Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
Abstract
Modification of metal surfaces with complex molecules opens interesting opportunities to build additional functionality into these surfaces. In this work, self assembled monolayers (SAMs) based on the same photoswitchable azobenzene motif but with different head groups have been synthesized and their SAMs on Au(111)/Si substrates have been characterized. 3-[(4-phenylazo)phenoxy]propyl thiol (PAPT) and its acetyl group protected analog, 3-[(4-phenylazo)phenoxy]propyl thioacetate (PAPA), have been synthesized. SAMs from PAPT and PAPA have been characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry and cyclic voltammetry (CV). The SAM-forming units of both SAMs are the same, as confirmed by IR and XPS, and the SAMs have similar surface coverage, as evidenced by analysis of the reductive desorption peaks in CVs. The tilt angle of the azobenzene moiety was ca. 75° with respect to the surface normal as determined by IR spectroscopy, i.e., the molecules are lying quite flat on the gold surface. Despite similar surface coverages, the CVs for PAPT in aqueous perchlorate solution show a typical perchlorate adsorption peak to gold, whereas the corresponding experiments with PAPA show no perchlorate adsorption at all. In conclusion, SAM formation can lead to an increase in the number of electrochemically accessible surface sites on the final, SAM covered surface. Whether the amount of such sites increases or decreases, depends on the precursor. The precursor most likely affects the adsorption mechanism and thus the atomic surface structure of the metal at the metal/SAM interface. Thus, details of the SAM formation mechanism, which is affected by the precursor used, can have quite strong effects on the electrochemical properties, and likely also electrocatalytic properties, of the resulting modified surface.
Funding source: Deutsche Forschungsgemeinschaft
Acknowledgements
We cordially thank Asif Bashir for discussions of SAM alignment, Maciej Krzywiecki and Erlind Mysliu for assistance with XPS analysis and Petra Ebbinghaus for technical assistance.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: We acknowledge support from IMPRS Surmat and the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169; https://doi.org/10.1021/cr0300789.Suche in Google Scholar PubMed
2. Madueno, R., Raisanen, M. T., Silien, C., Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 2008, 454, 618–621; https://doi.org/10.1038/nature07096.Suche in Google Scholar PubMed
3. Ariga, K., Mori, T., Akamatsu, M., Hill, J. P. Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. Thin Solid Films 2014, 554, 32–40; https://doi.org/10.1016/j.tsf.2013.05.060.Suche in Google Scholar
4. Cho, H., Zook, J., Banner, T., Park, S. -H., Min, B. -H., Hasty, K. A., Pinkhassik, E., Lindner, E. Immobilization of fibrinogen antibody on self-assembled gold monolayers for immunosensor applications. Tissue Eng. Regener. Med. 2014, 11, 10–15; https://doi.org/10.1007/s13770-013-1119-4.Suche in Google Scholar
5. Erbe, A., Bushby, R. J., Evans, S. D., Jeuken, L. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy. J. Phys. Chem. B 2007, 111, 3515; https://doi.org/10.1021/jp0676181.Suche in Google Scholar PubMed PubMed Central
6. Pourbeyram, S., Shervedani, R. K., Sabzyan, H. Surface Science STM characterization of DNA immobilized via Zr ion glue onto gold thiol SAMs. Surf. Sci. 2013, 616, 100–103; https://doi.org/10.1016/j.susc.2013.05.006.Suche in Google Scholar
7. Cheng, X., Lowe, S. B., Reece, P. J., Gooding, J. J. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700; https://doi.org/10.1039/c3cs60353a.Suche in Google Scholar PubMed
8. Hasan, A., Pandey, L. M. Self-assembled monolayers in biomaterials, Ch. 6. In Nanobiomaterials; Narayan, R., Ed. Woodhead Publishing: Duxford, UK, 2018, pp. 137–178. https://doi.org/10.1016/B978-0-08-100716-7.00007-6.Suche in Google Scholar
9. Singh, M., Kaur, N., Comini, E. The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 2020, 8, 3938–3955; https://doi.org/10.1039/d0tc00388c.Suche in Google Scholar
10. Huang, X., Li, T. Recent progress in the development of molecular- scale electronics based on photoswitchable molecules. J. Mater. Chem. C 2020, 8, 821–848; https://doi.org/10.1039/c9tc06054e.Suche in Google Scholar
11. Hosseinpour, S., Gothelid, M., Leygraf, C., Johnson, C. M. Self- assembled monolayers as inhibitors for the atmospheric corrosion of copper induced by formic acid: a comparison between hexanethiol and hexaneselenol. J. Electrochem. Soc. 2013, 161, C50–C56; https://doi.org/10.1149/2.056401jes.Suche in Google Scholar
12. Zhang, D. Q., Zeng, H. j., Zhang, L., Liu, P., Gao, L. X. Influence of oxygen and oxidant on corrosion inhibition of cysteine self-assembled membranes for copper. Colloids Surf., A 2014, 445, 105–110; https://doi.org/10.1016/j.colsurfa.2014.01.017.Suche in Google Scholar
13. Hsieh, S., Chao, W. -J., Lin, P. -Y., Hsieh, C. -W. Influence of molecular packing on the corrosion inhibition properties of self-assembled octadecyltrichlorosilane monolayers on silicon. Corrosion Sci. 2014, 80, 427–433; https://doi.org/10.1016/j.corsci.2013.11.046.Suche in Google Scholar
14. Rechmann, J., Sarfraz, A., Götzinger, A. C., Dirksen, E., Müller, T. J. J., Erbe, A. Surface functionalization of oxide-covered zinc and iron with phosphonated phenylethynyl phenothiazine. Langmuir 2015, 31, 7306–7316; https://doi.org/10.1021/acs.langmuir.5b01370.Suche in Google Scholar
15. Clayden, J., Greeves, N., Warren, S., Wothers, P. Organic Chemistry; Oxford University Press Inc.: New York, 2005.Suche in Google Scholar
16. Badin, M. G., Bashir, A., Krakert, S., Strunskus, T., Terfort, A., Woll, C. Kinetically stable, flat-lying thiolate monolayers. Angew. Chem. Int. Ed. 2007, 46, 3762–3764; https://doi.org/10.1002/anie.200605125.Suche in Google Scholar
17. Singh, A., Dahanayaka, D. H., Biswas, A., Bumm, L. A., Halterman, R. L. Molecularly ordered decanethiolate self-assembled monolayers on Au(111) from in situ cleaved decanethioacetate: an NMR and STM study of the efficacy of reagents for thioacetate cleavage. Langmuir 2010, 26, 13221–13226; https://doi.org/10.1021/la100103k.Suche in Google Scholar
18. Jin, J., Zhou, W. -J., Chen, Y., Liu, Y. -L., Sun, X. -Q., Xi, H. -T. The thioacetate-functionalized self-assembled monolayers on Au: toward high-performance ion-selective electrode for Ag+. Bull. Kor. Chem. Soc. 2014, 35, 601–604; https://doi.org/10.5012/bkcs.2014.35.2.601.Suche in Google Scholar
19. Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257; https://doi.org/10.1016/s0079-6816(00)00024-1.Suche in Google Scholar
20. Tour, J. M., Jones, L., Pearson, D. L., Lamba, J. J. S., Burgin, T. P., Whitesides, G. M., Allara, D. L., Parikh, A. N., Atre, S. Self- assembled monolayers and multilayers of conjugated thiols, α, ω- dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 1995, 117, 9529–9534; https://doi.org/10.1021/ja00142a021.Suche in Google Scholar
21. Bashir, A., Iqbal, D., Jain, S. M., Barbe, K., Abu-Husein, T., Rohwerder, M., Terfort, A., Zharnikov, M. Promoting effect of protecting group on the structure and morphology of self-assembled mono- layers: terphenylylethanethioactate on Au(111). J. Phys. Chem. C 2015, 119, 25352–25363; https://doi.org/10.1021/acs.jpcc.5b06813.Suche in Google Scholar
22. Park, T., Kang, H., Ito, E., Noh, J. Self-assembled monolayers of alkanethioacetates on Au(111) in ammonium hydroxide solution. Bull. Kor. Chem. Soc. 2021, 42, 252–257; https://doi.org/10.1002/bkcs.12189.Suche in Google Scholar
23. Yager, K. G., Barrett, C. J. Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol., A 2006, 182, 250–261; https://doi.org/10.1016/j.jphotochem.2006.04.021.Suche in Google Scholar
24. Barrett, C. J., Mamiya, J. -I., Yager, K. G., Ikeda, T. Photomechanical effects in azobenzene-containing soft materials. Soft Matter 2007, 3, 1249; https://doi.org/10.1039/b705619b.Suche in Google Scholar PubMed
25. Stock, P., Erbe, A., Buck, M., Wiedemann, D., Menard, H., Horner, G., Grohmann, A. Thiocyanate anchors for salt-like iron(II) complexes on Au(111): promises and caveats. Z. Naturforsch. B Chem. Sci. 2014, 69, 1164–1180; https://doi.org/10.5560/znb.2014-4159.Suche in Google Scholar
26. Evans, S. D., Johnson, S. R., Ringsdorf, H., Williams, L. M., Wolf, H. Photoswitching of azobenzene derivatives formed on planar and colloidal gold surfaces. Langmuir 1998, 14, 6436–6440; https://doi.org/10.1021/la980450t.Suche in Google Scholar
27. Yu, S. H., Hassan, S. Z., Nam, G. -H., An, S., Kang, B., Chung, D. S. Consideration of azobenzene-based self-assembled monolayer deposition conditions for maximizing optoelectronic switching performances. Chem. Mater. 2021, 33, 5991–6002; https://doi.org/10.1021/acs.chemmater.1c01333.Suche in Google Scholar
28. Bronsch, W., Moldt, T., Boie, L., Gahl, C., Weinelt, M. De- localized versus localized excitations in the photoisomerization of azobenzene-functionalized alkanethiolate SAMs. J. Phys.: Condens. Matter 2017, 29, 484002; https://doi.org/10.1088/1361-648x/aa9309.Suche in Google Scholar
29. McElhinny, K. M., Park, J., Ahn, Y., Huang, P., Joo, Y., Lakkham, A., Pateras, A., Wen, H., Gopalan, P., Evans, P. G. Photoi- somerization dynamics in a densely packed optically transformable azobenzene monolayer. Langmuir 2018, 34, 10828–10836; https://doi.org/10.1021/acs.langmuir.8b01524.Suche in Google Scholar PubMed
30. Krekiehn, N. R., Müller, M., Jung, U., Ulrich, S., Herges, R., Magnussen, O. M. UV/Vis spectroscopy studies of the photoisomer- ization kinetics in self-assembled azobenzene-containing adlayers. Langmuir 2015, 31, 8362–8370; https://doi.org/10.1021/acs.langmuir.5b01645.Suche in Google Scholar PubMed
31. Moldt, T., Brete, D., Przyrembel, D., Das, S., Goldman, J. R., Kundu, P. K., Gahl, C., Klajn, R., Weinelt, M. Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature. Langmuir 2015, 31, 1048–1057; https://doi.org/10.1021/la504291n.Suche in Google Scholar PubMed
32. Zhou, W., Grosjean, S., Brase, S., Heinke, L. Thermal cis-to-trans isomerization of azobenzene side groups in metal-organic frameworks investigated by localized surface plasmon resonance spec- troscopy. Z. Phys. Chem. 2019, 233, 15–22; https://doi.org/10.1515/zpch-2017-1081.Suche in Google Scholar
33. Schulze, M., Utecht, M., Moldt, T., Przyrembel, D., Gahl, C., Weinelt, M., Saalfrank, P., Tegeder, P. Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers. Phys. Chem. Chem. Phys. 2015, 17, 18079–18086; https://doi.org/10.1039/c5cp03093e.Suche in Google Scholar PubMed
34. Riaz, S., Friedrichs, G. Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled mono- layers. Z. Phys. Chem. 2020, 234, 1427–1452; https://doi.org/10.1515/zpch-2020-1655.Suche in Google Scholar
35. Marten, J., Erbe, A., Critchley, K., Bramble, J. P., Weber, E., Evans, S. D. Self-assembled layers based on isomerizable stilbene and diketoarylhydrazone moieties. Langmuir 2008, 24, 2479–2486; https://doi.org/10.1021/la703109x.Suche in Google Scholar PubMed
36. Qi, Y., Liu, X., Hendriksen, B. L. M., Navarro, V., Park, J. Y., Ratera, I., Klopp, J. M., Edder, C., Himpsel, F. J., Frechet, J. M. J., Haller, E. E., Salmeron, M. Influence of molecular ordering on electrical and friction properties of w-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111). Langmuir 2010, 26, 16522–16528; https://doi.org/10.1021/la100837g.Suche in Google Scholar PubMed
37. Liao, L. -Y., Li, Y. -B., Zhang, X. -M., Geng, Y. -F., Zhang, J. -Y., Xie, J. -L., Zeng, Q. -D., Wang, C. STM investigation of the photoisomeriza- tion and photodimerization of stilbene derivatives on HOPG surface. J. Phys. Chem. C 2014, 118, 15963–15969; https://doi.org/10.1021/jp505511e.Suche in Google Scholar
38. Zheng, L. -Q., Yang, S., Lan, J., Gyr, L., Goubert, G., Qian, H., Aprahamian, I., Zenobi, R. Solution phase and surface photoiso- merization of a hydrazone switch with a long thermal half-life. J. Am. Chem. Soc. 2019, 141, 17637–17645; https://doi.org/10.1021/jacs.9b07057.Suche in Google Scholar PubMed
39. Caldwell, W. B., Campbell, D. J., Chen, K., Herr, B. R., Mirkin, C. A., Malik, A., Durbin, M. K., Dutta, P., Huang, K. G. A highly ordered self-assembled monolayer film of an azobenze-nealkanethiol on Au(111): electrochemical properties and structural characterization by synchrotron in-plane X-ray diffraction, atomic force microscopy, and surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 1995, 117, 6071–6082; https://doi.org/10.1021/ja00127a021.Suche in Google Scholar
40. Alkire, R., Kolb, D., Lipkowski, J., Ross, P. Chemically Modified Electrodes; Wiley-VCH: Weinheim, Germany, 2009.10.1002/9783527627059Suche in Google Scholar
41. Muglali, M. I., Erbe, A., Chen, Y., Barth, C., Koelsch, P., Rohwerder, M. Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold. Electrochim. Acta 2013, 90, 17–26; https://doi.org/10.1016/j.electacta.2012.11.116.Suche in Google Scholar PubMed PubMed Central
42. Koelsch, P., Muglali, M. I., Rohwerder, M., Erbe, A. Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. J. Opt. Soc. Am. B 2013, 30, 219–223; https://doi.org/10.1364/josab.30.000219.Suche in Google Scholar
43. Kemnade, N., Chen, Y., Muglali, M. I., Erbe, A. Electrochemical reductive desorption of alkyl self-assembled monolayers studied in situ by spectroscopic ellipsometry: evidence for formation of a low refractive index region after desorption. Phys. Chem. Chem. Phys. 2014, 16, 17081–17090; https://doi.org/10.1039/c4cp01369g.Suche in Google Scholar
44. Su, Z., Leitch, J., Lipkowski, J. Measurements of the potentials of zero free charge and zero total charge for 1-thio-β-D-glucose and DPTL modified Au(111) surface in different electrolyte solutions. Z. Phys. Chem. 2012, 226, 995–1009; https://doi.org/10.1524/zpch.2012.0280.Suche in Google Scholar
45. Wolf, H., Ringsdorf, H., Delamarche, E., Takami, T., Kang, H., Michel, B., Gerber, C., Jaschke, M., Butt, H. -J., Bamberg, E. End-group-dominated molecular order in self-assembled monolayers. J. Phys. Chem. 1995, 99, 7102–7107; https://doi.org/10.1021/j100018a050.Suche in Google Scholar
46. Erbe, A., Sarfraz, A., Toparli, C., Schwenzfeier, K., Niu, F. In Soft Matter at Aqueous Interfaces; Lang, P. R., Liu, Y., Eds.; Lect. Notes Phys.; Springer: Cham, Switzerland, Vol. 917, 2016, pp. 459–490.10.1007/978-3-319-24502-7_14Suche in Google Scholar
47. Hamoudi, H., Prato, M., Dablemont, C., Cavalleri, O., Canepa, M., Esaulov, V. A. Self-assembly of 1, 4-benzenedimethanethiol self- assembled monolayers on gold. Langmuir 2010, 26, 7242–7247; https://doi.org/10.1021/la904317b.Suche in Google Scholar
48. Ito, E., Kang, H., Lee, D., Park, J. B., Hara, M., Noh, J. Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(111) in ultrahigh vacuum at room temperature. J. Colloid Interface Sci. 2013, 394, 522–529; https://doi.org/10.1016/j.jcis.2012.12.035.Suche in Google Scholar
49. Ahlrichs, R., Bar, M., Haser, M., Horn, H., Kölmel, C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169; https://doi.org/10.1016/0009-2614(89)85118-8.Suche in Google Scholar
50. Sinha, P., Boesch, S. E., Gu, C., Wheeler, R. A., Wilson, A. K. Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. J. Phys. Chem. A 2004, 108, 9213–9217; https://doi.org/10.1021/jp048233q.Suche in Google Scholar
51. Zhumaev, U., Lai, A., Pobelov, I., Kuzume, A., Rudnev, A., Wandlowski, T. Quantifying perchlorate adsorption on Au(111) electrodes. Electrochim. Acta 2014, 146, 112–118; https://doi.org/10.1016/j.electacta.2014.09.013.Suche in Google Scholar
52. Zhumaev, U., Pobelov, I., Rudnev, A., Kuzume, A., Wandlowski, T. Decoupling surface reconstruction and perchlorate adsorption on Au(111). Electrochem. Commun. 2014, 44, 31–33; https://doi.org/10.1016/j.elecom.2014.04.009.Suche in Google Scholar
53. Schuster, S., Fuöser, M., Asyuda, A., Cyganik, P., Terfort, A., Zharnikov, M. Photoisomerization of azobenzene-substituted alka- nethiolates on Au(111) substrates in the context of work function variation: the effect of structure and packing density. Phys. Chem. Chem. Phys. 2019, 21, 9098–9105; https://doi.org/10.1039/c9cp00255c.Suche in Google Scholar PubMed
54. Wen, J., Li, W., Chen, S., Ma, J. Simulations of molecular self- assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys. Chem. Chem. Phys. 2016, 18, 22757–22771; https://doi.org/10.1039/c6cp01049k.Suche in Google Scholar PubMed
55. Rechmann, J., Krzywiecki, M., Erbe, A. Carbon-sulfur bond cleavage during adsorption of octadecane thiol to copper in ethanol. Langmuir 2019, 35, 6888–6897; https://doi.org/10.1021/acs.langmuir.9b00686.Suche in Google Scholar PubMed
56. Whitley, M., Newton, M., McHale, G., Shirtcliffe, N. J. The self assembly of superhydrophobic copper thiolate films on copper in thiol solutions. Z. Phys. Chem. 2012, 226, 187–200; https://doi.org/10.1524/zpch.2012.0140.Suche in Google Scholar
57. Tonnele, C., Pershin, A., Gali, S. M., Lherbier, A., Charlier, J. C., Castet, F., Muccioli, L., Beljonne, D. Atomistic simulations of charge transport in photoswitchable organic-graphene hybrids. J. Phys.: Mater. 2019, 2, 035001; https://doi.org/10.1088/2515-7639/ab1314.Suche in Google Scholar
58. Rietze, C., Titov, E., Granucci, G., Saalfrank, P. Surface hopping dynamics for azobenzene photoisomerization: effects of packing density on surfaces, fluorination, and excitation wavelength. J. Phys. Chem. C 2020, 124, 26287–26295; https://doi.org/10.1021/acs.jpcc.0c08052.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources