Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
-
Vikas Bharti
, Deepika Kaushal , Sunil Kumar , Abhishek Thakur , Dilbag Singh Rana , Manish Kumarund Shashi Kant
Abstract
The ternary systems containing Water, Ascorbic acid (AA) and ZnSO4·7H2O were investigated using three approaches namely volumetric studies, viscosity studies and conductance studies. The solvent systems used were 2, 4 and 6% (by weight) of AA in water. The studies were conducted at four temperatures (303.15–318.15 K with an interval of 5 K) and pressure 0.1 MPa with concentration of ZnSO4·7H2O in the solution ranging from 0.01 to 0.12 m. Various parameters like partial molar volume (ϕv), apparent molar volume
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Vikas Bharti is grateful to UGC, New Delhi for financial support.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chauhan, S., Chauhan, M. S., Kaushal, D., Syal, V. K., Jyoti, J. J. Solut. Chem. 2010, 39, 622.10.1007/s10953-010-9534-9Suche in Google Scholar
2. Banipal, T. S., Kaur, N., Banipal, P. K. J. Chem. Thermodyn. 2015, 82, 12.10.1016/j.jct.2014.10.015Suche in Google Scholar
3. Kumar, M., Kant, S., Kaushal, D. Z. Phys. Chem. 2019, 233, 255.10.1515/zpch-2018-1151Suche in Google Scholar
4. Pal, A., Chauhan, N. J. Solut. Chem. 2010, 39, 1636.10.1007/s10953-010-9620-zSuche in Google Scholar
5. Nain, A. K., Lather, M., Neetu. J. Chem. Thermodyn. 2013, 63, 67.10.1016/j.jct.2013.04.001Suche in Google Scholar
6. Sadeghi, R. J. Chem. Thermodyn. 2011, 43, 200.10.1016/j.jct.2010.08.021Suche in Google Scholar
7. Usmani, M. A., Uddeen, R. Thermochim. Acta 2012, 527, 112.10.1016/j.tca.2011.10.013Suche in Google Scholar
8. Nain, A. K., Lather, M., Sharma, R. K. J. Mol. Liq. 2011, 159, 180.10.1016/j.molliq.2011.01.010Suche in Google Scholar
9. Yan, Z. N., Wang, J. J., Kong, W., Lu, J. S. Fluid Phase Equil. 2004, 215, 143.10.1016/j.fluid.2003.07.001Suche in Google Scholar
10. Chalikian, T. V., Breslauer, K. J. Biopolymers 1998, 48, 264.10.1002/(SICI)1097-0282(1998)48:4<264::AID-BIP6>3.0.CO;2-8Suche in Google Scholar
11. Hedwig, G. R., Jameson, G. B., Høiland, H. J. Chem. Thermodyn. 2011, 43, 1936.10.1016/j.jct.2011.07.002Suche in Google Scholar
12. Shukla, M. K., Mishra, P. C. J. Mol. Struct. 1996, 337, 247.10.1016/0022-2860(95)09129-7Suche in Google Scholar
13. Jung, C. H., Wells, W. W. Arch. Biochem. Biophys. 1998, 355, 9.10.1006/abbi.1998.0713Suche in Google Scholar
14. Deutsch, J. C. J. Chromatogr. A 2000, 881, 299.10.1016/S0021-9673(00)00166-7Suche in Google Scholar
15. Zeng, W., Martinuzzi, F., MacGregor, A. J. Pharm. Biomed. Anal. 2005, 36, 1107.10.1016/j.jpba.2004.09.002Suche in Google Scholar
16. Golubitskii, G. B., Budko, E. V., Basova, E. M., Kostarnoi, A. V., Ivanov, V. M. Zh. Anal. Khim. 2007, 62, 823.10.1134/S1061934807080096Suche in Google Scholar
17. Zatikyan, A. L., Kazoyan, E. A., Bonora, S., Markarian, S. A. Zh. Prikl. Spektrosk. 2008, 75, 653.10.1007/s10812-008-9105-7Suche in Google Scholar
18. Magrì, A., Germano, G., Lorenzato, A., Lamba, S., Chilà, R., Montone, M., Amodio, V., Ceruti, T., Sassi, F., Arena, S., Abrignani, S., D’Incalci, M., Zucchetti, M., Nicolantonio, F. D., Bardelli, A. Sci. Transl. Med. 2020, 12, 1–9.10.1126/scitranslmed.aay8707Suche in Google Scholar
19. Abobaker, A., Alzwi, A., Alraied, A. H. A. Pharmacol. Rep 2020, 72, 1517.10.1007/s43440-020-00176-1Suche in Google Scholar
20. Buettner, G. R. J. Biochem. Biophys. Methods 1988, 16, 27.10.1016/0165-022X(88)90100-5Suche in Google Scholar
21. Hotz, C., Brown, K. H. Food Nutr. Bull. 2004, 25, S91–S204.Suche in Google Scholar
22. Banik, I., Roy, M. N. J. Mol. Liq. 2012, 169, 8–14.10.1016/j.molliq.2012.03.006Suche in Google Scholar
23. McCall, K. A., Huang, C., Fierke, C. A. J. Nutr. 2000, 130, 1437S–1446S.10.1093/jn/130.5.1437SSuche in Google Scholar PubMed
24. Parmar, M. L., Sharma, P., Guleria, M. K. Indian J. Chem. 2009, 48A, 57.Suche in Google Scholar
25. Kaushal, D., Rana, D. S., Kumar, M., Singh, K., Singh, K., Chauhan, S., Umar, A. Z. Phys. Chem. 2019, 233, 413.10.1515/zpch-2017-1014Suche in Google Scholar
26. Kant, S., Kumar, M. J. Chem. Biol. Phys. Sci. 2013, 3, 2459.Suche in Google Scholar
27. Soni, A., Kumar, S., Kaushal, D., Sharotri, N., Maurya, I. K., Sharma, J., Sharma, A., Kumar, M. Adv. Sci. Eng. Med. 2019, 11, 465.10.1166/asem.2019.2379Suche in Google Scholar
28. Kaushal, D., Rana, D. S., Chauhan, M. S., Umar, A., Chauhan, S. J. Mol. Liq. 2013, 188, 237–244.10.1016/j.molliq.2013.09.030Suche in Google Scholar
29. Anand, H., Verma, R. Z. Phys. Chem. 2016, 230, 185.10.1515/zpch-2015-0636Suche in Google Scholar
30. Masson, D. O. Philos Mag. 1929, 8, 218.10.1080/14786440808564880Suche in Google Scholar
31. Kaushal, D., Rana, D. S., Chauhan, S. Z. Phys. Chem. 2014, 228, 99.10.1515/zpch-2014-0436Suche in Google Scholar
32. Kumar, D., Sharma, S. K. Z. Phys. Chem. 2018, 232, 393.10.1515/zpch-2017-0977Suche in Google Scholar
33. Bakshi, M. S. J. Phys. Chem. C 2011, 115, 13947.10.1021/jp202454kSuche in Google Scholar
34. Kant, S., Kumar, A., Kumar, S. J. Mol. Liq. 2009, 150, 39.10.1016/j.molliq.2009.09.010Suche in Google Scholar
35. Millero, F. J. In Structure, Thermodynamics and Transport Processes in Water and Aqueous Solutions, Chap. 15; Horne, R. A., Ed. Wiley Inter Science: New York, 1971.Suche in Google Scholar
36. Malladi, L., Tangde, V. M., Dhondge, S. S., Deshmukh, D. W., Jengathe, S. P. J. Chem. Thermodyn. 2017, 112, 166.10.1016/j.jct.2017.04.015Suche in Google Scholar
37. Kumar, H., Kaur, K. J. Mol. Liq. 2012, 173, 130.10.1016/j.molliq.2012.07.008Suche in Google Scholar
38. Kumar, M., Kant, S., Kaushal, D Z. Phys. Chem. 2022, 236, 387.10.1515/zpch-2020-1766Suche in Google Scholar
39. Hepler, L. G. Can. J. Chem. 1969, 47, 4613.10.1139/v69-762Suche in Google Scholar
40. Romero, C. M., Negrete, F. Phys. Chem. Liq. 2004, 42, 261–267.10.1080/00319100410001659596Suche in Google Scholar
41. Pal, A., Chauhan, N. J. Chem. Eng. Data 2011, 56, 1687.10.1021/je100857sSuche in Google Scholar
42. Kumar, D., Lomesh, S. K., Nathan, V. J. Mol. Liq. 2017, 247, 75.10.1016/j.molliq.2017.08.057Suche in Google Scholar
43. Hossain, M. F., Biswas, T. K., Islam, M. N., Huque, M. E. Monatsh. Chem. 2010, 141, 1297–1308.10.1007/s00706-010-0402-5Suche in Google Scholar PubMed PubMed Central
44. Jones, G., Dole, M. J. Am. Chem. Soc. 1929, 51, 2950.10.1021/ja01385a012Suche in Google Scholar
45. Falkenhagen, H., Vernon, E. L. Z. Phys. Chem. 1932, 33, 140.Suche in Google Scholar
46. Roy, M. N., Dakua, V. K., Sinha, B. Int. J. Thermophys. 2007, 28, 1275.10.1007/s10765-007-0220-0Suche in Google Scholar
47. Banipal, T. S., Singh, H., Banipal, P. K., Singh, V. Thermochim. Acta 2013, 553, 31.10.1016/j.tca.2012.10.017Suche in Google Scholar
48. Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes; McGraw Hill: New York, 1941.Suche in Google Scholar
49. Ali, A., Khan, S., Hyder, S., Tariq, Md. J. Chem. Thermodyn. 2007, 39, 613.10.1016/j.jct.2006.08.010Suche in Google Scholar
50. Sharma, S. K., Thakur, A. J. Mol. Liq. 2021, 322, 114527.10.1016/j.molliq.2020.114971Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources