Home Temperature Dependent Solubility of Benzoic Acid in Aqueous Phase and Aqueous Mixtures of Aliphatic Alcohols
Article
Licensed
Unlicensed Requires Authentication

Temperature Dependent Solubility of Benzoic Acid in Aqueous Phase and Aqueous Mixtures of Aliphatic Alcohols

  • Sayyar Muhammad EMAIL logo , Sofia Sanam , Hamayun Khan , Akhtar Muhammad and Sabiha Sultana
Published/Copyright: August 30, 2019

Abstract

The benzoic acid solubility in aqueous phase and in various aqueous mixtures of methanol, ethanol and 2-propanol was determined at temperatures ranging from 303 to 333 K by an analytical technique. The results showed that the solubility of the acid in alcohols-water binary mixtures is high as compared to pure aqueous phase. The addition of alcohols to water favors the dissolution of benzoic acid which increases further with the increase in alcohols content of water within the investigated temperature range. The benzoic acid solubility in water alone and aqueous mixtures of the selected alcohols was in the order of; 2-propanol in water > ethanol in water > methanol in water > pure water. It is also observed that within the investigated temperature range, the acid solubility increases with rise in temperature in both the aqueous phase and alcohols-water binary solvents. The logarithm of the mole fraction of the acid’s solubility also showed a linear trend against the temperature. The experimental results obtained in the current study were compared with the reported literature for the studied acid and other organic acids in various solvents and showing a good agreement. The study will have implications in the processes involving separation, crystallization and pharmaceutical formulation in various industries.

Acknowledgement

Authors are highly thankful to Kohat University of Science and Technology (KUST) for laboratory facilities for the research students and Higher Education Commission (HEC) of Pakistan for financial support.

References

1. M. A. Pene, A. Reıllo, B. Escalera, P. Bustamante, Int. J. Pharm. 321 (2006) 155.10.1016/j.ijpharm.2006.05.014Search in Google Scholar

2. X. Wang, C. S. Ponder, D. J. Kirwan, Cryst. Grow. Design 5 (2005) 85.10.1021/cg034208iSearch in Google Scholar

3. A. C. Oliveira, R. F. Pires, M. G. Coelho, M. R. Franco Jr., J. Chem. Eng. Data 52 (2007) 298.10.1021/je060408xSearch in Google Scholar

4. A. Apelblat, E. Manzurola, N. A. Balal, J. Chem. Thermodyn. 38 (2006) 565.10.1016/j.jct.2005.07.007Search in Google Scholar

5. J. Jin, C. Zhong, Z. Zhang, Y. Li, Fluid Phase Equilib. 226 (2004) 9.10.1016/j.fluid.2004.07.003Search in Google Scholar

6. L. Dian-Quing, L. Jiang-Chu, L. Da-Zhuang, W. Fu-An, Fluid Phase Equilib. 200 (2002) 69.10.1016/S0378-3812(02)00013-4Search in Google Scholar

7. J. Xue, C. Yu, Z. Zeng, W. Xue, Y. Chen, Asian J. Chem. Sci. 3 (2017) 1.10.9734/AJOCS/2017/39216Search in Google Scholar

8. N. Sunsandee, M. Hronec, M. Štolcová, N. Leepipatpiboon, U. Pancharoen, J. Mol. Liq. 180 (2013) 252.10.1016/j.molliq.2013.01.023Search in Google Scholar

9. B. Long, J. Li, R. Zhang, L. Wan, Fluid Phase Equilib. 297 (2010) 113.10.1016/j.fluid.2010.06.021Search in Google Scholar

10. F. L. Mota, A. P. Carneiro, A. J. Queimada, S. P. Pinho, E. A. Macedo, Eur. J. Pharm. Sci. 37 (2009) 499.10.1016/j.ejps.2009.04.009Search in Google Scholar PubMed

11. H. Yannian, Z. Xiuhua, Z. Yuangang, W. Lu, D. Yiping, W. Mingfang, W. Huimei, Iran. J. Pharm. Res. 18 (2019) 168.Search in Google Scholar

12. Z. Sayyar, H. J. Malmiri, Zeitschrift fur Physikalische Chemie (2019) DOI: 10.1515/zpch-2018-1152.10.1515/zpch-2018-1152Search in Google Scholar

13. T. Loftsson, D. Hreinsdóttir, AAPS Pharm. Sci. Tech. 7 (2006) E1.10.1208/pt070104Search in Google Scholar PubMed

14. S. N. Bhattachar, L. A. Deschenes, J. A. Wesley, Drug Discov. Today 11 (2006) 1012.10.1016/j.drudis.2006.09.002Search in Google Scholar PubMed

15. S. H. Maron, J. B. Lando, Fundamentals of Physical Chemistry, 4th Ed., Macmillan, New and Military Sources, Academic Press, San Diago (1997).Search in Google Scholar

16. P. S. Mohanachandran, P. G. Sindhumol, T. S. Kiran, Int. J. Comprehen. Pharm. 4 (2010) 1.Search in Google Scholar

17. J. W. Hill, R. H. Petrucci, General Chemistry, 2nd Ed., Prentice Hall, Australia, Upper Saddle River, NJ (1999).Search in Google Scholar

18. A. S. Alshetaili, Zeitschrift fur Physikalische Chemie (2018) DOI: 10.1515/zpch-2018-1323.10.1515/zpch-2018-1323Search in Google Scholar

19. N. S. Khattak, L. A. Shah, M. Sohail, S. Ahmad, M. Farooq, L. Ara, S. I. Kader, Zeitschrift fur Physikalische Chemie (2018) DOI: 10.1515/zpch-2018-1241.10.1515/zpch-2018-1241Search in Google Scholar

20. C. Marche, C. Ferronato, J. Jose, J. Chem. Eng. Data 49 (2004) 937.10.1021/je0342567Search in Google Scholar

21. O. I. Garcia, A. C. Rasmuson, J. Chem. Eng. Data 43 (1998) 681.10.1021/je970293kSearch in Google Scholar

22. A. Shalmashi, A. Eliassi, J. Chem. Eng. Data 53 (2008) 199.10.1021/je7004962Search in Google Scholar

23. F. L. Nordstrom, A. C. Rasmussen, J. Chem. Eng. Data 51 (2006) 1668.10.1021/je060134dSearch in Google Scholar

24. M. Barrett, M. McNamara, H. Hao, B. Glennon, Chem. Eng. Res. Design 88 (2007) 108.Search in Google Scholar

25. D. O’Grady, M. Barrett, E. Casey, B. Glennon, Chem. Eng. Res. Design 85 (2007) 945.10.1205/cherd06207Search in Google Scholar

26. K. Jorge, Soft Drinks/Chemical Composition, In Encyclopaedia of Food Sciences and Nutrition, B. Caballero, P. Finglas, F. Toldra, Eds., 2nd ed., Academic Press, New York (2003) P. 5346.10.1016/B0-12-227055-X/01101-9Search in Google Scholar

27. G. Tully, G. Hou, B. Glennon, J. Chem. Eng. Data 61 (2016) 594.10.1021/acs.jced.5b00746Search in Google Scholar

28. X. Gao, Z. X. Zeng, W. L. Xue, X. R. Fan, J. Chem. Eng. Data 60 (2015) 2273.10.1021/acs.jced.5b00135Search in Google Scholar

29. F. Shakeel, G. A. Shazly, N. Haq, J. Chem. Eng. Data 59 (2014) 1700.10.1021/je500154kSearch in Google Scholar

30. S. Black, P. L. Dang, C. J. Liu, H. Y. Wei, Org. Process Res. Develop. 17 (2013) 486.10.1021/op300336nSearch in Google Scholar

31. W. T. Cheng, S. Feng, X. Q. Cui, F. Q. Cheng, Adv. Mater. Res. 518 (2012) 3975.10.4028/www.scientific.net/AMR.518-523.3975Search in Google Scholar

32. Q. Jia, P. Ma, S. Yi, Q. Wang, C. Wang, G. Li, J. Chem. Eng. Data 53 (2008) 1278.10.1021/je700677dSearch in Google Scholar

33. R. F. Pires, M. R. Franco Jr., J. Chem. Eng. Data 53 (2008) 2704.10.1021/je800507mSearch in Google Scholar

34. Q. Wang, L. Hou, Y. Cheng, X. Li, J. Chem. Eng. Data 52 (2007) 936.10.1021/je600527cSearch in Google Scholar

35. J. Thati, F. L. Nordstrom, A. C. Rasmuson, J. Chem. Eng. Data 55 (2010) 5124.10.1021/je100675rSearch in Google Scholar

36. Y. Yang, L. Zhou, C. Wang, Y. Li, Y. Huang, W. Yang, B. Hou, Q. Yin, J. Sol. Chem. 47 (2018) 1740.10.1007/s10953-018-0808-ySearch in Google Scholar

37. Y. Tong, S. Zhai, K. Wang, H. Li, Q. An, J. Chem. Thermodyn. 133 (2019) 70.10.1016/j.jct.2019.02.005Search in Google Scholar

38. Z. W. Wang, Q. X. Sun, J. S. Wu, L. S. Wang, J. Chem. Eng. Data 48 (2003) 1073.10.1021/je0340396Search in Google Scholar

39. A. Singh, Advance Experimental Physical Chemistry, 1st Ed., Campus Books International, New Delhi (2005) 167.Search in Google Scholar

40. G. T. Castro, M. A. Filippa, C. M. Peralta, M. V. Davin, M. C. Almandoz, E. I. Gasull, Zeitschrift fur Physikalische Chemie 232 (2018) 257.10.1515/zpch-2017-0946Search in Google Scholar

41. B. W. Long, L. S. Wang, J. S. Wu, J. Chem. Eng. Data 50 (2005) 136.10.1021/je049784cSearch in Google Scholar

Received: 2019-06-10
Accepted: 2019-08-08
Published Online: 2019-08-30
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2019-1495/html
Scroll to top button