Home Physical Sciences Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
Article
Licensed
Unlicensed Requires Authentication

Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures

  • Vikas Bharti , Deepika Kaushal , Sunil Kumar , Abhishek Thakur , Dilbag Singh Rana , Manish Kumar EMAIL logo and Shashi Kant
Published/Copyright: June 24, 2022

Abstract

The ternary systems containing Water, Ascorbic acid (AA) and ZnSO4·7H2O were investigated using three approaches namely volumetric studies, viscosity studies and conductance studies. The solvent systems used were 2, 4 and 6% (by weight) of AA in water. The studies were conducted at four temperatures (303.15–318.15 K with an interval of 5 K) and pressure 0.1 MPa with concentration of ZnSO4·7H2O in the solution ranging from 0.01 to 0.12 m. Various parameters like partial molar volume (ϕv), apparent molar volume ( ϕ v o ) , Hepler’s constant ( ( d 2 ϕ v o / d T 2 ) p ) , partial molar expansibility ( ϕ E o ) and transfer volume ( Δ t r ϕ v o ) have been evaluated from volumetric studies. The viscosity studies have yielded Jones-Dole parameters (A and B) and free energy of activation per mole for solvent ( Δ μ 1 0 ) and solute ( Δ μ 2 0 ) . The conductance data has been used to calculate molar conductance (Λm), limiting molar conductance ( Λ m o ) and Walden product ( Λ m o η o ) . The results of these studies agree with each other and have concluded the structure breaker behavior of ZnSO4·7H2O in the solvent system containing AA and water.


Corresponding author: Manish Kumar, Department of Chemistry & Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra (HP), India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Vikas Bharti is grateful to UGC, New Delhi for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chauhan, S., Chauhan, M. S., Kaushal, D., Syal, V. K., Jyoti, J. J. Solut. Chem. 2010, 39, 622.10.1007/s10953-010-9534-9Search in Google Scholar

2. Banipal, T. S., Kaur, N., Banipal, P. K. J. Chem. Thermodyn. 2015, 82, 12.10.1016/j.jct.2014.10.015Search in Google Scholar

3. Kumar, M., Kant, S., Kaushal, D. Z. Phys. Chem. 2019, 233, 255.10.1515/zpch-2018-1151Search in Google Scholar

4. Pal, A., Chauhan, N. J. Solut. Chem. 2010, 39, 1636.10.1007/s10953-010-9620-zSearch in Google Scholar

5. Nain, A. K., Lather, M., Neetu. J. Chem. Thermodyn. 2013, 63, 67.10.1016/j.jct.2013.04.001Search in Google Scholar

6. Sadeghi, R. J. Chem. Thermodyn. 2011, 43, 200.10.1016/j.jct.2010.08.021Search in Google Scholar

7. Usmani, M. A., Uddeen, R. Thermochim. Acta 2012, 527, 112.10.1016/j.tca.2011.10.013Search in Google Scholar

8. Nain, A. K., Lather, M., Sharma, R. K. J. Mol. Liq. 2011, 159, 180.10.1016/j.molliq.2011.01.010Search in Google Scholar

9. Yan, Z. N., Wang, J. J., Kong, W., Lu, J. S. Fluid Phase Equil. 2004, 215, 143.10.1016/j.fluid.2003.07.001Search in Google Scholar

10. Chalikian, T. V., Breslauer, K. J. Biopolymers 1998, 48, 264.10.1002/(SICI)1097-0282(1998)48:4<264::AID-BIP6>3.0.CO;2-8Search in Google Scholar

11. Hedwig, G. R., Jameson, G. B., Høiland, H. J. Chem. Thermodyn. 2011, 43, 1936.10.1016/j.jct.2011.07.002Search in Google Scholar

12. Shukla, M. K., Mishra, P. C. J. Mol. Struct. 1996, 337, 247.10.1016/0022-2860(95)09129-7Search in Google Scholar

13. Jung, C. H., Wells, W. W. Arch. Biochem. Biophys. 1998, 355, 9.10.1006/abbi.1998.0713Search in Google Scholar

14. Deutsch, J. C. J. Chromatogr. A 2000, 881, 299.10.1016/S0021-9673(00)00166-7Search in Google Scholar

15. Zeng, W., Martinuzzi, F., MacGregor, A. J. Pharm. Biomed. Anal. 2005, 36, 1107.10.1016/j.jpba.2004.09.002Search in Google Scholar

16. Golubitskii, G. B., Budko, E. V., Basova, E. M., Kostarnoi, A. V., Ivanov, V. M. Zh. Anal. Khim. 2007, 62, 823.10.1134/S1061934807080096Search in Google Scholar

17. Zatikyan, A. L., Kazoyan, E. A., Bonora, S., Markarian, S. A. Zh. Prikl. Spektrosk. 2008, 75, 653.10.1007/s10812-008-9105-7Search in Google Scholar

18. Magrì, A., Germano, G., Lorenzato, A., Lamba, S., Chilà, R., Montone, M., Amodio, V., Ceruti, T., Sassi, F., Arena, S., Abrignani, S., D’Incalci, M., Zucchetti, M., Nicolantonio, F. D., Bardelli, A. Sci. Transl. Med. 2020, 12, 1–9.10.1126/scitranslmed.aay8707Search in Google Scholar

19. Abobaker, A., Alzwi, A., Alraied, A. H. A. Pharmacol. Rep 2020, 72, 1517.10.1007/s43440-020-00176-1Search in Google Scholar

20. Buettner, G. R. J. Biochem. Biophys. Methods 1988, 16, 27.10.1016/0165-022X(88)90100-5Search in Google Scholar

21. Hotz, C., Brown, K. H. Food Nutr. Bull. 2004, 25, S91–S204.Search in Google Scholar

22. Banik, I., Roy, M. N. J. Mol. Liq. 2012, 169, 8–14.10.1016/j.molliq.2012.03.006Search in Google Scholar

23. McCall, K. A., Huang, C., Fierke, C. A. J. Nutr. 2000, 130, 1437S–1446S.10.1093/jn/130.5.1437SSearch in Google Scholar PubMed

24. Parmar, M. L., Sharma, P., Guleria, M. K. Indian J. Chem. 2009, 48A, 57.Search in Google Scholar

25. Kaushal, D., Rana, D. S., Kumar, M., Singh, K., Singh, K., Chauhan, S., Umar, A. Z. Phys. Chem. 2019, 233, 413.10.1515/zpch-2017-1014Search in Google Scholar

26. Kant, S., Kumar, M. J. Chem. Biol. Phys. Sci. 2013, 3, 2459.Search in Google Scholar

27. Soni, A., Kumar, S., Kaushal, D., Sharotri, N., Maurya, I. K., Sharma, J., Sharma, A., Kumar, M. Adv. Sci. Eng. Med. 2019, 11, 465.10.1166/asem.2019.2379Search in Google Scholar

28. Kaushal, D., Rana, D. S., Chauhan, M. S., Umar, A., Chauhan, S. J. Mol. Liq. 2013, 188, 237–244.10.1016/j.molliq.2013.09.030Search in Google Scholar

29. Anand, H., Verma, R. Z. Phys. Chem. 2016, 230, 185.10.1515/zpch-2015-0636Search in Google Scholar

30. Masson, D. O. Philos Mag. 1929, 8, 218.10.1080/14786440808564880Search in Google Scholar

31. Kaushal, D., Rana, D. S., Chauhan, S. Z. Phys. Chem. 2014, 228, 99.10.1515/zpch-2014-0436Search in Google Scholar

32. Kumar, D., Sharma, S. K. Z. Phys. Chem. 2018, 232, 393.10.1515/zpch-2017-0977Search in Google Scholar

33. Bakshi, M. S. J. Phys. Chem. C 2011, 115, 13947.10.1021/jp202454kSearch in Google Scholar

34. Kant, S., Kumar, A., Kumar, S. J. Mol. Liq. 2009, 150, 39.10.1016/j.molliq.2009.09.010Search in Google Scholar

35. Millero, F. J. In Structure, Thermodynamics and Transport Processes in Water and Aqueous Solutions, Chap. 15; Horne, R. A., Ed. Wiley Inter Science: New York, 1971.Search in Google Scholar

36. Malladi, L., Tangde, V. M., Dhondge, S. S., Deshmukh, D. W., Jengathe, S. P. J. Chem. Thermodyn. 2017, 112, 166.10.1016/j.jct.2017.04.015Search in Google Scholar

37. Kumar, H., Kaur, K. J. Mol. Liq. 2012, 173, 130.10.1016/j.molliq.2012.07.008Search in Google Scholar

38. Kumar, M., Kant, S., Kaushal, D Z. Phys. Chem. 2022, 236, 387.10.1515/zpch-2020-1766Search in Google Scholar

39. Hepler, L. G. Can. J. Chem. 1969, 47, 4613.10.1139/v69-762Search in Google Scholar

40. Romero, C. M., Negrete, F. Phys. Chem. Liq. 2004, 42, 261–267.10.1080/00319100410001659596Search in Google Scholar

41. Pal, A., Chauhan, N. J. Chem. Eng. Data 2011, 56, 1687.10.1021/je100857sSearch in Google Scholar

42. Kumar, D., Lomesh, S. K., Nathan, V. J. Mol. Liq. 2017, 247, 75.10.1016/j.molliq.2017.08.057Search in Google Scholar

43. Hossain, M. F., Biswas, T. K., Islam, M. N., Huque, M. E. Monatsh. Chem. 2010, 141, 1297–1308.10.1007/s00706-010-0402-5Search in Google Scholar PubMed PubMed Central

44. Jones, G., Dole, M. J. Am. Chem. Soc. 1929, 51, 2950.10.1021/ja01385a012Search in Google Scholar

45. Falkenhagen, H., Vernon, E. L. Z. Phys. Chem. 1932, 33, 140.Search in Google Scholar

46. Roy, M. N., Dakua, V. K., Sinha, B. Int. J. Thermophys. 2007, 28, 1275.10.1007/s10765-007-0220-0Search in Google Scholar

47. Banipal, T. S., Singh, H., Banipal, P. K., Singh, V. Thermochim. Acta 2013, 553, 31.10.1016/j.tca.2012.10.017Search in Google Scholar

48. Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes; McGraw Hill: New York, 1941.Search in Google Scholar

49. Ali, A., Khan, S., Hyder, S., Tariq, Md. J. Chem. Thermodyn. 2007, 39, 613.10.1016/j.jct.2006.08.010Search in Google Scholar

50. Sharma, S. K., Thakur, A. J. Mol. Liq. 2021, 322, 114527.10.1016/j.molliq.2020.114971Search in Google Scholar

Received: 2021-04-22
Accepted: 2022-06-08
Published Online: 2022-06-24
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3054/pdf
Scroll to top button