Startseite Naturwissenschaften Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents

  • Arif Nazir EMAIL logo , Sundas Zahid , Zaid Mahmood , Farah Kanwal , Shoomaila Latif , Muhammad Imran , Faiza Hassan und Munawar Iqbal
Veröffentlicht/Copyright: 4. Juli 2022

Abstract

This study focusses on the synthesis of polyaniline (PANI) and polyaniline base adsorbent utilizing Citrus limon leaves (CL) powder. The polyaniline base adsorbent with C. limon was synthesized using the same process as polyaniline synthesis, but with the addition of leaves powder. PANI and PANI based adsorbent with C. limon leaves powder (PANI/CL) were characterized by Fourier Transform Infra-Red (FTIR), UV-Visible spectroscopy and Scanning Electron Microscopy (SEM). This synthesized material was employed for the removal of congo red (CR) dye from industrial wastewater. Furthermore, the Langmuir, Temkin and Freundlich isotherms were also applied to evaluate experimental results. PANI is an efficient adsorbent for CR removal with 71.9 mg/g, while PANI/CL is an efficient adsorbent with 80 mg/g removal of dye according to a comparison of maximal adsorption capabilities. The data concludes that the prepared adsorbents could possibly be employed for the removal of toxic dyes from industrial effluents at large scale and ultimately could help in improving the environment.


Corresponding author: Arif Nazir, Department of Chemistry, The University of Lahore, Lahore, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Iqbal, D. N., Tariq, M., Khan, S. M., Gull, N., Sagar Iqbal, S., Aziz, A., Nazir, A., Iqbal, M. Int. J. Biol. Macromol. 2020, 143, 546–554; https://doi.org/10.1016/j.ijbiomac.2019.12.043.Suche in Google Scholar PubMed

2. Iqbal, D. N., Shafiq, S., Khan, S. M., Ibrahim, S. M., Abubshait, S. A., Nazir, A., Abbas, M., Iqbal, M. Int. J. Biol. Macromol. 2020, 164, 499–509; https://doi.org/10.1016/j.ijbiomac.2020.07.139.Suche in Google Scholar PubMed

3. Paulraj, P., Umar, A., Rajendran, K., Manikandan, A., Kumar, R., Manikandan, E., Pandian, K., Mahnashi, M. H., Alsaiari, M. A., Ibrahim, A. A. Electrochim. Acta 2020, 363, 137158; https://doi.org/10.1016/j.electacta.2020.137158.Suche in Google Scholar

4. Slimani, Y., Almessiere, M. A., Korkmaz, A. D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S. E. Ultrason. Sonochem. 2019, 59, 104757; https://doi.org/10.1016/j.ultsonch.2019.104757.Suche in Google Scholar PubMed

5. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. in Physics 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Suche in Google Scholar

6. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Arul Antony, S. Nanosci. Nanotechnol. Lett. 2016, 8, 438–443; https://doi.org/10.1166/nnl.2016.2150.Suche in Google Scholar

7. Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. J. Supercond. Nov. Magnetism 2015, 28, 2755–2766; https://doi.org/10.1007/s10948-015-3089-3.Suche in Google Scholar

8. Zarrintaj, P., Jouyandeh, M., Ganjali, M. R., Hadavand, B. S., Mozafari, M., Sheiko, S. S., Vatankhah-Varnoosfaderani, M., Gutiérrez, T. J., Saeb, M. R. Eur. Polym. J. 2019, 117, 402–423; https://doi.org/10.1016/j.eurpolymj.2019.05.024.Suche in Google Scholar

9. Manikandan, A., Antony, S. A. J. Supercond. Nov. Magnetism 2014, 27, 2725–2733; https://doi.org/10.1007/s10948-014-2634-9.Suche in Google Scholar

10. Vellayappan, M. V., Jaganathan, S. K., Manikandan, A. RSC Adv. 2016, 6, 114859–114878; https://doi.org/10.1039/c6ra24590k.Suche in Google Scholar

11. Almessiere, M. A., Slimani, Y., Güngüneş, H., Korkmaz, A. D., Zubar, T., Trukhanov, S., Trukhanov, A., Manikandan, A., Alahmari, F., Baykal, A. ACS Omega 2021, 6, 10266–10280; https://doi.org/10.1021/acsomega.1c00611.Suche in Google Scholar PubMed PubMed Central

12. Almessiere, M. A., Slimani, Y., Gungunes, H., Nawaz, M., Al-ahmari, F. S., Manikandan, A., Baykal, A. Phys. Scripta 2020, 95, 055802; https://doi.org/10.1088/1402-4896/ab7143.Suche in Google Scholar

13. Yildirim, D., Sasmaz, A. J. Geochem. Explor. 2017, 182, 228–234; https://doi.org/10.1016/j.gexplo.2016.11.005.Suche in Google Scholar

14. Alagha, O., Ouerfelli, N., Kochkar, H., Almessiere, M. A., Slimani, Y., Manikandan, A., Baykal, A., Mostafa, A., Zubair, M., Barghouthi, M. H. Nanomaterials 2021, 11, 970; https://doi.org/10.3390/nano11040970.Suche in Google Scholar PubMed PubMed Central

15. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Suche in Google Scholar

16. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 1055–1075.10.1515/zpch-2019-1599Suche in Google Scholar

17. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar

18. Nazir, A., Khalid, F., Rehman, S. U., Sarwar, M., Iqbal, M., Yaseen, M., Iftikhar Khan, M., Abbas, M. Z. Phys. Chem. 2021, 235, 769–784; https://doi.org/10.1515/zpch-2019-1558.Suche in Google Scholar

19. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Suche in Google Scholar

20. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027–1039; https://doi.org/10.1515/zpch-2019-1567.Suche in Google Scholar

21. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar

22. Bhatti, H. N., Sadaf, S., Naz, M., Iqbal, M., Safa, Y., Ain, H., Nawaz, S., Nazir, A. Desalination Water Treat. 2021, 216, 423–435; https://doi.org/10.5004/dwt.2021.26893.Suche in Google Scholar

23. Khan, N.-U.-H., Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Suche in Google Scholar

24. Klimek-Szczykutowicz, M., Szopa, A., Ekiert, H. Plants 2020, 9, 119.10.3390/plants9010119Suche in Google Scholar PubMed PubMed Central

25. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Suche in Google Scholar PubMed

26. Gul, S., Shah, A.-u.-H. A., Bilal, S. J. Phys. Conf. 2013, 439, 012002; https://doi.org/10.1088/1742-6596/439/1/012002.Suche in Google Scholar

27. Noreen, S., Khalid, U., Ibrahim, S. M., Javed, T., Ghani, A., Naz, S., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 5881–5893; https://doi.org/10.1016/j.jmrt.2020.03.115.Suche in Google Scholar

28. Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., Nazir, A. Int. J. Biol. Macromol. 2020, 150, 861–870; https://doi.org/10.1016/j.ijbiomac.2020.02.093.Suche in Google Scholar PubMed

29. Khera, R. A., Iqbal, M., Jabeen, S., Abbas, M., Nazir, A., Nisar, J., Ghaffar, A., Shar, G. A., Tahir, M. A. Surfaces and Interfaces 2019, 14, 138–145; https://doi.org/10.1016/j.surfin.2018.12.004.Suche in Google Scholar

30. Awwad, A. M., Amer, M. W., Al-aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Suche in Google Scholar

31. Alkherraz, M., Ali, A. K., Elsherif, K. M. Chem. Int. 2020, 6, 11–20.Suche in Google Scholar

32. Jain, R., Sikarwar, S. Int. J. Environ. Pollut. 2006, 27, 158–178; https://doi.org/10.1504/ijep.2006.010460.Suche in Google Scholar

33. Almasi, A., Dargahi, A., Ahagh, M., Janjani, H., Mohammadi, M., Tabandeh, L. J. Chem. Pharmaceut. Sci. 2016, 9, 2924–2928.Suche in Google Scholar

34. Kurrey, R., Deb, M. K., Shrivas, K., Khalkho, B. R., Nirmalkar, J., Sinha, D., Jha, S. Anal. Bioanal. Chem. 2019, 411, 6943–6957; https://doi.org/10.1007/s00216-019-02067-8.Suche in Google Scholar PubMed

35. Siddique, A., Hassan, A., Khan, S. R., Inayat, A., Nazir, A., Iqbal, M. Chem. Int. 2018, 4, 1–6.Suche in Google Scholar

36. Nwamezie, O. U. I. F. Chem. Int. 2018, 4, 60–66.10.1093/itnow/bwy114Suche in Google Scholar

37. Patel, R., Kumar, S., Verma, A., Srivastava, S. Chem. Int. 2017, 3, 158–164.Suche in Google Scholar

38. Sharma, S. K., Sudarshan, K., Yadav, A. K., Jha, S. N., Bhattacharyya, D., Pujari, P. K. J. Phys. Chem. C 2019, 123, 22273–22280; https://doi.org/10.1021/acs.jpcc.9b05395.Suche in Google Scholar

39. Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G., Nnaji, J. C., Okereafor, A. G. Appl. Water Sci. 2021, 11, 1–8.10.1007/s13201-020-01330-zSuche in Google Scholar

40. Kumari, S., Deori, M., Elancheran, R., Kotoky, J., Devi, R. Front. Pharmacol. 2016, 7, 400; https://doi.org/10.3389/fphar.2016.00400.Suche in Google Scholar

41. Horsfall Jnr, M., Spiff, A. I. Electron. J. Biotechnol. 2005, 8, 43–50.10.2225/vol8-issue2-fulltext-4Suche in Google Scholar

42. Kinniburgh, D. G. Environ. Sci. Technol. 1986, 20, 895–904; https://doi.org/10.1021/es00151a008.Suche in Google Scholar

43. Ahn, D. J., Franses, E. I. J. Chem. Phys. 1991, 95, 8486–8493; https://doi.org/10.1063/1.461278.Suche in Google Scholar

44. Skopp, J. J. Chem. Educ. 2009, 86, 1341; https://doi.org/10.1021/ed086p1341.Suche in Google Scholar

45. LeVan, M. D., Vermeulen, T. J. Phys. Chem. 1981, 85, 3247–3250; https://doi.org/10.1021/j150622a009.Suche in Google Scholar

46. Johnson, R. D., Arnold, F. H. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1995, 1247, 293–297; https://doi.org/10.1016/0167-4838(95)00006-g.Suche in Google Scholar

47. Baskaralingam, P., Pulikesi, M., Elango, D., Ramamurthi, V., Sivanesan, S. J. Hazard Mater. 2006, 128, 138–144; https://doi.org/10.1016/j.jhazmat.2005.07.049.Suche in Google Scholar PubMed

48. Laasri, L., Elamrani, M. K., Cherkaoui, O. Environ. Sci. Pollut. Res. Int. 2007, 14, 237–240; https://doi.org/10.1065/espr2006.08.331.Suche in Google Scholar PubMed

49. Alam, M., Ansari, A. A., Shaik, M. R., Alandis, N. M. Arab. J. Chem. 2013, 6, 341–345; https://doi.org/10.1016/j.arabjc.2012.04.021.Suche in Google Scholar

50. Lafi, R., Montasser, I., Hafiane, A. Adsorpt. Sci. Technol. 2019, 37, 160–181; https://doi.org/10.1177/0263617418819227.Suche in Google Scholar

51. Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. Environ. Chem. Ecotoxicol. 2020, 2, 24–31; https://doi.org/10.1016/j.enceco.2020.01.004.Suche in Google Scholar

Received: 2022-01-26
Accepted: 2022-06-08
Published Online: 2022-07-04
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0014/pdf
Button zum nach oben scrollen