Home Physical Sciences Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
Article
Licensed
Unlicensed Requires Authentication

Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents

  • Arif Nazir EMAIL logo , Sundas Zahid , Zaid Mahmood , Farah Kanwal , Shoomaila Latif , Muhammad Imran , Faiza Hassan and Munawar Iqbal
Published/Copyright: July 4, 2022

Abstract

This study focusses on the synthesis of polyaniline (PANI) and polyaniline base adsorbent utilizing Citrus limon leaves (CL) powder. The polyaniline base adsorbent with C. limon was synthesized using the same process as polyaniline synthesis, but with the addition of leaves powder. PANI and PANI based adsorbent with C. limon leaves powder (PANI/CL) were characterized by Fourier Transform Infra-Red (FTIR), UV-Visible spectroscopy and Scanning Electron Microscopy (SEM). This synthesized material was employed for the removal of congo red (CR) dye from industrial wastewater. Furthermore, the Langmuir, Temkin and Freundlich isotherms were also applied to evaluate experimental results. PANI is an efficient adsorbent for CR removal with 71.9 mg/g, while PANI/CL is an efficient adsorbent with 80 mg/g removal of dye according to a comparison of maximal adsorption capabilities. The data concludes that the prepared adsorbents could possibly be employed for the removal of toxic dyes from industrial effluents at large scale and ultimately could help in improving the environment.


Corresponding author: Arif Nazir, Department of Chemistry, The University of Lahore, Lahore, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Iqbal, D. N., Tariq, M., Khan, S. M., Gull, N., Sagar Iqbal, S., Aziz, A., Nazir, A., Iqbal, M. Int. J. Biol. Macromol. 2020, 143, 546–554; https://doi.org/10.1016/j.ijbiomac.2019.12.043.Search in Google Scholar PubMed

2. Iqbal, D. N., Shafiq, S., Khan, S. M., Ibrahim, S. M., Abubshait, S. A., Nazir, A., Abbas, M., Iqbal, M. Int. J. Biol. Macromol. 2020, 164, 499–509; https://doi.org/10.1016/j.ijbiomac.2020.07.139.Search in Google Scholar PubMed

3. Paulraj, P., Umar, A., Rajendran, K., Manikandan, A., Kumar, R., Manikandan, E., Pandian, K., Mahnashi, M. H., Alsaiari, M. A., Ibrahim, A. A. Electrochim. Acta 2020, 363, 137158; https://doi.org/10.1016/j.electacta.2020.137158.Search in Google Scholar

4. Slimani, Y., Almessiere, M. A., Korkmaz, A. D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S. E. Ultrason. Sonochem. 2019, 59, 104757; https://doi.org/10.1016/j.ultsonch.2019.104757.Search in Google Scholar PubMed

5. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. in Physics 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Search in Google Scholar

6. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Arul Antony, S. Nanosci. Nanotechnol. Lett. 2016, 8, 438–443; https://doi.org/10.1166/nnl.2016.2150.Search in Google Scholar

7. Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. J. Supercond. Nov. Magnetism 2015, 28, 2755–2766; https://doi.org/10.1007/s10948-015-3089-3.Search in Google Scholar

8. Zarrintaj, P., Jouyandeh, M., Ganjali, M. R., Hadavand, B. S., Mozafari, M., Sheiko, S. S., Vatankhah-Varnoosfaderani, M., Gutiérrez, T. J., Saeb, M. R. Eur. Polym. J. 2019, 117, 402–423; https://doi.org/10.1016/j.eurpolymj.2019.05.024.Search in Google Scholar

9. Manikandan, A., Antony, S. A. J. Supercond. Nov. Magnetism 2014, 27, 2725–2733; https://doi.org/10.1007/s10948-014-2634-9.Search in Google Scholar

10. Vellayappan, M. V., Jaganathan, S. K., Manikandan, A. RSC Adv. 2016, 6, 114859–114878; https://doi.org/10.1039/c6ra24590k.Search in Google Scholar

11. Almessiere, M. A., Slimani, Y., Güngüneş, H., Korkmaz, A. D., Zubar, T., Trukhanov, S., Trukhanov, A., Manikandan, A., Alahmari, F., Baykal, A. ACS Omega 2021, 6, 10266–10280; https://doi.org/10.1021/acsomega.1c00611.Search in Google Scholar PubMed PubMed Central

12. Almessiere, M. A., Slimani, Y., Gungunes, H., Nawaz, M., Al-ahmari, F. S., Manikandan, A., Baykal, A. Phys. Scripta 2020, 95, 055802; https://doi.org/10.1088/1402-4896/ab7143.Search in Google Scholar

13. Yildirim, D., Sasmaz, A. J. Geochem. Explor. 2017, 182, 228–234; https://doi.org/10.1016/j.gexplo.2016.11.005.Search in Google Scholar

14. Alagha, O., Ouerfelli, N., Kochkar, H., Almessiere, M. A., Slimani, Y., Manikandan, A., Baykal, A., Mostafa, A., Zubair, M., Barghouthi, M. H. Nanomaterials 2021, 11, 970; https://doi.org/10.3390/nano11040970.Search in Google Scholar PubMed PubMed Central

15. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Search in Google Scholar

16. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 1055–1075.10.1515/zpch-2019-1599Search in Google Scholar

17. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Search in Google Scholar

18. Nazir, A., Khalid, F., Rehman, S. U., Sarwar, M., Iqbal, M., Yaseen, M., Iftikhar Khan, M., Abbas, M. Z. Phys. Chem. 2021, 235, 769–784; https://doi.org/10.1515/zpch-2019-1558.Search in Google Scholar

19. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Search in Google Scholar

20. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027–1039; https://doi.org/10.1515/zpch-2019-1567.Search in Google Scholar

21. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Search in Google Scholar

22. Bhatti, H. N., Sadaf, S., Naz, M., Iqbal, M., Safa, Y., Ain, H., Nawaz, S., Nazir, A. Desalination Water Treat. 2021, 216, 423–435; https://doi.org/10.5004/dwt.2021.26893.Search in Google Scholar

23. Khan, N.-U.-H., Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Search in Google Scholar

24. Klimek-Szczykutowicz, M., Szopa, A., Ekiert, H. Plants 2020, 9, 119.10.3390/plants9010119Search in Google Scholar PubMed PubMed Central

25. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Search in Google Scholar PubMed

26. Gul, S., Shah, A.-u.-H. A., Bilal, S. J. Phys. Conf. 2013, 439, 012002; https://doi.org/10.1088/1742-6596/439/1/012002.Search in Google Scholar

27. Noreen, S., Khalid, U., Ibrahim, S. M., Javed, T., Ghani, A., Naz, S., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 5881–5893; https://doi.org/10.1016/j.jmrt.2020.03.115.Search in Google Scholar

28. Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., Nazir, A. Int. J. Biol. Macromol. 2020, 150, 861–870; https://doi.org/10.1016/j.ijbiomac.2020.02.093.Search in Google Scholar PubMed

29. Khera, R. A., Iqbal, M., Jabeen, S., Abbas, M., Nazir, A., Nisar, J., Ghaffar, A., Shar, G. A., Tahir, M. A. Surfaces and Interfaces 2019, 14, 138–145; https://doi.org/10.1016/j.surfin.2018.12.004.Search in Google Scholar

30. Awwad, A. M., Amer, M. W., Al-aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Search in Google Scholar

31. Alkherraz, M., Ali, A. K., Elsherif, K. M. Chem. Int. 2020, 6, 11–20.Search in Google Scholar

32. Jain, R., Sikarwar, S. Int. J. Environ. Pollut. 2006, 27, 158–178; https://doi.org/10.1504/ijep.2006.010460.Search in Google Scholar

33. Almasi, A., Dargahi, A., Ahagh, M., Janjani, H., Mohammadi, M., Tabandeh, L. J. Chem. Pharmaceut. Sci. 2016, 9, 2924–2928.Search in Google Scholar

34. Kurrey, R., Deb, M. K., Shrivas, K., Khalkho, B. R., Nirmalkar, J., Sinha, D., Jha, S. Anal. Bioanal. Chem. 2019, 411, 6943–6957; https://doi.org/10.1007/s00216-019-02067-8.Search in Google Scholar PubMed

35. Siddique, A., Hassan, A., Khan, S. R., Inayat, A., Nazir, A., Iqbal, M. Chem. Int. 2018, 4, 1–6.Search in Google Scholar

36. Nwamezie, O. U. I. F. Chem. Int. 2018, 4, 60–66.10.1093/itnow/bwy114Search in Google Scholar

37. Patel, R., Kumar, S., Verma, A., Srivastava, S. Chem. Int. 2017, 3, 158–164.Search in Google Scholar

38. Sharma, S. K., Sudarshan, K., Yadav, A. K., Jha, S. N., Bhattacharyya, D., Pujari, P. K. J. Phys. Chem. C 2019, 123, 22273–22280; https://doi.org/10.1021/acs.jpcc.9b05395.Search in Google Scholar

39. Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G., Nnaji, J. C., Okereafor, A. G. Appl. Water Sci. 2021, 11, 1–8.10.1007/s13201-020-01330-zSearch in Google Scholar

40. Kumari, S., Deori, M., Elancheran, R., Kotoky, J., Devi, R. Front. Pharmacol. 2016, 7, 400; https://doi.org/10.3389/fphar.2016.00400.Search in Google Scholar

41. Horsfall Jnr, M., Spiff, A. I. Electron. J. Biotechnol. 2005, 8, 43–50.10.2225/vol8-issue2-fulltext-4Search in Google Scholar

42. Kinniburgh, D. G. Environ. Sci. Technol. 1986, 20, 895–904; https://doi.org/10.1021/es00151a008.Search in Google Scholar

43. Ahn, D. J., Franses, E. I. J. Chem. Phys. 1991, 95, 8486–8493; https://doi.org/10.1063/1.461278.Search in Google Scholar

44. Skopp, J. J. Chem. Educ. 2009, 86, 1341; https://doi.org/10.1021/ed086p1341.Search in Google Scholar

45. LeVan, M. D., Vermeulen, T. J. Phys. Chem. 1981, 85, 3247–3250; https://doi.org/10.1021/j150622a009.Search in Google Scholar

46. Johnson, R. D., Arnold, F. H. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1995, 1247, 293–297; https://doi.org/10.1016/0167-4838(95)00006-g.Search in Google Scholar

47. Baskaralingam, P., Pulikesi, M., Elango, D., Ramamurthi, V., Sivanesan, S. J. Hazard Mater. 2006, 128, 138–144; https://doi.org/10.1016/j.jhazmat.2005.07.049.Search in Google Scholar PubMed

48. Laasri, L., Elamrani, M. K., Cherkaoui, O. Environ. Sci. Pollut. Res. Int. 2007, 14, 237–240; https://doi.org/10.1065/espr2006.08.331.Search in Google Scholar PubMed

49. Alam, M., Ansari, A. A., Shaik, M. R., Alandis, N. M. Arab. J. Chem. 2013, 6, 341–345; https://doi.org/10.1016/j.arabjc.2012.04.021.Search in Google Scholar

50. Lafi, R., Montasser, I., Hafiane, A. Adsorpt. Sci. Technol. 2019, 37, 160–181; https://doi.org/10.1177/0263617418819227.Search in Google Scholar

51. Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. Environ. Chem. Ecotoxicol. 2020, 2, 24–31; https://doi.org/10.1016/j.enceco.2020.01.004.Search in Google Scholar

Received: 2022-01-26
Accepted: 2022-06-08
Published Online: 2022-07-04
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0014/html?lang=en
Scroll to top button