Startseite Naturwissenschaften Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies

  • Saddaqat Ali , Majid Muneer EMAIL logo , Muhammad Kaleem Khan Khosa , Nada Alfryyan und Munawar Iqbal EMAIL logo
Veröffentlicht/Copyright: 14. September 2022

Abstract

In the current study, the degradation of reactive orange 122 (RO 122) dye was carried out under UV and gamma irradiation in presence of H2O2. The effect of variables such as UV exposure time, gamma-ray absorbed dose, initial concentration of dye and oxidant dose were investigated. The removal of 64.10, 58.84 and 55.46 (%) was observed for 50, 100 and 150 (mg/L) dye concentrations, respectively using UV radiation time of 150 (min). The degradation was enhanced to 80.39, 69.95 and 67.01 (%) when UV radiation was employed in the presence of H2O2 (0.5 mL/L) for above concentrations respectively. The degradation was further improved to 97, 92.54 and 81.32 (%) using 5 kGy absorbed dose along with H2O2 (0.5 mL/L). The reduction in chemical oxygen demand (COD) was 77, 64 and 57 (%) using UV/H2O2 (0.5 mL/L), while 63, 56 and 53 (%) in case of gamma/H2O2 for aforementioned concentrations. The removal efficiency (G-value), dose constants (k), dose indispensable for 50, 90 and 99 (%) degradation (D 0.5, D 0.90, and D 0.99) after the treatment with gamma radiation were determined. The G-value was noted as 0.46–0.0711 for 50–150 mg/L dye concentration for gamma irradiated samples which improved to 0.57–0.1204 for above mentioned concentrations in presence of H2O2. The FTIR analysis showed that all the peaks were disappeared using gamma/H2O2 at 5 kGy absorbed dose except a minor peak of −CO stretching. The degradation mechanism of dye followed pseudo-first-order kinetics. A significant decrease in peak area was observed by the HPLC analysis after treating the dye samples with gamma/H2O2 (0.5 mL/L) at absorbed dose of 5 kGy which has proven the process efficiency for dye degradation.


Corresponding authors: Majid Muneer, Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan, E-mail: ; and Munawar Iqbal, Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan, E-mail:

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R291), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to the authorities of the National Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan for providing the facility of the gamma radiation source for the treatment of dye samples. We are also thankful to Dr. Muhammad Saeed for helping in data analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R291), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

1. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Suche in Google Scholar

2. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. J. Z. F. P. C. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar

3. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar

4. Jamil, A., Bokhari, T. H., Iqbal, M., Bhatti, I. A., Zuber, M., Nisar, J., Masood, N. Z. Phys. Chem. 2020, 234, 279–294; https://doi.org/10.1515/zpch-2019-1384.Suche in Google Scholar

5. Khan, N. U. H., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 361–373; https://doi.org/10.1515/zpch-2018-1194.Suche in Google Scholar

6. Sasmaz, A., Sasmaz, B., Hein, J. R. Ore Geol. Rev. 2021, 128, 103910; https://doi.org/10.1016/j.oregeorev.2020.103910.Suche in Google Scholar

7. Sasmaz, A., Zagnitko, V. M., Sasmaz, B. Ore Geol. Rev. 2020, 126, 103772; https://doi.org/10.1016/j.oregeorev.2020.103772.Suche in Google Scholar

8. Dolatabadi, M., Ghaneian, M. T., Wang, C., Ahmadzadeh, S. J. Mol. Liq. 2021, 334, 116116; https://doi.org/10.1016/j.molliq.2021.116116.Suche in Google Scholar

9. Nisar, N., Ali, O., Islam, A., Ahmad, A., Yameen, M., Ghaffar, A., Iqbal, M., Nazir, A., Masood, N. Z. Phys. Chem. 2019, 233, 1603–1623; https://doi.org/10.1515/zpch-2018-1259.Suche in Google Scholar

10. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar

11. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G. A., Soomro, G. A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469–1484; https://doi.org/10.1515/zpch-2018-1201.Suche in Google Scholar

12. Khan, N. U. H., Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Suche in Google Scholar

13. Dolatabadi, M., Świergosz, T., Ahmadzadeh, S. Sci. Total Environ. 2021, 772, 145323; https://doi.org/10.1016/j.scitotenv.2021.145323.Suche in Google Scholar PubMed

14. Ahmadzadeh, S., Kassim, A., Rezayi, M., Rounaghi, G. H. Molecules 2011, 16, 8130–8142; https://doi.org/10.3390/molecules16098130.Suche in Google Scholar PubMed PubMed Central

15. Alwadai, N., Mitra, S., Hedhili, M. N., Alamoudi, H., Xin, B., Alaal, N., Roqan, I. S. ACS Appl. Mater. Interfaces 2021, 13, 33335–33344; https://doi.org/10.1021/acsami.1c03424.Suche in Google Scholar PubMed

16. Ismail, R. M., Almaqtri, W. Q., Hassan, M. Chem. Int. 2021, 7, 21–29.Suche in Google Scholar

17. Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Mabrok, A. Chem. Int. 2021, 7, 79–89.Suche in Google Scholar

18. Awwad, A. M., Salem, N. M., Amer, M. W., Shammout, M. W. Chem. Int. 2021, 7, 139–144.Suche in Google Scholar

19. Minas, F., Chandravanshi, B. S., Leta, S. Chem. Int. 2017, 3, 392–405.Suche in Google Scholar

20. Djehaf, K., Bouyakoub, A. Z., Ouhib, R., Benmansour, H., Bentouaf, A., Mahdad, A., Moulay, N., Bensaid, D., Ameri, M. Chem. Int. 2017, 3, 414–419.Suche in Google Scholar

21. Daij, K. B., Bellebia, S., Bengharez, Z. Chem. Int. 2017, 3, 420–427.Suche in Google Scholar

22. Fouladgar, M., Ahmadzadeh, S. Appl. Surf. Sci. 2016, 379, 150–155; https://doi.org/10.1016/j.apsusc.2016.04.026.Suche in Google Scholar

23. Rezayi, M., Karazhian, R., Abdollahi, Y., Narimani, L., Sany, S. B. T., Ahmadzadeh, S., Alias, Y. Sci. Rep. 2014, 4, 1–8; https://doi.org/10.1038/srep04664.Suche in Google Scholar PubMed PubMed Central

24. Rounaghi, G., Mohajeri, M., Ahmadzadeh, S., Tarahomi, S. J. Inclusion Phenom. Macrocycl. Chem. 2009, 63, 365–372; https://doi.org/10.1007/s10847-009-9530-0.Suche in Google Scholar

25. Movahedyan, H., Mohammadi, A. S., Assadi, A. J. Environ. Sci. Health Environ. Sci. Eng. 2009, 6, 153–160.Suche in Google Scholar

26. Chen, Y. P., Liu, S. Y., Yu, H. Q., Yin, H., Li, Q. R. Chemosphere 2008, 72, 532–536; https://doi.org/10.1016/j.chemosphere.2008.03.054.Suche in Google Scholar PubMed

27. Muneer, M., Kanjal, M. I., Iqbal, M., Saeed, M., Khosa, M. K., Den, N. Z. U., Ali, S., Nazir, A. Appl. Radiat. Isot. 2020, 166, 109371; https://doi.org/10.1016/j.apradiso.2020.109371.Suche in Google Scholar PubMed

28. Muneer, M., Kanjal, M. I., Saeed, M., Javed, T., Haq, A. U., Den, N. Z. U., Jamal, M. A., Ali, S., Iqbal, M. Radiat. Phys. Chem. 2020, 177, 109115; https://doi.org/10.1016/j.radphyschem.2020.109115.Suche in Google Scholar

29. Basfar, A. A., Muneer, M., Alsager, O. A. Nukleonika 2017, 62, 61–68; https://doi.org/10.1515/nuka-2017-0008.Suche in Google Scholar

30. Alsager, O. A., Basfar, A. A., Muneer, M. Environ. Technol. 2018, 39, 967–976; https://doi.org/10.1080/09593330.2017.1317840.Suche in Google Scholar PubMed

31. Muneer, M., Bhatti, I., Iqbal, M., Ather, M. J. Chem. Soc. Pakistan 2012, 34, 787–792.Suche in Google Scholar

32. Rauf, M., Ashraf, S. S. J. Hazard Mater. 2009, 166, 6–16; https://doi.org/10.1016/j.jhazmat.2008.11.043.Suche in Google Scholar PubMed

33. Wang, M., Yang, R., Wang, W., Shen, Z., Bian, S., Zhu, Z. Radiat. Phys. Chem. 2006, 75, 286–291; https://doi.org/10.1016/j.radphyschem.2005.08.012.Suche in Google Scholar

34. uz Zaman, Q., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Z. Phys. Chem. 2021, 235, 1041–1053; https://doi.org/10.1515/zpch-2020-1640.Suche in Google Scholar

35. Sharif, S., uz Zaman, Q., Hassan, F., Javaid, S., Arif, K., Mansha, M. Z., Ehsan, N., Nazir, S., Gul, R., Iqbal, M. Z. Phys. Chem. 2021, 235, 467–481; https://doi.org/10.1515/zpch-2019-1532.Suche in Google Scholar

36. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar

37. Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817.10.1515/zpch-2018-1313Suche in Google Scholar

38. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar

39. Özen, A. S., Aviyente, V., Klein, R. A. J. Phys. Chem. 2003, 107, 4898–4907.10.1021/jp026287zSuche in Google Scholar

40. Jalal, G., Abbas, N., Deeba, F., Butt, T., Jilal, S., Sarfraz, S. Chem. Int. 2021, 7, 197–207.Suche in Google Scholar

41. Sasmaz, M., Senel, G. U., Obek, E. Bull. Environ. Contam. Toxicol. 2021, 106, 1050–1058; https://doi.org/10.1007/s00128-021-03222-7.Suche in Google Scholar PubMed

42. Ahmadzadeh, S., Kassim, A., Abdollahi, Y. Int. J. Electrochem. Sci. 2011, 6, 4749–4759.Suche in Google Scholar

43. Noreen, M., Shahid, M., Iqbal, M. J. Nisar Measurement 2017, 109, 88–99; https://doi.org/10.1016/j.measurement.2017.05.030.Suche in Google Scholar

44. Hassen, E. B., Asmare, A. M. Chem. Int. 2019, 5, 87–96.Suche in Google Scholar

45. Iqbal, M., Nisar, J., Adil, M., Abbas, M., Riaz, M., Tahir, M. A., Younus, M., Shahid, M. Chemosphere 2017, 168, 590–598; https://doi.org/10.1016/j.chemosphere.2016.11.021.Suche in Google Scholar PubMed

46. Ahmadzadeh, S., Rezayi, M., Karimi-Maleh, H., Alias, Y. Measurement 2015, 70, 214–224; https://doi.org/10.1016/j.measurement.2015.04.005.Suche in Google Scholar

47. Sasmaz, A. J. Geochem. Explor. 2020, 214, 106539; https://doi.org/10.1016/j.gexplo.2020.106539.Suche in Google Scholar

48. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297.10.1007/s00128-017-2220-5Suche in Google Scholar PubMed

49. Abbas, N., Butt, M. T., Ahmad, M. M., Deeba, F., Hussain, N. Chem. Int. 2021, 7, 103–111.Suche in Google Scholar

50. Rezayi, M., Heng, L. Y., Kassim, A., Ahmadzadeh, S., Abdollahi, Y., Jahangirian, H. Chem. Cent. J. 2012, 6, 1–6; https://doi.org/10.1186/1752-153x-6-40.Suche in Google Scholar

51. Bukhari, A., Atta, M., Nazir, A., Shahab, M. R., Kanwal, Q., Iqbal, M., Albalawi, H., Alwadai, N. Z. Phys. Chem. 2022, 236, 659–671; https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar

Received: 2021-04-28
Accepted: 2022-06-08
Published Online: 2022-09-14
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3056/html?lang=de
Button zum nach oben scrollen