. PANI is an efficient adsorbent for CR removal with 71.9 mg/g, while PANI/CL is an efficient adsorbent with 80 mg/g removal of dye according to a comparison of maximal adsorption capabilities. The data concludes that the prepared adsorbents could possibly be employed for the removal of toxic dyes from industrial effluents at large scale and ultimately could help in improving the environment.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Iqbal, D. N., Tariq, M., Khan, S. M., Gull, N., Sagar Iqbal, S., Aziz, A., Nazir, A., Iqbal, M. Int. J. Biol. Macromol. 2020, 143, 546–554; https://doi.org/10.1016/j.ijbiomac.2019.12.043.Suche in Google Scholar PubMed
2. Iqbal, D. N., Shafiq, S., Khan, S. M., Ibrahim, S. M., Abubshait, S. A., Nazir, A., Abbas, M., Iqbal, M. Int. J. Biol. Macromol. 2020, 164, 499–509; https://doi.org/10.1016/j.ijbiomac.2020.07.139.Suche in Google Scholar PubMed
3. Paulraj, P., Umar, A., Rajendran, K., Manikandan, A., Kumar, R., Manikandan, E., Pandian, K., Mahnashi, M. H., Alsaiari, M. A., Ibrahim, A. A. Electrochim. Acta 2020, 363, 137158; https://doi.org/10.1016/j.electacta.2020.137158.Suche in Google Scholar
4. Slimani, Y., Almessiere, M. A., Korkmaz, A. D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S. E. Ultrason. Sonochem. 2019, 59, 104757; https://doi.org/10.1016/j.ultsonch.2019.104757.Suche in Google Scholar PubMed
5. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. in Physics 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Suche in Google Scholar
6. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Arul Antony, S. Nanosci. Nanotechnol. Lett. 2016, 8, 438–443; https://doi.org/10.1166/nnl.2016.2150.Suche in Google Scholar
7. Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. J. Supercond. Nov. Magnetism 2015, 28, 2755–2766; https://doi.org/10.1007/s10948-015-3089-3.Suche in Google Scholar
8. Zarrintaj, P., Jouyandeh, M., Ganjali, M. R., Hadavand, B. S., Mozafari, M., Sheiko, S. S., Vatankhah-Varnoosfaderani, M., Gutiérrez, T. J., Saeb, M. R. Eur. Polym. J. 2019, 117, 402–423; https://doi.org/10.1016/j.eurpolymj.2019.05.024.Suche in Google Scholar
9. Manikandan, A., Antony, S. A. J. Supercond. Nov. Magnetism 2014, 27, 2725–2733; https://doi.org/10.1007/s10948-014-2634-9.Suche in Google Scholar
10. Vellayappan, M. V., Jaganathan, S. K., Manikandan, A. RSC Adv. 2016, 6, 114859–114878; https://doi.org/10.1039/c6ra24590k.Suche in Google Scholar
11. Almessiere, M. A., Slimani, Y., Güngüneş, H., Korkmaz, A. D., Zubar, T., Trukhanov, S., Trukhanov, A., Manikandan, A., Alahmari, F., Baykal, A. ACS Omega 2021, 6, 10266–10280; https://doi.org/10.1021/acsomega.1c00611.Suche in Google Scholar PubMed PubMed Central
12. Almessiere, M. A., Slimani, Y., Gungunes, H., Nawaz, M., Al-ahmari, F. S., Manikandan, A., Baykal, A. Phys. Scripta 2020, 95, 055802; https://doi.org/10.1088/1402-4896/ab7143.Suche in Google Scholar
13. Yildirim, D., Sasmaz, A. J. Geochem. Explor. 2017, 182, 228–234; https://doi.org/10.1016/j.gexplo.2016.11.005.Suche in Google Scholar
14. Alagha, O., Ouerfelli, N., Kochkar, H., Almessiere, M. A., Slimani, Y., Manikandan, A., Baykal, A., Mostafa, A., Zubair, M., Barghouthi, M. H. Nanomaterials 2021, 11, 970; https://doi.org/10.3390/nano11040970.Suche in Google Scholar PubMed PubMed Central
15. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Suche in Google Scholar
16. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 1055–1075.10.1515/zpch-2019-1599Suche in Google Scholar
17. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar
18. Nazir, A., Khalid, F., Rehman, S. U., Sarwar, M., Iqbal, M., Yaseen, M., Iftikhar Khan, M., Abbas, M. Z. Phys. Chem. 2021, 235, 769–784; https://doi.org/10.1515/zpch-2019-1558.Suche in Google Scholar
19. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Suche in Google Scholar
20. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027–1039; https://doi.org/10.1515/zpch-2019-1567.Suche in Google Scholar
21. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar
22. Bhatti, H. N., Sadaf, S., Naz, M., Iqbal, M., Safa, Y., Ain, H., Nawaz, S., Nazir, A. Desalination Water Treat. 2021, 216, 423–435; https://doi.org/10.5004/dwt.2021.26893.Suche in Google Scholar
23. Khan, N.-U.-H., Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Suche in Google Scholar
24. Klimek-Szczykutowicz, M., Szopa, A., Ekiert, H. Plants 2020, 9, 119.10.3390/plants9010119Suche in Google Scholar PubMed PubMed Central
25. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Suche in Google Scholar PubMed
26. Gul, S., Shah, A.-u.-H. A., Bilal, S. J. Phys. Conf. 2013, 439, 012002; https://doi.org/10.1088/1742-6596/439/1/012002.Suche in Google Scholar
27. Noreen, S., Khalid, U., Ibrahim, S. M., Javed, T., Ghani, A., Naz, S., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 5881–5893; https://doi.org/10.1016/j.jmrt.2020.03.115.Suche in Google Scholar
28. Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., Nazir, A. Int. J. Biol. Macromol. 2020, 150, 861–870; https://doi.org/10.1016/j.ijbiomac.2020.02.093.Suche in Google Scholar PubMed
29. Khera, R. A., Iqbal, M., Jabeen, S., Abbas, M., Nazir, A., Nisar, J., Ghaffar, A., Shar, G. A., Tahir, M. A. Surfaces and Interfaces 2019, 14, 138–145; https://doi.org/10.1016/j.surfin.2018.12.004.Suche in Google Scholar
30. Awwad, A. M., Amer, M. W., Al-aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Suche in Google Scholar
31. Alkherraz, M., Ali, A. K., Elsherif, K. M. Chem. Int. 2020, 6, 11–20.Suche in Google Scholar
32. Jain, R., Sikarwar, S. Int. J. Environ. Pollut. 2006, 27, 158–178; https://doi.org/10.1504/ijep.2006.010460.Suche in Google Scholar
33. Almasi, A., Dargahi, A., Ahagh, M., Janjani, H., Mohammadi, M., Tabandeh, L. J. Chem. Pharmaceut. Sci. 2016, 9, 2924–2928.Suche in Google Scholar
34. Kurrey, R., Deb, M. K., Shrivas, K., Khalkho, B. R., Nirmalkar, J., Sinha, D., Jha, S. Anal. Bioanal. Chem. 2019, 411, 6943–6957; https://doi.org/10.1007/s00216-019-02067-8.Suche in Google Scholar PubMed
35. Siddique, A., Hassan, A., Khan, S. R., Inayat, A., Nazir, A., Iqbal, M. Chem. Int. 2018, 4, 1–6.Suche in Google Scholar
36. Nwamezie, O. U. I. F. Chem. Int. 2018, 4, 60–66.10.1093/itnow/bwy114Suche in Google Scholar
37. Patel, R., Kumar, S., Verma, A., Srivastava, S. Chem. Int. 2017, 3, 158–164.Suche in Google Scholar
38. Sharma, S. K., Sudarshan, K., Yadav, A. K., Jha, S. N., Bhattacharyya, D., Pujari, P. K. J. Phys. Chem. C 2019, 123, 22273–22280; https://doi.org/10.1021/acs.jpcc.9b05395.Suche in Google Scholar
39. Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G., Nnaji, J. C., Okereafor, A. G. Appl. Water Sci. 2021, 11, 1–8.10.1007/s13201-020-01330-zSuche in Google Scholar
40. Kumari, S., Deori, M., Elancheran, R., Kotoky, J., Devi, R. Front. Pharmacol. 2016, 7, 400; https://doi.org/10.3389/fphar.2016.00400.Suche in Google Scholar
41. Horsfall Jnr, M., Spiff, A. I. Electron. J. Biotechnol. 2005, 8, 43–50.10.2225/vol8-issue2-fulltext-4Suche in Google Scholar
42. Kinniburgh, D. G. Environ. Sci. Technol. 1986, 20, 895–904; https://doi.org/10.1021/es00151a008.Suche in Google Scholar
43. Ahn, D. J., Franses, E. I. J. Chem. Phys. 1991, 95, 8486–8493; https://doi.org/10.1063/1.461278.Suche in Google Scholar
44. Skopp, J. J. Chem. Educ. 2009, 86, 1341; https://doi.org/10.1021/ed086p1341.Suche in Google Scholar
45. LeVan, M. D., Vermeulen, T. J. Phys. Chem. 1981, 85, 3247–3250; https://doi.org/10.1021/j150622a009.Suche in Google Scholar
46. Johnson, R. D., Arnold, F. H. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1995, 1247, 293–297; https://doi.org/10.1016/0167-4838(95)00006-g.Suche in Google Scholar
47. Baskaralingam, P., Pulikesi, M., Elango, D., Ramamurthi, V., Sivanesan, S. J. Hazard Mater. 2006, 128, 138–144; https://doi.org/10.1016/j.jhazmat.2005.07.049.Suche in Google Scholar PubMed
48. Laasri, L., Elamrani, M. K., Cherkaoui, O. Environ. Sci. Pollut. Res. Int. 2007, 14, 237–240; https://doi.org/10.1065/espr2006.08.331.Suche in Google Scholar PubMed
49. Alam, M., Ansari, A. A., Shaik, M. R., Alandis, N. M. Arab. J. Chem. 2013, 6, 341–345; https://doi.org/10.1016/j.arabjc.2012.04.021.Suche in Google Scholar
50. Lafi, R., Montasser, I., Hafiane, A. Adsorpt. Sci. Technol. 2019, 37, 160–181; https://doi.org/10.1177/0263617418819227.Suche in Google Scholar
51. Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. Environ. Chem. Ecotoxicol. 2020, 2, 24–31; https://doi.org/10.1016/j.enceco.2020.01.004.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources