Startseite Naturwissenschaften Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures

  • Vikas Bharti , Deepika Kaushal , Sunil Kumar , Abhishek Thakur , Dilbag Singh Rana , Manish Kumar EMAIL logo und Shashi Kant
Veröffentlicht/Copyright: 24. Juni 2022

Abstract

The ternary systems containing Water, Ascorbic acid (AA) and ZnSO4·7H2O were investigated using three approaches namely volumetric studies, viscosity studies and conductance studies. The solvent systems used were 2, 4 and 6% (by weight) of AA in water. The studies were conducted at four temperatures (303.15–318.15 K with an interval of 5 K) and pressure 0.1 MPa with concentration of ZnSO4·7H2O in the solution ranging from 0.01 to 0.12 m. Various parameters like partial molar volume (ϕv), apparent molar volume ( ϕ v o ) , Hepler’s constant ( ( d 2 ϕ v o / d T 2 ) p ) , partial molar expansibility ( ϕ E o ) and transfer volume ( Δ t r ϕ v o ) have been evaluated from volumetric studies. The viscosity studies have yielded Jones-Dole parameters (A and B) and free energy of activation per mole for solvent ( Δ μ 1 0 ) and solute ( Δ μ 2 0 ) . The conductance data has been used to calculate molar conductance (Λm), limiting molar conductance ( Λ m o ) and Walden product ( Λ m o η o ) . The results of these studies agree with each other and have concluded the structure breaker behavior of ZnSO4·7H2O in the solvent system containing AA and water.


Corresponding author: Manish Kumar, Department of Chemistry & Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra (HP), India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Vikas Bharti is grateful to UGC, New Delhi for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chauhan, S., Chauhan, M. S., Kaushal, D., Syal, V. K., Jyoti, J. J. Solut. Chem. 2010, 39, 622.10.1007/s10953-010-9534-9Suche in Google Scholar

2. Banipal, T. S., Kaur, N., Banipal, P. K. J. Chem. Thermodyn. 2015, 82, 12.10.1016/j.jct.2014.10.015Suche in Google Scholar

3. Kumar, M., Kant, S., Kaushal, D. Z. Phys. Chem. 2019, 233, 255.10.1515/zpch-2018-1151Suche in Google Scholar

4. Pal, A., Chauhan, N. J. Solut. Chem. 2010, 39, 1636.10.1007/s10953-010-9620-zSuche in Google Scholar

5. Nain, A. K., Lather, M., Neetu. J. Chem. Thermodyn. 2013, 63, 67.10.1016/j.jct.2013.04.001Suche in Google Scholar

6. Sadeghi, R. J. Chem. Thermodyn. 2011, 43, 200.10.1016/j.jct.2010.08.021Suche in Google Scholar

7. Usmani, M. A., Uddeen, R. Thermochim. Acta 2012, 527, 112.10.1016/j.tca.2011.10.013Suche in Google Scholar

8. Nain, A. K., Lather, M., Sharma, R. K. J. Mol. Liq. 2011, 159, 180.10.1016/j.molliq.2011.01.010Suche in Google Scholar

9. Yan, Z. N., Wang, J. J., Kong, W., Lu, J. S. Fluid Phase Equil. 2004, 215, 143.10.1016/j.fluid.2003.07.001Suche in Google Scholar

10. Chalikian, T. V., Breslauer, K. J. Biopolymers 1998, 48, 264.10.1002/(SICI)1097-0282(1998)48:4<264::AID-BIP6>3.0.CO;2-8Suche in Google Scholar

11. Hedwig, G. R., Jameson, G. B., Høiland, H. J. Chem. Thermodyn. 2011, 43, 1936.10.1016/j.jct.2011.07.002Suche in Google Scholar

12. Shukla, M. K., Mishra, P. C. J. Mol. Struct. 1996, 337, 247.10.1016/0022-2860(95)09129-7Suche in Google Scholar

13. Jung, C. H., Wells, W. W. Arch. Biochem. Biophys. 1998, 355, 9.10.1006/abbi.1998.0713Suche in Google Scholar

14. Deutsch, J. C. J. Chromatogr. A 2000, 881, 299.10.1016/S0021-9673(00)00166-7Suche in Google Scholar

15. Zeng, W., Martinuzzi, F., MacGregor, A. J. Pharm. Biomed. Anal. 2005, 36, 1107.10.1016/j.jpba.2004.09.002Suche in Google Scholar

16. Golubitskii, G. B., Budko, E. V., Basova, E. M., Kostarnoi, A. V., Ivanov, V. M. Zh. Anal. Khim. 2007, 62, 823.10.1134/S1061934807080096Suche in Google Scholar

17. Zatikyan, A. L., Kazoyan, E. A., Bonora, S., Markarian, S. A. Zh. Prikl. Spektrosk. 2008, 75, 653.10.1007/s10812-008-9105-7Suche in Google Scholar

18. Magrì, A., Germano, G., Lorenzato, A., Lamba, S., Chilà, R., Montone, M., Amodio, V., Ceruti, T., Sassi, F., Arena, S., Abrignani, S., D’Incalci, M., Zucchetti, M., Nicolantonio, F. D., Bardelli, A. Sci. Transl. Med. 2020, 12, 1–9.10.1126/scitranslmed.aay8707Suche in Google Scholar

19. Abobaker, A., Alzwi, A., Alraied, A. H. A. Pharmacol. Rep 2020, 72, 1517.10.1007/s43440-020-00176-1Suche in Google Scholar

20. Buettner, G. R. J. Biochem. Biophys. Methods 1988, 16, 27.10.1016/0165-022X(88)90100-5Suche in Google Scholar

21. Hotz, C., Brown, K. H. Food Nutr. Bull. 2004, 25, S91–S204.Suche in Google Scholar

22. Banik, I., Roy, M. N. J. Mol. Liq. 2012, 169, 8–14.10.1016/j.molliq.2012.03.006Suche in Google Scholar

23. McCall, K. A., Huang, C., Fierke, C. A. J. Nutr. 2000, 130, 1437S–1446S.10.1093/jn/130.5.1437SSuche in Google Scholar PubMed

24. Parmar, M. L., Sharma, P., Guleria, M. K. Indian J. Chem. 2009, 48A, 57.Suche in Google Scholar

25. Kaushal, D., Rana, D. S., Kumar, M., Singh, K., Singh, K., Chauhan, S., Umar, A. Z. Phys. Chem. 2019, 233, 413.10.1515/zpch-2017-1014Suche in Google Scholar

26. Kant, S., Kumar, M. J. Chem. Biol. Phys. Sci. 2013, 3, 2459.Suche in Google Scholar

27. Soni, A., Kumar, S., Kaushal, D., Sharotri, N., Maurya, I. K., Sharma, J., Sharma, A., Kumar, M. Adv. Sci. Eng. Med. 2019, 11, 465.10.1166/asem.2019.2379Suche in Google Scholar

28. Kaushal, D., Rana, D. S., Chauhan, M. S., Umar, A., Chauhan, S. J. Mol. Liq. 2013, 188, 237–244.10.1016/j.molliq.2013.09.030Suche in Google Scholar

29. Anand, H., Verma, R. Z. Phys. Chem. 2016, 230, 185.10.1515/zpch-2015-0636Suche in Google Scholar

30. Masson, D. O. Philos Mag. 1929, 8, 218.10.1080/14786440808564880Suche in Google Scholar

31. Kaushal, D., Rana, D. S., Chauhan, S. Z. Phys. Chem. 2014, 228, 99.10.1515/zpch-2014-0436Suche in Google Scholar

32. Kumar, D., Sharma, S. K. Z. Phys. Chem. 2018, 232, 393.10.1515/zpch-2017-0977Suche in Google Scholar

33. Bakshi, M. S. J. Phys. Chem. C 2011, 115, 13947.10.1021/jp202454kSuche in Google Scholar

34. Kant, S., Kumar, A., Kumar, S. J. Mol. Liq. 2009, 150, 39.10.1016/j.molliq.2009.09.010Suche in Google Scholar

35. Millero, F. J. In Structure, Thermodynamics and Transport Processes in Water and Aqueous Solutions, Chap. 15; Horne, R. A., Ed. Wiley Inter Science: New York, 1971.Suche in Google Scholar

36. Malladi, L., Tangde, V. M., Dhondge, S. S., Deshmukh, D. W., Jengathe, S. P. J. Chem. Thermodyn. 2017, 112, 166.10.1016/j.jct.2017.04.015Suche in Google Scholar

37. Kumar, H., Kaur, K. J. Mol. Liq. 2012, 173, 130.10.1016/j.molliq.2012.07.008Suche in Google Scholar

38. Kumar, M., Kant, S., Kaushal, D Z. Phys. Chem. 2022, 236, 387.10.1515/zpch-2020-1766Suche in Google Scholar

39. Hepler, L. G. Can. J. Chem. 1969, 47, 4613.10.1139/v69-762Suche in Google Scholar

40. Romero, C. M., Negrete, F. Phys. Chem. Liq. 2004, 42, 261–267.10.1080/00319100410001659596Suche in Google Scholar

41. Pal, A., Chauhan, N. J. Chem. Eng. Data 2011, 56, 1687.10.1021/je100857sSuche in Google Scholar

42. Kumar, D., Lomesh, S. K., Nathan, V. J. Mol. Liq. 2017, 247, 75.10.1016/j.molliq.2017.08.057Suche in Google Scholar

43. Hossain, M. F., Biswas, T. K., Islam, M. N., Huque, M. E. Monatsh. Chem. 2010, 141, 1297–1308.10.1007/s00706-010-0402-5Suche in Google Scholar PubMed PubMed Central

44. Jones, G., Dole, M. J. Am. Chem. Soc. 1929, 51, 2950.10.1021/ja01385a012Suche in Google Scholar

45. Falkenhagen, H., Vernon, E. L. Z. Phys. Chem. 1932, 33, 140.Suche in Google Scholar

46. Roy, M. N., Dakua, V. K., Sinha, B. Int. J. Thermophys. 2007, 28, 1275.10.1007/s10765-007-0220-0Suche in Google Scholar

47. Banipal, T. S., Singh, H., Banipal, P. K., Singh, V. Thermochim. Acta 2013, 553, 31.10.1016/j.tca.2012.10.017Suche in Google Scholar

48. Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes; McGraw Hill: New York, 1941.Suche in Google Scholar

49. Ali, A., Khan, S., Hyder, S., Tariq, Md. J. Chem. Thermodyn. 2007, 39, 613.10.1016/j.jct.2006.08.010Suche in Google Scholar

50. Sharma, S. K., Thakur, A. J. Mol. Liq. 2021, 322, 114527.10.1016/j.molliq.2020.114971Suche in Google Scholar

Received: 2021-04-22
Accepted: 2022-06-08
Published Online: 2022-06-24
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3054/html
Button zum nach oben scrollen