Home Plasmons in Liquid Metals Studied by Inelastic X-ray Scattering
Article
Licensed
Unlicensed Requires Authentication

Plasmons in Liquid Metals Studied by Inelastic X-ray Scattering

  • Koji Kimura EMAIL logo , Toru Hagiya , Kazuhiro Matsuda and Nozomu Hiraoka
Published/Copyright: April 21, 2020

Abstract

Plasmon is a collective excitation of electrons in materials. Since plasmon can be observed in a wide range of the phase diagram including the solid, liquid, and classical plasma phases, the investigation of the electronic states through the plasmon is of great significance in order to obtain a unified insight into the electronic states in various phases of matter. Inelastic X-ray scattering (IXS) is an ideal tool for such an investigation, because it can be applied to the samples in the liquid state and those in an extreme conditions. In this review, we discuss IXS results on the plasmons in liquid metals, and also describe a formulation to predict the plasmon energy and the lifetime in liquid metals. The formulation takes into account the effect of the ionic structure within the nearly free electron approximation, and reproduces well the experimental results.


Dedicated to: Hirohisa Endo on the occasion of his 90th birthday.


Acknowledgement

We would like to thank late M. Yao, Prof. K. Nagaya, Prof. M. Inui, Prof. Y. Kajihara, and Prof. S. Ohmura for valuable discussions and experimental supports.

References

1. B. Knuth, F. Hensel, W. W. Warren Jr, J. Phys. Condens. Matter 9 (1997) 2693.10.1088/0953-8984/9/13/006Search in Google Scholar

2. A. vom Felde, J. Sprösser-Prou, J. Fink, Phys. Rev. B 40 (1989) 10181.10.1103/PhysRevB.40.10181Search in Google Scholar

3. W. Schölke, Electron Dynamics by Inelastic X-ray Scattering, Oxford University Press, New York (2007).10.1093/oso/9780198510178.001.0001Search in Google Scholar

4. I. Loa, K. Syassen, G. Monaco, G. Vankó, M. Krisch, M. Han, Phys. Rev. Lett. 107 (2011) 086402.10.1103/PhysRevLett.107.086402Search in Google Scholar

5. H.-K. Mao, Y. Ding, Y. Xiao, P. Chow, J. Shu, S. Lebéque, A. Lazicki, R. Ahuja, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 20434.10.1073/pnas.1116930108Search in Google Scholar

6. J. P. Hill, C. C. Kao, W. A. C. Caliebe, D. Gibbs, B. Hastings, Phys. Rev. Lett. 77 (1996) 3665.10.1103/PhysRevLett.77.3665Search in Google Scholar

7. C. Sternemann, A. Kaprolat, W. Schülke, Phys. Rev. B 57 (1998) 622.10.1103/PhysRevB.57.622Search in Google Scholar

8. C. A. Burns, P. Abbamonte, E. D. Isaacs, P. M. Platzman, Phys. Rev. Lett. 83 (1999) 2390.10.1103/PhysRevLett.83.2390Search in Google Scholar

9. H. Hayashi, Y. Udagawa, C.-C. Kao, J.-P. Rueff, F. Sette, J. Electron Spectrosc. Relat. Phenom. 120 (2001) 113.10.1016/S0368-2048(01)00313-9Search in Google Scholar

10. C. A. Burns, P. Giura, A. Said, A. Shukla, G. Vanká, M. Tuel-Benckendorf, E. D. Isaacs, P. M. Platzman, Phys. Rev. Lett. 89 (2002) 236404.10.1103/PhysRevLett.89.236404Search in Google Scholar PubMed

11. X. Wang, C. A. Burns, A. H. Said, C. N. Kodituwakku, Y. V. Shvydko, D. Casa, T. Gog, P. M. Platzman, Phys. Rev. B 81 (2010) 075104.10.1103/PhysRevB.81.075104Search in Google Scholar

12. S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, Phys. Rev. Lett. 98 (2007) 065002.10.1103/PhysRevLett.98.065002Search in Google Scholar PubMed

13. K. Kimura, K. Matsuda, N. Hiraoka, T. Fukumaru, Y. Kajihara, M. Inui, M. Yao, Phys. Rev. B 89 (2014) 014206.10.1103/PhysRevB.89.014206Search in Google Scholar

14. K. Kimura, K. Matsuda, N. Hiraoka, Y. Kajihara, T. Miyatake1, Y. Ishiguro, T. Hagiya, M. Inui, M. Yao, J. Phys. Soc. Jpn. 84 (2015) 084701.10.7566/JPSJ.84.084701Search in Google Scholar

15. T. Hagiya, K. Matsuda, N. Hiraoka, H. Hayashi, K. Kimura, Y. Kajihara, M. Inui, J. Phys. Soc. Jpn. 87 (2018) 08470310.7566/JPSJ.87.084703Search in Google Scholar

16. K. Tamura, M. Inui, S. Hosokawa, Rev. Sci. Instrum. 70 (1999) 144.10.1063/1.1149556Search in Google Scholar

17. K. Kimura, K. Matsuda, M. Yao, J. Phys. Soc. Jpn. 82 (2013) 115001.10.7566/JPSJ.82.115001Search in Google Scholar

18. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Thomson Learning, Inc., New York (1976).Search in Google Scholar

19. A. L. Fetter, J. D. Walecka, Quantum Theory Of Many-Particle Systems, Dover Publications, Inc. New York (2003).Search in Google Scholar

20. G. F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, New York (2005).10.1017/CBO9780511619915Search in Google Scholar

21. D. Pines, Elementary Excitations in Solids, Benjamin, New York (1964).Search in Google Scholar

22. K. S. Singwi, M. P. Tosi, R. H. Land, A. Sjölander, Phys. Rev. 176 (1968) 589.10.1103/PhysRev.176.589Search in Google Scholar

23. P. Vashishta, K. S. Singwi, Phys. Rev. B 6 (1972) 875.10.1103/PhysRevB.6.875Search in Google Scholar

24. Ll. Serra, F. Garcias, M. Barranco, N. Barberán, J. Navarro, Phys. Rev. B 44 (1991) 1492.10.1103/PhysRevB.44.1492Search in Google Scholar

25. G. Kalman, K. Kempa, M. Minella, Phys. Rev. B 43 (1991) 14238.10.1103/PhysRevB.43.14238Search in Google Scholar

26. M. Taut, K. Sturm, Solid Commun. 82 (1992) 295.10.1016/0038-1098(92)90644-OSearch in Google Scholar

27. M. Taut, J. Phys.: Condens. Matter 4 (1992) 9595.10.1088/0953-8984/4/48/014Search in Google Scholar

28. E. Lipparini, S. Stringari, K. Takayanagi, J. Phys. Condens. Matter 6 (1994) 2025.10.1088/0953-8984/6/10/019Search in Google Scholar

29. H. M. Böhm, S. Conti, M. P. Tosi, J. Phys.: Condens. Matter 8 (1996) 781.10.1088/0953-8984/8/7/005Search in Google Scholar

30. M. Hasegawa, M. Watabe, J. Phys. Soc. Jpn. 27 (1969) 1393.10.1143/JPSJ.27.1393Search in Google Scholar

31. M. Hasegawa, J. Phys. Soc. Jpn. 31 (1971) 649.10.1143/JPSJ.31.649Search in Google Scholar

32. K. Sturm, L. E. Oliveira, Phys. Rev. B 24 (1981) 3054.10.1103/PhysRevB.24.3054Search in Google Scholar

33. J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28 (1954).Search in Google Scholar

34. N. W. Ashcroft, Phys. Lett. 23 (1966) 48.10.1016/0031-9163(66)90251-4Search in Google Scholar

35. G. Franz, W. Freyland, W. Glaser, F. Hensel, E. Schneider, J. Phys. (Paris), Colloq. 8 (1980) 194.Search in Google Scholar

36. Y. Waseda, The Structure of Non-Crystalline Materials, McGraw-Hill, New York (1980), P. 253.Search in Google Scholar

37. T. E. Faber, Theory of Liquid Metals, Cambridge University Press, Cambridge (1972), P. 326.Search in Google Scholar

38. K. Hoshino, W. H. Young, J. Phys. F: Met. Phys. 16 (1986) 1659.10.1088/0305-4608/16/11/007Search in Google Scholar

39. K. Matsuda, K. Tamura, M. Inui, Phys. Rev. Lett. 98 (2007) 096401.10.1103/PhysRevLett.98.096401Search in Google Scholar PubMed

40. R. W. Ohse, Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell, Oxford, U.K. (1980), P. 316.Search in Google Scholar

41. K Tamura, K Matsuda, M Inui, J. Phys.: Condens. Matter 20 (2008) 114102.10.1088/0953-8984/20/11/114102Search in Google Scholar PubMed

42. F. Aryasetiawan, K. Karlsson, Phys. Rev. Lett. 73 (1994) 1679.10.1103/PhysRevLett.73.1679Search in Google Scholar PubMed

43. K. Matsuda, K. Tamura, Rev. Sci. Inst. 75 (2004) 709.10.1063/1.1646769Search in Google Scholar

44. A. Fleszar, R. Stumpf, A. Eguiluz, Phys. Rev. B 55 (1997) 2068.10.1103/PhysRevB.55.2068Search in Google Scholar

45. W. Jank, J. Hafner, J. Phys.: Condens. Matter 3 (1991) 6947.10.1088/0953-8984/3/35/024Search in Google Scholar

Received: 2020-01-14
Accepted: 2020-03-11
Published Online: 2020-04-21
Published in Print: 2021-02-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1619/html
Scroll to top button