Home Physical Sciences Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
Article
Licensed
Unlicensed Requires Authentication

Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors

  • Beibei Pang , Danish Iqbal , Adnan Sarfraz , P. Ulrich Biedermann and Andreas Erbe EMAIL logo
Published/Copyright: July 4, 2022

Abstract

Modification of metal surfaces with complex molecules opens interesting opportunities to build additional functionality into these surfaces. In this work, self assembled monolayers (SAMs) based on the same photoswitchable azobenzene motif but with different head groups have been synthesized and their SAMs on Au(111)/Si substrates have been characterized. 3-[(4-phenylazo)phenoxy]propyl thiol (PAPT) and its acetyl group protected analog, 3-[(4-phenylazo)phenoxy]propyl thioacetate (PAPA), have been synthesized. SAMs from PAPT and PAPA have been characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry and cyclic voltammetry (CV). The SAM-forming units of both SAMs are the same, as confirmed by IR and XPS, and the SAMs have similar surface coverage, as evidenced by analysis of the reductive desorption peaks in CVs. The tilt angle of the azobenzene moiety was ca. 75° with respect to the surface normal as determined by IR spectroscopy, i.e., the molecules are lying quite flat on the gold surface. Despite similar surface coverages, the CVs for PAPT in aqueous perchlorate solution show a typical perchlorate adsorption peak to gold, whereas the corresponding experiments with PAPA show no perchlorate adsorption at all. In conclusion, SAM formation can lead to an increase in the number of electrochemically accessible surface sites on the final, SAM covered surface. Whether the amount of such sites increases or decreases, depends on the precursor. The precursor most likely affects the adsorption mechanism and thus the atomic surface structure of the metal at the metal/SAM interface. Thus, details of the SAM formation mechanism, which is affected by the precursor used, can have quite strong effects on the electrochemical properties, and likely also electrocatalytic properties, of the resulting modified surface.


Corresponding author: Andreas Erbe, Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Acknowledgements

We cordially thank Asif Bashir for discussions of SAM alignment, Maciej Krzywiecki and Erlind Mysliu for assistance with XPS analysis and Petra Ebbinghaus for technical assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We acknowledge support from IMPRS Surmat and the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169; https://doi.org/10.1021/cr0300789.Search in Google Scholar PubMed

2. Madueno, R., Raisanen, M. T., Silien, C., Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 2008, 454, 618–621; https://doi.org/10.1038/nature07096.Search in Google Scholar PubMed

3. Ariga, K., Mori, T., Akamatsu, M., Hill, J. P. Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. Thin Solid Films 2014, 554, 32–40; https://doi.org/10.1016/j.tsf.2013.05.060.Search in Google Scholar

4. Cho, H., Zook, J., Banner, T., Park, S. -H., Min, B. -H., Hasty, K. A., Pinkhassik, E., Lindner, E. Immobilization of fibrinogen antibody on self-assembled gold monolayers for immunosensor applications. Tissue Eng. Regener. Med. 2014, 11, 10–15; https://doi.org/10.1007/s13770-013-1119-4.Search in Google Scholar

5. Erbe, A., Bushby, R. J., Evans, S. D., Jeuken, L. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy. J. Phys. Chem. B 2007, 111, 3515; https://doi.org/10.1021/jp0676181.Search in Google Scholar PubMed PubMed Central

6. Pourbeyram, S., Shervedani, R. K., Sabzyan, H. Surface Science STM characterization of DNA immobilized via Zr ion glue onto gold thiol SAMs. Surf. Sci. 2013, 616, 100–103; https://doi.org/10.1016/j.susc.2013.05.006.Search in Google Scholar

7. Cheng, X., Lowe, S. B., Reece, P. J., Gooding, J. J. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700; https://doi.org/10.1039/c3cs60353a.Search in Google Scholar PubMed

8. Hasan, A., Pandey, L. M. Self-assembled monolayers in biomaterials, Ch. 6. In Nanobiomaterials; Narayan, R., Ed. Woodhead Publishing: Duxford, UK, 2018, pp. 137–178. https://doi.org/10.1016/B978-0-08-100716-7.00007-6.Search in Google Scholar

9. Singh, M., Kaur, N., Comini, E. The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 2020, 8, 3938–3955; https://doi.org/10.1039/d0tc00388c.Search in Google Scholar

10. Huang, X., Li, T. Recent progress in the development of molecular- scale electronics based on photoswitchable molecules. J. Mater. Chem. C 2020, 8, 821–848; https://doi.org/10.1039/c9tc06054e.Search in Google Scholar

11. Hosseinpour, S., Gothelid, M., Leygraf, C., Johnson, C. M. Self- assembled monolayers as inhibitors for the atmospheric corrosion of copper induced by formic acid: a comparison between hexanethiol and hexaneselenol. J. Electrochem. Soc. 2013, 161, C50–C56; https://doi.org/10.1149/2.056401jes.Search in Google Scholar

12. Zhang, D. Q., Zeng, H. j., Zhang, L., Liu, P., Gao, L. X. Influence of oxygen and oxidant on corrosion inhibition of cysteine self-assembled membranes for copper. Colloids Surf., A 2014, 445, 105–110; https://doi.org/10.1016/j.colsurfa.2014.01.017.Search in Google Scholar

13. Hsieh, S., Chao, W. -J., Lin, P. -Y., Hsieh, C. -W. Influence of molecular packing on the corrosion inhibition properties of self-assembled octadecyltrichlorosilane monolayers on silicon. Corrosion Sci. 2014, 80, 427–433; https://doi.org/10.1016/j.corsci.2013.11.046.Search in Google Scholar

14. Rechmann, J., Sarfraz, A., Götzinger, A. C., Dirksen, E., Müller, T. J. J., Erbe, A. Surface functionalization of oxide-covered zinc and iron with phosphonated phenylethynyl phenothiazine. Langmuir 2015, 31, 7306–7316; https://doi.org/10.1021/acs.langmuir.5b01370.Search in Google Scholar

15. Clayden, J., Greeves, N., Warren, S., Wothers, P. Organic Chemistry; Oxford University Press Inc.: New York, 2005.Search in Google Scholar

16. Badin, M. G., Bashir, A., Krakert, S., Strunskus, T., Terfort, A., Woll, C. Kinetically stable, flat-lying thiolate monolayers. Angew. Chem. Int. Ed. 2007, 46, 3762–3764; https://doi.org/10.1002/anie.200605125.Search in Google Scholar

17. Singh, A., Dahanayaka, D. H., Biswas, A., Bumm, L. A., Halterman, R. L. Molecularly ordered decanethiolate self-assembled monolayers on Au(111) from in situ cleaved decanethioacetate: an NMR and STM study of the efficacy of reagents for thioacetate cleavage. Langmuir 2010, 26, 13221–13226; https://doi.org/10.1021/la100103k.Search in Google Scholar

18. Jin, J., Zhou, W. -J., Chen, Y., Liu, Y. -L., Sun, X. -Q., Xi, H. -T. The thioacetate-functionalized self-assembled monolayers on Au: toward high-performance ion-selective electrode for Ag+. Bull. Kor. Chem. Soc. 2014, 35, 601–604; https://doi.org/10.5012/bkcs.2014.35.2.601.Search in Google Scholar

19. Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257; https://doi.org/10.1016/s0079-6816(00)00024-1.Search in Google Scholar

20. Tour, J. M., Jones, L., Pearson, D. L., Lamba, J. J. S., Burgin, T. P., Whitesides, G. M., Allara, D. L., Parikh, A. N., Atre, S. Self- assembled monolayers and multilayers of conjugated thiols, α, ω- dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 1995, 117, 9529–9534; https://doi.org/10.1021/ja00142a021.Search in Google Scholar

21. Bashir, A., Iqbal, D., Jain, S. M., Barbe, K., Abu-Husein, T., Rohwerder, M., Terfort, A., Zharnikov, M. Promoting effect of protecting group on the structure and morphology of self-assembled mono- layers: terphenylylethanethioactate on Au(111). J. Phys. Chem. C 2015, 119, 25352–25363; https://doi.org/10.1021/acs.jpcc.5b06813.Search in Google Scholar

22. Park, T., Kang, H., Ito, E., Noh, J. Self-assembled monolayers of alkanethioacetates on Au(111) in ammonium hydroxide solution. Bull. Kor. Chem. Soc. 2021, 42, 252–257; https://doi.org/10.1002/bkcs.12189.Search in Google Scholar

23. Yager, K. G., Barrett, C. J. Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol., A 2006, 182, 250–261; https://doi.org/10.1016/j.jphotochem.2006.04.021.Search in Google Scholar

24. Barrett, C. J., Mamiya, J. -I., Yager, K. G., Ikeda, T. Photomechanical effects in azobenzene-containing soft materials. Soft Matter 2007, 3, 1249; https://doi.org/10.1039/b705619b.Search in Google Scholar PubMed

25. Stock, P., Erbe, A., Buck, M., Wiedemann, D., Menard, H., Horner, G., Grohmann, A. Thiocyanate anchors for salt-like iron(II) complexes on Au(111): promises and caveats. Z. Naturforsch. B Chem. Sci. 2014, 69, 1164–1180; https://doi.org/10.5560/znb.2014-4159.Search in Google Scholar

26. Evans, S. D., Johnson, S. R., Ringsdorf, H., Williams, L. M., Wolf, H. Photoswitching of azobenzene derivatives formed on planar and colloidal gold surfaces. Langmuir 1998, 14, 6436–6440; https://doi.org/10.1021/la980450t.Search in Google Scholar

27. Yu, S. H., Hassan, S. Z., Nam, G. -H., An, S., Kang, B., Chung, D. S. Consideration of azobenzene-based self-assembled monolayer deposition conditions for maximizing optoelectronic switching performances. Chem. Mater. 2021, 33, 5991–6002; https://doi.org/10.1021/acs.chemmater.1c01333.Search in Google Scholar

28. Bronsch, W., Moldt, T., Boie, L., Gahl, C., Weinelt, M. De- localized versus localized excitations in the photoisomerization of azobenzene-functionalized alkanethiolate SAMs. J. Phys.: Condens. Matter 2017, 29, 484002; https://doi.org/10.1088/1361-648x/aa9309.Search in Google Scholar

29. McElhinny, K. M., Park, J., Ahn, Y., Huang, P., Joo, Y., Lakkham, A., Pateras, A., Wen, H., Gopalan, P., Evans, P. G. Photoi- somerization dynamics in a densely packed optically transformable azobenzene monolayer. Langmuir 2018, 34, 10828–10836; https://doi.org/10.1021/acs.langmuir.8b01524.Search in Google Scholar PubMed

30. Krekiehn, N. R., Müller, M., Jung, U., Ulrich, S., Herges, R., Magnussen, O. M. UV/Vis spectroscopy studies of the photoisomer- ization kinetics in self-assembled azobenzene-containing adlayers. Langmuir 2015, 31, 8362–8370; https://doi.org/10.1021/acs.langmuir.5b01645.Search in Google Scholar PubMed

31. Moldt, T., Brete, D., Przyrembel, D., Das, S., Goldman, J. R., Kundu, P. K., Gahl, C., Klajn, R., Weinelt, M. Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature. Langmuir 2015, 31, 1048–1057; https://doi.org/10.1021/la504291n.Search in Google Scholar PubMed

32. Zhou, W., Grosjean, S., Brase, S., Heinke, L. Thermal cis-to-trans isomerization of azobenzene side groups in metal-organic frameworks investigated by localized surface plasmon resonance spec- troscopy. Z. Phys. Chem. 2019, 233, 15–22; https://doi.org/10.1515/zpch-2017-1081.Search in Google Scholar

33. Schulze, M., Utecht, M., Moldt, T., Przyrembel, D., Gahl, C., Weinelt, M., Saalfrank, P., Tegeder, P. Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers. Phys. Chem. Chem. Phys. 2015, 17, 18079–18086; https://doi.org/10.1039/c5cp03093e.Search in Google Scholar PubMed

34. Riaz, S., Friedrichs, G. Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled mono- layers. Z. Phys. Chem. 2020, 234, 1427–1452; https://doi.org/10.1515/zpch-2020-1655.Search in Google Scholar

35. Marten, J., Erbe, A., Critchley, K., Bramble, J. P., Weber, E., Evans, S. D. Self-assembled layers based on isomerizable stilbene and diketoarylhydrazone moieties. Langmuir 2008, 24, 2479–2486; https://doi.org/10.1021/la703109x.Search in Google Scholar PubMed

36. Qi, Y., Liu, X., Hendriksen, B. L. M., Navarro, V., Park, J. Y., Ratera, I., Klopp, J. M., Edder, C., Himpsel, F. J., Frechet, J. M. J., Haller, E. E., Salmeron, M. Influence of molecular ordering on electrical and friction properties of w-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111). Langmuir 2010, 26, 16522–16528; https://doi.org/10.1021/la100837g.Search in Google Scholar PubMed

37. Liao, L. -Y., Li, Y. -B., Zhang, X. -M., Geng, Y. -F., Zhang, J. -Y., Xie, J. -L., Zeng, Q. -D., Wang, C. STM investigation of the photoisomeriza- tion and photodimerization of stilbene derivatives on HOPG surface. J. Phys. Chem. C 2014, 118, 15963–15969; https://doi.org/10.1021/jp505511e.Search in Google Scholar

38. Zheng, L. -Q., Yang, S., Lan, J., Gyr, L., Goubert, G., Qian, H., Aprahamian, I., Zenobi, R. Solution phase and surface photoiso- merization of a hydrazone switch with a long thermal half-life. J. Am. Chem. Soc. 2019, 141, 17637–17645; https://doi.org/10.1021/jacs.9b07057.Search in Google Scholar PubMed

39. Caldwell, W. B., Campbell, D. J., Chen, K., Herr, B. R., Mirkin, C. A., Malik, A., Durbin, M. K., Dutta, P., Huang, K. G. A highly ordered self-assembled monolayer film of an azobenze-nealkanethiol on Au(111): electrochemical properties and structural characterization by synchrotron in-plane X-ray diffraction, atomic force microscopy, and surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 1995, 117, 6071–6082; https://doi.org/10.1021/ja00127a021.Search in Google Scholar

40. Alkire, R., Kolb, D., Lipkowski, J., Ross, P. Chemically Modified Electrodes; Wiley-VCH: Weinheim, Germany, 2009.10.1002/9783527627059Search in Google Scholar

41. Muglali, M. I., Erbe, A., Chen, Y., Barth, C., Koelsch, P., Rohwerder, M. Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold. Electrochim. Acta 2013, 90, 17–26; https://doi.org/10.1016/j.electacta.2012.11.116.Search in Google Scholar PubMed PubMed Central

42. Koelsch, P., Muglali, M. I., Rohwerder, M., Erbe, A. Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. J. Opt. Soc. Am. B 2013, 30, 219–223; https://doi.org/10.1364/josab.30.000219.Search in Google Scholar

43. Kemnade, N., Chen, Y., Muglali, M. I., Erbe, A. Electrochemical reductive desorption of alkyl self-assembled monolayers studied in situ by spectroscopic ellipsometry: evidence for formation of a low refractive index region after desorption. Phys. Chem. Chem. Phys. 2014, 16, 17081–17090; https://doi.org/10.1039/c4cp01369g.Search in Google Scholar

44. Su, Z., Leitch, J., Lipkowski, J. Measurements of the potentials of zero free charge and zero total charge for 1-thio-β-D-glucose and DPTL modified Au(111) surface in different electrolyte solutions. Z. Phys. Chem. 2012, 226, 995–1009; https://doi.org/10.1524/zpch.2012.0280.Search in Google Scholar

45. Wolf, H., Ringsdorf, H., Delamarche, E., Takami, T., Kang, H., Michel, B., Gerber, C., Jaschke, M., Butt, H. -J., Bamberg, E. End-group-dominated molecular order in self-assembled monolayers. J. Phys. Chem. 1995, 99, 7102–7107; https://doi.org/10.1021/j100018a050.Search in Google Scholar

46. Erbe, A., Sarfraz, A., Toparli, C., Schwenzfeier, K., Niu, F. In Soft Matter at Aqueous Interfaces; Lang, P. R., Liu, Y., Eds.; Lect. Notes Phys.; Springer: Cham, Switzerland, Vol. 917, 2016, pp. 459–490.10.1007/978-3-319-24502-7_14Search in Google Scholar

47. Hamoudi, H., Prato, M., Dablemont, C., Cavalleri, O., Canepa, M., Esaulov, V. A. Self-assembly of 1, 4-benzenedimethanethiol self- assembled monolayers on gold. Langmuir 2010, 26, 7242–7247; https://doi.org/10.1021/la904317b.Search in Google Scholar

48. Ito, E., Kang, H., Lee, D., Park, J. B., Hara, M., Noh, J. Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(111) in ultrahigh vacuum at room temperature. J. Colloid Interface Sci. 2013, 394, 522–529; https://doi.org/10.1016/j.jcis.2012.12.035.Search in Google Scholar

49. Ahlrichs, R., Bar, M., Haser, M., Horn, H., Kölmel, C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169; https://doi.org/10.1016/0009-2614(89)85118-8.Search in Google Scholar

50. Sinha, P., Boesch, S. E., Gu, C., Wheeler, R. A., Wilson, A. K. Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. J. Phys. Chem. A 2004, 108, 9213–9217; https://doi.org/10.1021/jp048233q.Search in Google Scholar

51. Zhumaev, U., Lai, A., Pobelov, I., Kuzume, A., Rudnev, A., Wandlowski, T. Quantifying perchlorate adsorption on Au(111) electrodes. Electrochim. Acta 2014, 146, 112–118; https://doi.org/10.1016/j.electacta.2014.09.013.Search in Google Scholar

52. Zhumaev, U., Pobelov, I., Rudnev, A., Kuzume, A., Wandlowski, T. Decoupling surface reconstruction and perchlorate adsorption on Au(111). Electrochem. Commun. 2014, 44, 31–33; https://doi.org/10.1016/j.elecom.2014.04.009.Search in Google Scholar

53. Schuster, S., Fuöser, M., Asyuda, A., Cyganik, P., Terfort, A., Zharnikov, M. Photoisomerization of azobenzene-substituted alka- nethiolates on Au(111) substrates in the context of work function variation: the effect of structure and packing density. Phys. Chem. Chem. Phys. 2019, 21, 9098–9105; https://doi.org/10.1039/c9cp00255c.Search in Google Scholar PubMed

54. Wen, J., Li, W., Chen, S., Ma, J. Simulations of molecular self- assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys. Chem. Chem. Phys. 2016, 18, 22757–22771; https://doi.org/10.1039/c6cp01049k.Search in Google Scholar PubMed

55. Rechmann, J., Krzywiecki, M., Erbe, A. Carbon-sulfur bond cleavage during adsorption of octadecane thiol to copper in ethanol. Langmuir 2019, 35, 6888–6897; https://doi.org/10.1021/acs.langmuir.9b00686.Search in Google Scholar PubMed

56. Whitley, M., Newton, M., McHale, G., Shirtcliffe, N. J. The self assembly of superhydrophobic copper thiolate films on copper in thiol solutions. Z. Phys. Chem. 2012, 226, 187–200; https://doi.org/10.1524/zpch.2012.0140.Search in Google Scholar

57. Tonnele, C., Pershin, A., Gali, S. M., Lherbier, A., Charlier, J. C., Castet, F., Muccioli, L., Beljonne, D. Atomistic simulations of charge transport in photoswitchable organic-graphene hybrids. J. Phys.: Mater. 2019, 2, 035001; https://doi.org/10.1088/2515-7639/ab1314.Search in Google Scholar

58. Rietze, C., Titov, E., Granucci, G., Saalfrank, P. Surface hopping dynamics for azobenzene photoisomerization: effects of packing density on surfaces, fluorination, and excitation wavelength. J. Phys. Chem. C 2020, 124, 26287–26295; https://doi.org/10.1021/acs.jpcc.0c08052.Search in Google Scholar

Received: 2021-10-17
Accepted: 2022-06-08
Published Online: 2022-07-04
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3143/pdf
Scroll to top button