Abstract
Ionic liquids (ILs) give a wide scope of favorable applications due to their much-upgraded properties. The strong electrostatic interactions between the cationic moiety of IL and the anionic surfactant play a very important role in the assembly of the large aggregates. We have investigated the aggregation behavior of anionic surfactants and IL in aqueous solution. Different temperatures and concentrations of IL have been taken to study the effect on critical micelles concentrations of surfactant. The critical micelle concentration values obtained by conductivity measurements are further confirmed by the fluorescence studies. The method is based on the fit of the experimental obtained raw data of fluorescence spectroscopy to a simple nonlinear category of a Boltzmann type sigmoidal function. Thermodynamical parameters of micellization
Acknowledgement
Authors (H.K) are thankful to Science and Engineering Research Board (SERB), New Delhi for providing financial assistance to carry out research work vide sanction order number EMR/2015/002059. The authors are also thankful to DST, New Delhi for DST-FIST [CSI-228/2011] Program and The Director and Head, Department of Chemistry for providing necessary facilities.
References
1. F. Comelles, I. Ribosa, J. J. Gonzalez, M. T. Garcia, Langmuir 28 (2012) 14522.10.1021/la302501jSearch in Google Scholar PubMed
2. L. G. Chen, H. Bermudez, Langmuir 28 (2012) 1157.10.1021/la2040399Search in Google Scholar PubMed
3. T. Welton, Chem. Rev. 99 (1999) 2071.10.1021/cr980032tSearch in Google Scholar PubMed
4. P. Wasserscheid, W. Keim, Chem. Int. Ed. 39 (2000) 3772.10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5Search in Google Scholar
5. C. Yao, W. R. Pitner, J. L. Anderson, Anal. Chem. 81 (2009) 5054.10.1021/ac900719mSearch in Google Scholar PubMed
6. T. L. Greaves, C. J. Drummond, Chem. Rev. 108 (2008) 206.10.1021/cr068040uSearch in Google Scholar PubMed
7. T. S. Banipal, H. Kaur, P. K. Banipal, J. Mol. Liq. 218 (2016) 112.10.1016/j.molliq.2016.02.036Search in Google Scholar
8. D. Rauber, T. K. F. Dier, D. A. Volmer, R. Hempelmann, Z. Phys. Chem. 232 (2018) 189.10.1515/zpch-2017-0951Search in Google Scholar
9. H. K. Farag, H. Abbas, Z. Phys. Chem. 232 (2018) 245.10.1515/zpch-2017-0966Search in Google Scholar
10. H. K. Farag, A. M. El-Shamy, E. M. Sherif, S. Zein El Abedin, Z. Phys. Chem. 230 (2016) 1733.10.1515/zpch-2016-0777Search in Google Scholar
11. G. Wittstock, A. L. Gui, F. Endres, Z. Phys. Chem. 231 (2017) 1077.10.1515/zpch-2016-0859Search in Google Scholar
12. H. Shekaari, M. Taghi Zafarani-Moattar, S. N. Mirheydari, Z. Phys. Chem. 230 (2016) 1773.10.1515/zpch-2015-0723Search in Google Scholar
13. A. Ali, N. A. Malik, U. Farooq, S. Tasneem, F. Nabi, J. Surfactant Deterg. 19 (2016) 527.10.1007/s11743-016-1800-4Search in Google Scholar
14. J. S. Plenet, L. Gaillon, P. Letellier, Talanta 63 (2004) 979.10.1016/j.talanta.2004.01.001Search in Google Scholar PubMed
15. J. Albert, K. Muller, Ind. Eng. Chem. Res. 53 (2014) 17522.10.1021/ie503366pSearch in Google Scholar
16. B. Mandal, S. Mondal, A. Pan, S. P. Moulik, S. Ghosh, J. Colloid. Surf. A Phys. Eng. Aspects 48 (2015) 345.10.1016/j.colsurfa.2015.07.052Search in Google Scholar
17. C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed., Wiley, New York (1980).Search in Google Scholar
18. N. J. Israelachivili, Intermolecular and Surface Forces, 2nd ed., Academic Press, New York (1991).Search in Google Scholar
19. K. Nakamura, T. Shikata, Langmuir 22 (2006) 9853.10.1021/la061031wSearch in Google Scholar PubMed
20. N. Li, S. Zhang, L. Zhang, J. Wu, X. Li, L. Yu, J. Phys. Chem. B 112 (2008) 12453.10.1021/jp8054872Search in Google Scholar PubMed
21. G. Buntkowsky, M. Vogel, R. Winter, Z. Phys. Chem. 232 (2018) 937.10.1515/zpch-2018-1110Search in Google Scholar
22. J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares, D. W. Armstrong, Chem. Commun. 19 (2003) 2444.10.1039/b307516hSearch in Google Scholar PubMed
23. K. A. Fletcher, S. Pandey, Langmuir 20 (2004) 33.10.1021/la035596tSearch in Google Scholar PubMed
24. J. Wu, N. Li, L. Zheng, X. Li, Y. Gao, T. Inohue, Langmuir 24 (2008) 9314.10.1021/la801358zSearch in Google Scholar PubMed
25. S. Wang, J. J. Ma, Dispersion Sci. Technol. 30 (2009) 1395.10.1080/01932690902735587Search in Google Scholar
26. T. Inoue, H. Yamakawa, J. Colloid Interface Sci. 356 (2011) 798.10.1016/j.jcis.2011.01.022Search in Google Scholar PubMed
27. Y. Gao, N. Li, X. Bai, L. Zheng, L. Yu, X. Zhao, J. Zhang, M. Zhao, Z. Li, J. Phys. Chem. B 111 (2007) 2506.10.1021/jp068299gSearch in Google Scholar PubMed
28. A. N. Smirnova, E. A. Safonova, Colloid J. 74 (2012) 254.10.1134/S1061933X12020123Search in Google Scholar
29. C. Patrascu, F. Gauffre, F. Nallet, R. Bordes, J. Oberdisse, N. deLauth-Viguerie, C. Mingotaud, Chem. Phys. Chem. 7 (2006) 99.10.1002/cphc.200500419Search in Google Scholar PubMed
30. A. Beyaz, W. S. Oh, V. P. Reddy, Colloids Surf. B 35 (2004) 119.10.1016/j.colsurfb.2004.02.014Search in Google Scholar PubMed
31. K. Behera, S. Pandey, J. Phys. Chem. B 111 (2007) 13307.10.1021/jp076430uSearch in Google Scholar PubMed
32. K. Behera, S. Pandey, Langmuir 24 (2008) 462.10.1021/la800141pSearch in Google Scholar PubMed
33. K. Behera, S. Pandey, J. Colloid Interface Sci. 331 (2009) 196.10.1016/j.jcis.2008.11.008Search in Google Scholar PubMed
34. K. Behera, P. Dahiya, S. Pandey, J. Colloid Interface Sci. 307 (2007) 235.10.1016/j.jcis.2006.11.009Search in Google Scholar PubMed
35. N. A. Smirnova, A. A. Vanin, E. A. Safonova, I. B. Pukinski, Y. A. Anufrikov, J. Colloid Interface Sci. 336 (2009) 793.10.1016/j.jcis.2009.04.004Search in Google Scholar PubMed
36. R. Pramanik, S. Sarkar, C. Ghatak, V. G. Rao, S. Mandal, N. Sarkar, J. Phys. Chem. B 115 (2010) 6957.10.1021/jp111755jSearch in Google Scholar PubMed
37. L. G. Chen, H. Bermudez, Langmuir 29 (2013) 2805.10.1021/la304786qSearch in Google Scholar PubMed
38. T. L. Greaves, C. J. Drummond, Chem. Soc. Rev. 37 (2008) 1709.10.1039/b801395kSearch in Google Scholar PubMed
39. J. C. Hao, T. Zemb, Curr. Opin. Colloid Interface Sci. 12 (2007) 129.10.1016/j.cocis.2006.11.004Search in Google Scholar
40. F. Gayet, J. D. Marty, A. Brulet, N. L. de Viguerie, Langmuir 27 (2011) 9706.10.1021/la2015989Search in Google Scholar PubMed
41. S. Chauhan, V. Sharma, K. Singh, M. S. Chauhan, Z. Phys. Chem. 233 (2019) 1091.10.1515/zpch-2017-1060Search in Google Scholar
42. S. Rashid, M. Usman, T. Shahzad, M. Saeed, A. U. Haq, M. Ibrahim, M. Siddiq, M. Iram, Z. Phys. Chem. 233 (2019) 183.10.1515/zpch-2018-1142Search in Google Scholar
43. M. Ullah, L. A. Shah, M. Sayed, M. Siddiq, N. U. Amin, Z. Phys. Chem. 233 (2019) 289.10.1515/zpch-2017-1068Search in Google Scholar
44. S. S. Petrova, A. A. Schlotgauer, A. I. Kruppa, T. V. Leshina, Z. Phys. Chem. 231 (2017) 839.10.1515/zpch-2016-0845Search in Google Scholar
45. M. Panda, N. Fatma, M. Kamil, Z. Phys. Chem. 233 (2019) 707.10.1515/zpch-2017-1000Search in Google Scholar
46. M. N. Jones, D. Chapman, Micelles, Monolayers, and Biomembranes, Wiley-Liss, New York (1995).Search in Google Scholar
47. K. Kalyanasundaram, J. K. Thomas, J. Am. Chem. Soc. 99 (1977) 2039.10.1021/ja00449a004Search in Google Scholar
48. C. Gamboa, A. Olea, H. Rios, M. Henriquez, Langmuir 8 (1992) 23.10.1021/la00037a006Search in Google Scholar
49. D. A. R. Rubio, D. Zanette, F. Nome, C. A. Bunton, Langmuir 10 (1994) 151.10.1021/la00016a031Search in Google Scholar
50. H. Kumar, A. Katal, P. Rawat, J. Mol. Liq. 249 (2018) 227.10.1016/j.molliq.2017.11.032Search in Google Scholar
51. H. Kumar, N. Sharma, A. Katal, J. Mol. Liq. 258 (2018) 285.10.1016/j.molliq.2018.03.028Search in Google Scholar
52. M. K. Banjare, R. Kurrey, T. Yadav, S. Sinha, M. L. Satnami, K. K. Ghosh, J. Mol. Liq. 241 (2017) 622.10.1016/j.molliq.2017.06.009Search in Google Scholar
53. K. A. Kurnia, M. V. Quental, L. M. N. B. F. Santos, M. G. Freire, J. A. P. Coutinho, Phys. Chem. Chem. Phys. 17 (2015) 4569.10.1039/C4CP05339GSearch in Google Scholar PubMed PubMed Central
54. E. A. Turner, C. C. Pye, R. D. Singer, J. Phys. Chem. A 107 (2003) 2277.10.1021/jp021694wSearch in Google Scholar
55. C. C. Ruiz, L. D. Lopez, J. Aguiar, J. Colloid Interface Sci. 305 (2007) 293.10.1016/j.jcis.2006.09.074Search in Google Scholar PubMed
56. M. Pal, R. Rai, A. Yadav, R. Khanna, G. A. Baker, S. Pandey, Langmuir 30 (2014) 13191.10.1021/la5035678Search in Google Scholar PubMed
57. L. Horvath, B. Mihaljević, V. Tomašić, D. Risović, N. Filipović-Vinceković Hovath, J. Dispersion Sci. Technol. 22 (2001) 221.10.1081/DIS-100105209Search in Google Scholar
58. S. Bhattacharya, J. Haldar, Langmuir 20 (2004) 7940.10.1021/la0495433Search in Google Scholar PubMed
59. K. S. Rao, T. Singh, T. J. Trivedi, A. Kumar, J. Phys. Chem. B 115 (2011) 13847.10.1021/jp2076275Search in Google Scholar PubMed
60. M. J. Rosen, Surfactant and Interfacial Phenomenon, 2nd ed., John Wiley and Sons, New York (1988).Search in Google Scholar
61. P. C. Hiemenz, Principles of Colloid and Surface Chemistry, 2nd ed., Dekker, New York (1986).Search in Google Scholar
62. S. P. Stodghill, A. E. Smith, J. H. O’Haver, Langmuir 20 (2004) 11387.10.1021/la047954dSearch in Google Scholar PubMed
63. J. J. Wang, H. Y. Wang, S. L. Zhang, H. C. Zhang, Y. Zhao, J. Phys. Chem. B 111 (2007) 6181.10.1021/jp068798hSearch in Google Scholar PubMed
64. S. Palchowdhury, B. L. Bhargava, J. Phys. Chem. B 118 (2014) 6241.10.1021/jp503301dSearch in Google Scholar PubMed
65. N. Muller, Langmuir 9 (1993) 96.10.1021/la00025a022Search in Google Scholar
66. D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd ed., Wiley-VCH, New York (1999).10.1002/0471234990Search in Google Scholar
67. S. Shimizu, P. A. R. Pires, O. A. El Seoud, Langmuir 20 (2004) 9551.10.1021/la048930+Search in Google Scholar PubMed
68. L. J. Shi, N. Li, L. Q. Zheng, J. Phys. Chem. C 115 (2011) 18295.10.1021/jp206325dSearch in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2019-1566).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Matter-Energy Equivalence
- Modulations in Self-Organization Properties of Surfactant in Aqueous Ionic Liquid Media
- Preparation and Physicochemical Characterization of Dual Responsive and Chemically Modified Cellulose Based Copolymer Hydrogels
- Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3
- Removal of Phenol from Steel Plant Wastewater in Three Dimensional Electrochemical (TDE) Process using CoFe2O4@AC/H2O2
- Microwave-Assisted Synthesis of Cobalt Oxide/Reduced Graphene Oxide (Co3O4–rGo) Composite and its Sulfite Enhanced Photocatalytic Degradation of Organic Dyes
- Observation of Induced Luminescence and Thermochromism in Achiral Hydrogen Bonded Liquid Crystal Complexes
Articles in the same Issue
- Frontmatter
- Matter-Energy Equivalence
- Modulations in Self-Organization Properties of Surfactant in Aqueous Ionic Liquid Media
- Preparation and Physicochemical Characterization of Dual Responsive and Chemically Modified Cellulose Based Copolymer Hydrogels
- Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3
- Removal of Phenol from Steel Plant Wastewater in Three Dimensional Electrochemical (TDE) Process using CoFe2O4@AC/H2O2
- Microwave-Assisted Synthesis of Cobalt Oxide/Reduced Graphene Oxide (Co3O4–rGo) Composite and its Sulfite Enhanced Photocatalytic Degradation of Organic Dyes
- Observation of Induced Luminescence and Thermochromism in Achiral Hydrogen Bonded Liquid Crystal Complexes