Startseite Nucleic acid nanoscale constructs for transformative frontier in theranostics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nucleic acid nanoscale constructs for transformative frontier in theranostics

  • Venkatakrishnan Kiran , Koyeli Girigoswami ORCID logo und Agnishwar Girigoswami ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Using the intrinsic qualities of nucleic acids-biocompatibility, programmability, and precise self-assembly - DNA and RNA nanostructures represent a revolutionary new frontier in theranostics, bridging the gap between diagnostics and treatment. With minimal systemic side effects, these nanoscale structures can be precisely engineered to interact with particular molecular targets, allowing for highly selective drug delivery and real-time molecular imaging. The development of ultrasensitive diagnostic platforms is further supported by their sequence-specific recognition and conformational adaptability. This review highlights the growing role of nucleic acid nanostructures in personalized medicine by synthesizing recent advancements in their structural design and functional integration. Additionally, it presents future directions for their clinical translation, establishing these intelligent biomaterials as crucial facilitators of next-generation therapeutic and diagnostic approaches.


Corresponding author: Agnishwar Girigoswami, Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, 603103, India, E-mail:

Acknowledgments

Authors acknowledge CARE (Chettinad Academy of Research and Education) for financial and infrastructural support. VK acknowledges CARE for providing the fellowship and financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. VK collected the data, analyzed it, and prepared the initial draft. KG revised and added more data. AG was involved in the conception, design, and additional data collection, analysis, and preparation of the final manuscript. All the listed authors approved the final draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Bhoopathy, J, Sathyaraj, WV, Prabakaran, L, Senthil, R, Mohammed, V, Dharmalingam, S. An investigation on bioderived sponges with hemostatic and photoluminescent properties for accelerating wound healing. J Polym Environ 2024;32:4005–16. https://doi.org/10.1007/s10924-024-03245-1.Suche in Google Scholar

2. Ayyakannu, SG, Murugesan, D, Kanniah, R, raj Muniyandi, G, Ramesh, L, Kumar Alagarsamy, SK. Synthesis, characterization, antibacterial and photocatalytic studies of metal oxides coupled nanocomposites. ChemistrySelect 2024;9:e202302470. https://doi.org/10.1002/slct.202302470.Suche in Google Scholar

3. Raveendran, R, Prabakaran, L, Senthil, R, Yesudhason, BV, Dharmalingam, S, Sathyaraj, WV, et al.. Current innovations in intraocular pressure monitoring biosensors for diagnosis and treatment of glaucoma—novel strategies and future perspectives. Biosensors 2023;13:663. https://doi.org/10.3390/bios13060663.Suche in Google Scholar PubMed PubMed Central

4. Harini, K, Pallavi, P, Gowtham, P, Girigoswami, K, Girigoswami, A. Smart polymer-based reduction responsive therapeutic delivery to cancer cells. Curr Pharmacol Rep 2022;8:1–7. https://doi.org/10.1007/s40495-022-00282-z.Suche in Google Scholar

5. Thirumalai, A, Girigoswami, K, Harini, K, Kiran, V, Durgadevi, P, Girigoswami, A. Natural polymer derivative-based pH-responsive nanoformulations with entrapped diketo-tautomers of 5-fluorouracil for enhanced cancer therapy: original scientific article. ADMET and DMPK 2025;13:2554. https://doi.org/10.5599/admet.2554.Suche in Google Scholar PubMed PubMed Central

6. Khulood, MT, Jijith, US, Naseef, PP, Kallungal, SM, Geetha, VS, Pramod, K. Advances in metal-organic framework-based drug delivery systems. Int J Pharm 2025;673:125380. https://doi.org/10.1016/j.ijpharm.2025.125380.Suche in Google Scholar PubMed

7. Poornima, G, Karthick, H, Pragya, P, Pemula, G, Koyeli, G, Girigoswami, A. RNA – a choice of potential drug delivery system. Int J Polym Mater Polym Biomater 2023;72:778–92. https://doi.org/10.1080/00914037.2022.2058946.Suche in Google Scholar

8. Fire, A, Xu, S, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11. https://doi.org/10.1038/35888.Suche in Google Scholar PubMed

9. Bian, X, Zhou, L, Luo, Z, Liu, G, Hang, Z, Li, H, et al.. Emerging delivery systems for enabling precision nucleic acid therapeutics. ACS Nano 2025;19:4039–83. https://doi.org/10.1021/acsnano.4c11858.Suche in Google Scholar PubMed

10. Chi, Q, Yang, Z, Xu, K, Wang, C, Liang, H. DNA nanostructure as an efficient drug delivery platform for immunotherapy. Front Pharmacol 2020;10:1585. https://doi.org/10.3389/fphar.2019.01585.Suche in Google Scholar PubMed PubMed Central

11. Seeman, NC. Nucleic acid junctions and lattices. J Theor Biol 1982;99:237–47. https://doi.org/10.1016/0022-5193(82)90002-9.Suche in Google Scholar PubMed

12. Kumar, M, Jha, A, Mishra, B. DNA-based nanostructured platforms as drug delivery systems. Chem Bio Eng 2024;1:179–98. https://doi.org/10.1021/cbe.3c00023.Suche in Google Scholar PubMed PubMed Central

13. Dai, J, Xing, C, Lin, Y, Huang, Y, Yang, Y, Chen, Z, et al.. Localized DNA catalytic hairpin assembly reaction on DNA origami for tumor-associated microRNA detection and imaging in live cells. Sensor Actuator B Chem 2021;344:130195. https://doi.org/10.1016/j.snb.2021.130195.Suche in Google Scholar

14. Heuer-Jungemann, A, Liedl, T. From DNA tiles to functional DNA materials. Trends Chem 2019;1:799–814. https://doi.org/10.1016/j.trechm.2019.07.006.Suche in Google Scholar

15. Peng, Y, Gao, Z, Qiao, B, Li, D, Pang, H, Lai, X, et al.. Size‐controlled DNA tile self‐assembly nanostructures through caveolae‐mediated endocytosis for signal‐amplified imaging of MicroRNAs in living cells. Adv Sci 2023;10:2300614. https://doi.org/10.1002/advs.202300614.Suche in Google Scholar PubMed PubMed Central

16. Zeng, Z, Zhou, R, Sun, R, Zhang, X, Cheng, Z, Chen, C, et al.. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications. Biosens Bioelectron 2021;173:112814. https://doi.org/10.1016/j.bios.2020.112814.Suche in Google Scholar PubMed

17. Zhang, K, Fan, Z, Huang, Y, Ding, Y, Xie, M, Wang, M. Hybridization chain reaction circuit-based electrochemiluminescent biosensor for SARS-cov-2 RdRp gene assay. Talanta 2022;240:123207. https://doi.org/10.1016/j.talanta.2022.123207.Suche in Google Scholar PubMed PubMed Central

18. Zhang, C, Li, D, Li, D, Wen, K, Yang, X, Zhu, Y. Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA. Analyst 2019;144:3817–25. https://doi.org/10.1039/c9an00427k.Suche in Google Scholar PubMed

19. Lacroix, A, Sleiman, HF. DNA nanostructures: current challenges and opportunities for cellular delivery. ACS Nano 2021;15:3631–45. https://doi.org/10.1021/acsnano.0c06136.Suche in Google Scholar PubMed

20. Tian, T, Li, Y, Lin, Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res 2022;10:40. https://doi.org/10.1038/s41413-022-00212-1.Suche in Google Scholar PubMed PubMed Central

21. Zuo, H, Mao, C. A minimalist’s approach for DNA nanoconstructions. Adv Drug Deliv Rev 2019;147:22–8. https://doi.org/10.1016/j.addr.2019.02.002.Suche in Google Scholar PubMed

22. Mun, H, Girigoswami, A, Jung, C, Cho, D-Y, Park, HG. SNPs detection by a single-strand specific nuclease on a PNA zip-code microarray. Biosens Bioelectron 2009;24:1706–11. https://doi.org/10.1016/j.bios.2008.08.049.Suche in Google Scholar PubMed

23. Girigoswami, A, Jung, C, Mun, HY, Park, HG. PCR-Free mutation detection of BRCA1 on a zip-code microarray using ligase chain reaction. J Biochem Biophys Methods 2008;70:897–902. https://doi.org/10.1016/j.jprot.2008.01.005.Suche in Google Scholar PubMed

24. Baig, MMFA, Zhang, C, Akhtar, MF, Saleem, A, Nisar, N. Treatment of wilms’ nephroblastoma cancer cells via EGFR targeting of dactinomycin loaded DNA-Nanowires. J Pharmaceut Invest 2021;51:233–42. https://doi.org/10.1007/s40005-020-00509-5.Suche in Google Scholar

25. Yang, H, Wu, Z, Sun, S, Zhang, S, Shi, P. A DNA nanowire based-DNAzyme walker for amplified imaging of microRNA in tumor cells. J Mater Chem B 2024;12:11381–8. https://doi.org/10.1039/d4tb01703j.Suche in Google Scholar PubMed

26. Ren, K, Xu, Y, Liu, Y, Yang, M, Ju, H. A responsive “Nano String Light” for highly efficient mRNA imaging in living cells via accelerated DNA Cascade reaction. ACS Nano 2018;12:263–71. https://doi.org/10.1021/acsnano.7b06200.Suche in Google Scholar PubMed

27. Yang, F, Cheng, Y, Cao, Y, Zhang, Y, Dong, H, Lu, H, et al.. MicroRNA triggered DNA “Nano Wheel” for visualizing intracellular microRNA via localized DNA Cascade reaction. Anal Chem 2019;91:9828–35. https://doi.org/10.1021/acs.analchem.9b01487.Suche in Google Scholar PubMed

28. Zhang, DY, Hariadi, RF, Choi, HMT, Winfree, E. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat Commun 2013;4:1965. https://doi.org/10.1038/ncomms2965.Suche in Google Scholar PubMed PubMed Central

29. Ma, W, Chen, B, Jia, R, Sun, H, Huang, J, Cheng, H, et al.. In situ hand-in-hand DNA tile assembly: a pH-Driven and aptamer-targeted DNA nanostructure for TK1 mRNA visualization and synergetic killing of cancer cells. Anal Chem 2021;93:10511–8. https://doi.org/10.1021/acs.analchem.1c01453.Suche in Google Scholar PubMed

30. Peng, Y, Pang, H, Gao, Z, Li, D, Lai, X, Chen, D, et al.. Kinetics-accelerated one-step detection of MicroRNA through spatially localized reactions based on DNA tile self-assembly. Biosens Bioelectron 2023;222:114932. https://doi.org/10.1016/j.bios.2022.114932.Suche in Google Scholar PubMed

31. Luo, L, Wang, M, Zhou, Y, Xiang, D, Wang, Q, Huang, J, et al.. Ratiometric fluorescent DNA nanostructure for mitochondrial ATP imaging in living cells based on hybridization chain reaction. Anal Chem 2021;93:6715–22. https://doi.org/10.1021/acs.analchem.1c00176.Suche in Google Scholar PubMed

32. Ghosal, S, Bag, S, Bhowmik, S. Unravelling the drug encapsulation ability of functional DNA origami nanostructures: current understanding and future prospects on targeted drug delivery. Polymers 2023;15:1850. https://doi.org/10.3390/polym15081850.Suche in Google Scholar PubMed PubMed Central

33. Liu, W, Duan, H, Zhang, D, Zhang, X, Luo, Q, Xie, T, et al.. Concepts and application of dna origami and dna self‐assembly: a systematic review. Appl Bionics Biomech 2021;2021:9112407. https://doi.org/10.1155/2021/9112407.Suche in Google Scholar PubMed PubMed Central

34. Spratt, J, Dias, JM, Kolonelou, C, Kiriako, G, Engström, E, Petrova, E, et al.. Multivalent insulin receptor activation using insulin–DNA origami nanostructures. Nat Nanotechnol 2024;19:237–45. https://doi.org/10.1038/s41565-023-01507-y.Suche in Google Scholar PubMed PubMed Central

35. Udomprasert, A, Wootthichairangsan, C, Duangrat, R, Chaithongyot, S, Zhang, Y, Nixon, R, et al.. Enhanced functional properties of three DNA origami nanostructures as doxorubicin carriers to breast cancer cells. ACS Appl Bio Mater 2022;5:2262–72. https://doi.org/10.1021/acsabm.2c00114.Suche in Google Scholar PubMed

36. Lucas, CR, Halley, PD, Chowdury, AA, Harrington, BK, Beaver, L, Lapalombella, R, et al.. DNA origami nanostructures elicit dose‐dependent immunogenicity and are nontoxic up to high doses in vivo. Small 2022;18:2108063. https://doi.org/10.1002/smll.202108063.Suche in Google Scholar PubMed PubMed Central

37. Wang, J, Li, Z, Willner, I. Dynamic reconfigurable DNA nanostructures, networks and materials. Angew Chem Int Ed 2023;62:e202215332. https://doi.org/10.1002/ange.202215332.Suche in Google Scholar

38. Bagheri, E, Alibolandi, M, Abnous, K, Taghdisi, SM, Ramezani, M. Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-Responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 2021;9:1351–63. https://doi.org/10.1039/d0tb01960g.Suche in Google Scholar PubMed

39. Wu, H, Zhou, W-J, Liu, L, Fan, Z, Tang, H, Yu, R-Q, et al.. In vivo mRNA imaging based on tripartite DNA probe mediated catalyzed hairpin assembly. Chem Commun 2020;56:8782–5. https://doi.org/10.1039/d0cc03596c.Suche in Google Scholar PubMed

40. Girigoswami, A, Ramalakshmi, M, Akhtar, N, Metkar, SK, Girigoswami, K. ZnO nanoflower petals mediated amyloid degradation-An in vitro electrokinetic potential approach. Mater Sci Eng C 2019;101:169–78. https://doi.org/10.1016/j.msec.2019.03.086.Suche in Google Scholar PubMed

41. Akhtar, N, Metkar, SK, Girigoswami, A, Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C 2017;78:960–8. https://doi.org/10.1016/j.msec.2017.04.118.Suche in Google Scholar PubMed

42. Liu, B, Wang, F, Chao, J. Programmable nanostructures based on Framework-DNA for applications in biosensing. Sensors 2023;23:3313. https://doi.org/10.3390/s23063313.Suche in Google Scholar PubMed PubMed Central

43. Zeng, R, Wang, J, Wang, Q, Tang, D, Lin, Y. Horseradish peroxidase-encapsulated DNA nanoflowers: an innovative signal-generation tag for colorimetric biosensor. Talanta 2021;221:121600. https://doi.org/10.1016/j.talanta.2020.121600.Suche in Google Scholar PubMed

44. Ran, M, Sun, R, Yan, J, Pulliainen, AT, Zhang, Y, Zhang, H. DNA nanoflower eye drops with antibiotic‐resistant gene regulation ability for MRSA keratitis target treatment. Small 2023;19:2304194. https://doi.org/10.1002/smll.202304194.Suche in Google Scholar PubMed

45. Wang, Z, Chen, R, Yang, S, Li, S, Gao, Z. Design and application of stimuli-responsive DNA hydrogels: a review. Mater Today Bio 2022;16:100430. https://doi.org/10.1016/j.mtbio.2022.100430.Suche in Google Scholar PubMed PubMed Central

46. Shen, C, Wang, J, Li, G, Hao, S, Wu, Y, Song, P, et al.. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater 2024;35:429–44. https://doi.org/10.1016/j.bioactmat.2024.02.016.Suche in Google Scholar PubMed PubMed Central

47. Wang, Z, Li, W, Gou, L, Zhou, Y, Peng, G, Zhang, J, et al.. Biodegradable and antioxidant DNA hydrogel as a cytokine delivery system for diabetic wound healing. Adv Healthcare Mater 2022;11:2200782. https://doi.org/10.1002/adhm.202200782.Suche in Google Scholar PubMed

48. Ouyang, Y, Zhang, P, Willner, I. DNA tetrahedra as functional nanostructures: from basic principles to applications. Angew Chem Int Ed 2024;63:e202411118. https://doi.org/10.1002/anie.202411118.Suche in Google Scholar PubMed

49. Li, H, Han, M, Weng, X, Zhang, Y, Li, J. DNA-Tetrahedral-Nanostructure-Based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 2021;15:1710–7. https://doi.org/10.1021/acsnano.0c09374.Suche in Google Scholar PubMed

50. Chai, H, Tang, Y, Miao, P. Tetrahedral DNA supported walking nanomachine for ultrasensitive miRNA detection in cancer cells and serums. Anal Chem 2022;94:9975–80. https://doi.org/10.1021/acs.analchem.2c02288.Suche in Google Scholar PubMed

51. Liu, F, Liu, X, Shi, Q, Maffeo, C, Kojima, M, Dong, L, et al.. A tetrahedral DNA nanorobot with conformational change in response to molecular trigger. Nanoscale 2021;13:15552–9. https://doi.org/10.1039/d1nr02757c.Suche in Google Scholar PubMed

52. Wan, H, Zhang, S, Gu, Y, Xiong, J, Xu, J, Wan, C, et al.. Label-free, ultra-low detection limit DNA biosensor using high quality optical microcavity functionalized by DNA tetrahedral nanostructure probes. Nanophotonics 2023;12:3323–31. https://doi.org/10.1515/nanoph-2023-0238.Suche in Google Scholar PubMed PubMed Central

53. Jiang, S, Ge, Z, Mou, S, Yan, H, Fan, C. Designer DNA nanostructures for therapeutics. Chem 2021;7:1156–79. https://doi.org/10.1016/j.chempr.2020.10.025.Suche in Google Scholar

54. Feng, L, Li, J, Sun, J, Wang, L, Fan, C, Shen, J. Recent advances of DNA nanostructure‐based cell membrane engineering. Adv Healthcare Mater 2021;10:2001718. https://doi.org/10.1002/adhm.202001718.Suche in Google Scholar PubMed

55. Fokina, A, Poletaeva, Y, Dukova, S, Klabenkova, K, Rad’kova, Z, Bakulina, A, et al.. Template-assisted assembly of hybrid DNA/RNA nanostructures using branched Oligodeoxy- and oligoribonucleotides. Int J Mol Sci 2023;24:15978. https://doi.org/10.3390/ijms242115978.Suche in Google Scholar PubMed PubMed Central

56. Duan, J, Cui, L, Wang, Y, Zheng, H. An approach to generate DNA polyhedral links of one/two strands. J Mol Graph Model 2020;97:107565. https://doi.org/10.1016/j.jmgm.2020.107565.Suche in Google Scholar PubMed

57. Shiu, SC, Fraser, LA, Ding, Y, Tanner, JA. Aptamer display on diverse DNA polyhedron supports. Molecules 2018;23. https://doi.org/10.3390/molecules23071695.Suche in Google Scholar PubMed PubMed Central

58. Xin, Y, Piskunen, P, Suma, A, Li, C, Ijäs, H, Ojasalo, S, et al.. Environment‐dependent stability and mechanical properties of DNA origami six‐helix bundles with different crossover spacings. Small 2022;18:2107393. https://doi.org/10.1002/smll.202107393.Suche in Google Scholar PubMed

59. Kang, JH, Kim, K-R, Lee, H, Ahn, D-R, Ko, YT. In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery. Colloids Surf B Biointerfaces 2017;157:424–31. https://doi.org/10.1016/j.colsurfb.2017.06.014.Suche in Google Scholar PubMed

60. Li, C, Wu, B, Chen, S, Hao, K, Yang, J, Cao, H, et al.. Structural requirement of G-quadruplex/aptamer-combined DNA macromolecule serving as efficient drug carrier for cancer-targeted drug delivery. Eur J Pharm Biopharm 2021;159:221–7. https://doi.org/10.1016/j.ejpb.2020.11.021.Suche in Google Scholar PubMed

61. Karaca, GY, Kuralay, F, Uygun, E, Ozaltin, K, Demirbuken, SE, Garipcan, B, et al.. Gold–nickel nanowires as nanomotors for cancer marker biodetection and chemotherapeutic drug delivery. ACS Appl Nano Mater 2021;4:3377–88. https://doi.org/10.1021/acsanm.0c03145.Suche in Google Scholar

62. Tunc, CU, Culha, M. Gold nanoparticles conjugated DNA-tile nanomaterials for simultaneous delivery of morpholino antisense oligonucleotides and doxorubicin. J Drug Deliv Sci Technol 2022;74:103546. https://doi.org/10.1016/j.jddst.2022.103546.Suche in Google Scholar

63. Sala, L, Perecko, T, Mestek, O, Pinkas, D, Homola, T, Kočišek, J. Cisplatin-cross-linked DNA origami nanostructures for drug delivery applications. ACS Appl Nano Mater 2022;5:13267–75. https://doi.org/10.1021/acsanm.2c02976.Suche in Google Scholar

64. Pal, S, Rakshit, T. Folate-functionalized DNA origami for targeted delivery of doxorubicin to triple-negative breast cancer. Front Chem 2021;9:721105. https://doi.org/10.3389/fchem.2021.721105.Suche in Google Scholar PubMed PubMed Central

65. Navarro, N, Aviñó, A, Domènech, Ò, Borrell, JH, Eritja, R, Fàbrega, C. Defined covalent attachment of three cancer drugs to DNA origami increases cytotoxicity at nanomolar concentration. Nanomed Nanotechnol Biol Med 2024;55:102722. https://doi.org/10.1016/j.nano.2023.102722.Suche in Google Scholar PubMed

66. Yu, X, Hu, L, He, H, Zhang, F, Wang, M, Wei, W, et al.. Y-shaped DNA-mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Anal Chim Acta 2019;1057:114–22. https://doi.org/10.1016/j.aca.2018.12.062.Suche in Google Scholar PubMed

67. Wu, T, Shi, Y, Yang, T, Zhao, P, Yang, Z, Yang, B. Polymer–DNA assembled nanoflower for targeted delivery of dolastatin-derived microtubule inhibitors. RSC Adv 2024;14:9602–8. https://doi.org/10.1039/d3ra08146j.Suche in Google Scholar PubMed PubMed Central

68. Liao, H, Cao, Y, Hu, C, Shen, S, Zhang, Z, Li, D, et al.. Oxygen-producing and pH-responsive targeted DNA nanoflowers for enhanced chemo-sonodynamic therapy of lung cancer. Mater Today Bio 2024;25:101005. https://doi.org/10.1016/j.mtbio.2024.101005.Suche in Google Scholar PubMed PubMed Central

69. Jin, Y, Ge, X, Xu, Y, Wang, S, Lu, Q, Deng, A, et al.. A pH-Responsive DNA tetrahedron/methotrexate drug delivery system used for rheumatoid arthritis treatment. J Funct Biomater 2023;14:541. https://doi.org/10.3390/jfb14110541.Suche in Google Scholar PubMed PubMed Central

70. Meng, L, Ma, W, Zhang, M, Zhou, R, Li, Q, Sun, Y, et al.. Aptamer-guided DNA tetrahedrons as a photo-responsive drug delivery system for mucin 1-expressing breast cancer cells. Appl Mater Today 2021;23:101010. https://doi.org/10.1016/j.apmt.2021.101010.Suche in Google Scholar

71. Zhao, R, Bai, Y, Guo, Y, Feng, F, Shuang, S. Aptamer‐modified tetrahedral DNA nanostructures as drug delivery system for cancer targeted therapy. Macromol Biosci 2024;24:2300420. https://doi.org/10.1002/mabi.202300420.Suche in Google Scholar PubMed

72. Imanzadeh, H, Bakirhan, NK, Kuralay, F, Amiri, M, Ozkan, SA. Achievements of graphene and its derivatives materials on electrochemical drug assays and Drug-DNA interactions. Crit Rev Anal Chem 2023;53:1263–84. https://doi.org/10.1080/10408347.2021.2018568.Suche in Google Scholar PubMed

73. Shumyantseva, VV, Pronina, VV, Bulko, TV, Agafonova, LE. Electroanalysis in pharmacogenomic studies: mechanisms of drug interaction with DNA. Biochemistry (Mosc) 2024;89:S224–33. https://doi.org/10.1134/s0006297924140128.Suche in Google Scholar PubMed

74. Rahman, A, O’Sullivan, P, Rozas, I. Recent developments in compounds acting in the DNA minor groove. Med Chem Comm 2019;10:26–40. https://doi.org/10.1039/c8md00425k.Suche in Google Scholar PubMed PubMed Central

75. Shi, J-H, Zhou, K-L, Lou, Y-Y, Pan, D-Q. Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA. Spectrochim Acta Mol Biomol Spectrosc 2018;193:14–22. https://doi.org/10.1016/j.saa.2017.11.061.Suche in Google Scholar PubMed

76. Congur, G. Electrochemical biosensors for monitoring of drug-DNA interactions. Curr Top Med Chem 2023;23:316–30. https://doi.org/10.2174/1568026623666230120113550.Suche in Google Scholar PubMed

77. Muhamadejevs, R, Živković, L, Dzintare, M, Sjakste, N. DNA-Binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem Biol Interact 2021;348:109638. https://doi.org/10.1016/j.cbi.2021.109638.Suche in Google Scholar PubMed

78. Ren, N, Sun, R, Xia, K, Zhang, Q, Li, W, Wang, F, et al.. DNA-based hybrid hydrogels sustain water-insoluble ophthalmic therapeutic delivery against allergic conjunctivitis. ACS Appl Mater Interfaces 2019;11:26704–10. https://doi.org/10.1021/acsami.9b08652.Suche in Google Scholar PubMed

79. Schnichels, S, Hurst, J, de Vries, JW, Ullah, S, Frößl, K, Gruszka, A, et al.. Improved treatment options for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl Mater Interfaces 2021;13:9445–56. https://doi.org/10.1021/acsami.0c18626.Suche in Google Scholar PubMed

80. Zhou, Q, Zhou, M, Yang, G, Sui, X, Li, C, Xu, H, et al.. Enhancing diabetic oral wound healing with miR‐132 delivered through tetrahedral DNA nanostructures. Small 2025;21:2411353. https://doi.org/10.1002/smll.202411353.Suche in Google Scholar PubMed

81. Wei, X, Xu, H, Zhou, M, Zhou, Q, Li, M, Liu, Y. Chemically modified microRNA delivery via DNA tetrahedral frameworks for dental pulp regeneration. J Nanobiotechnol 2024;22:150. https://doi.org/10.1186/s12951-024-02393-9.Suche in Google Scholar PubMed PubMed Central

82. Cui, W, Guo, Z, Chen, X, Yan, R, Ma, W, Yang, X, et al.. Targeting modulation of intestinal flora through oral route by an antimicrobial nucleic acid-loaded exosome-like nanovesicles to improve Parkinson’s disease. Sci Bull 2024;69:3925–35. https://doi.org/10.1016/j.scib.2024.10.027.Suche in Google Scholar PubMed

83. Sharon Sofini, PS, Mercy, DJ, Raghavan, V, Isaac, JB, Deepika, B, Udayakumar, S, et al.. Evaluation of scarless wound healing through nanohydrogel infused with selected plant extracts. J Drug Deliv Sci Technol 2024;100:106118. https://doi.org/10.1016/j.jddst.2024.106118.Suche in Google Scholar

84. Jessy Mercy, D, Thirumalai, A, Udayakumar, S, Deepika, B, Janani, G, Girigoswami, A, et al.. Enhancing wound healing with nanohydrogel-entrapped plant extracts and nanosilver: an in vitro investigation. Molecules 2024;29:5004. https://doi.org/10.3390/molecules29215004.Suche in Google Scholar PubMed PubMed Central

85. Wiraja, C, Zhu, Y, Lio, DCS, Yeo, DC, Xie, M, Fang, W, et al.. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat Commun 2019;10:1147. https://doi.org/10.1038/s41467-019-09029-9.Suche in Google Scholar PubMed PubMed Central

86. Xiao, D, Chen, T, Zhang, T, Shi, S, Zhang, M, Qin, X, et al.. Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chin Chem Lett 2024;35:108602. https://doi.org/10.1016/j.cclet.2023.108602.Suche in Google Scholar

87. Lyu, X, Wu, H, Xu, M, Chen, Y, Liu, Z, Zhang, M, et al.. A bioswitchable MiRNA delivery system: tetrahedral framework DNA-based miRNA delivery system for applications in wound healing. ACS Appl Mater Interfaces 2024;16:33192–204. https://doi.org/10.1021/acsami.4c06460.Suche in Google Scholar PubMed

88. Li, P, Wei, Y, Liu, S, Wu, J, Wu, Y, Yan, J, et al.. Functional metal organic framework mediated G-quadruplex DNA nanostructures for improved self-powered smartphone-assisted dual-mode biosensing. Biosens Bioelectron 2025;278:117310. https://doi.org/10.1016/j.bios.2025.117310.Suche in Google Scholar PubMed

89. Pakornpadungsit, P, Prasopdee, T, Swainson, NM, Chworos, A, Smitthipong, W. DNA:chitosan complex, known as a drug delivery system, can create a porous scaffold. Polym Test 2020;83:106333. https://doi.org/10.1016/j.polymertesting.2020.106333.Suche in Google Scholar

90. Avelino, KYPS, Oliveira, LS, Santos, MR, Lucena-Silva, N, Andrade, CAS, Oliveira, MDL. Electrochemical DNA biosensor for chronic myelocytic leukemia based on hybrid nanostructure. Bioelectrochemistry 2022;147:108176. https://doi.org/10.1016/j.bioelechem.2022.108176.Suche in Google Scholar PubMed

91. Chen, F, He, Y, Li, Z, Xu, B, Ye, Q, Li, X, et al.. A novel tunable, highly biocompatible and injectable DNA-Chitosan hybrid hydrogel fabricated by electrostatic interaction between chitosan and DNA backbone. Int J Pharm 2021;606:120938. https://doi.org/10.1016/j.ijpharm.2021.120938.Suche in Google Scholar PubMed

92. Turner, DA, Baldwin, E, Russell, K, Wells, LA. DNA-Crosslinked alginate and layered microspheres to modulate the release of encapsulated FITC-Dextran. Eur J Pharm Biopharm 2021;158:313–22. https://doi.org/10.1016/j.ejpb.2020.11.016.Suche in Google Scholar PubMed

93. Wang, D, Liu, M, Wu, Y, Zhao, Y, Wang, Q, Weng, T, et al.. Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: effect of binding affinity on drug loading, release and cytotoxicity. J Mol Liq 2021;339:116722. https://doi.org/10.1016/j.molliq.2021.116722.Suche in Google Scholar

94. Auvinen, H, Zhang, H, Nonappa, Kopilow, A, Niemelä, EH, Nummelin, S, et al.. Protein coating of DNA nanostructures for enhanced stability and immunocompatibility. Adv Healthcare Mater 2017;6:1700692. https://doi.org/10.1002/adhm.201700692.Suche in Google Scholar PubMed

95. Hellmeier, J, Platzer, R, Mühlgrabner, V, Schneider, MC, Kurz, E, Schütz, GJ, et al.. Strategies for the site-specific decoration of DNA origami nanostructures with functionally intact proteins. ACS Nano 2021;15:15057–68. https://doi.org/10.1021/acsnano.1c05411.Suche in Google Scholar PubMed PubMed Central

96. Thirumalai, A, Girigoswami, K, Prabhu, AD, Durgadevi, P, Kiran, V, Girigoswami, A. 8-Anilino-1-naphthalenesulfonate-Conjugated carbon-coated ferrite nanodots for fluoromagnetic imaging, smart drug delivery, and biomolecular sensing. Pharmaceutics 2024;16:1378. https://doi.org/10.3390/pharmaceutics16111378.Suche in Google Scholar PubMed PubMed Central

97. Deepika, B, Gowtham, P, Raghavan, V, Isaac, JB, Devi, S, Kiran, V, et al.. Harmony in nature’s elixir: a comprehensive exploration of ethanol and nano-formulated extracts from Passiflora incarnata leaves: unveiling in vitro cytotoxicity, acute and sub-acute toxicity profiles in Swiss albino mice. J Mol Histol 2024;55:977–94. https://doi.org/10.1007/s10735-024-10245-x.Suche in Google Scholar PubMed

98. Wang, H, Wen, L, Lan, X, Jiang, D. DNA nanostructures alleviate cisplatin-induced kidney damage during cancer treatment. Society Nucl Med 2024;65:241971.Suche in Google Scholar

99. Liang, S, Li, J, Zou, Z, Mao, M, Ming, S, Lin, F, et al.. Tetrahedral DNA nanostructures synergize with MnO2 to enhance antitumor immunity via promoting STING activation and M1 polarization. Acta Pharm Sin B 2022;12:2494–505. https://doi.org/10.1016/j.apsb.2021.12.010.Suche in Google Scholar PubMed PubMed Central

100. Li, J, Cao, C, Zhang, X, Li, H, Fan, Q, Chen, S, et al.. Core-shell nanomedicine based on multifunctional tetrahedral DNA nanostructures for synergistic enhancement of tumor chemodynamic/chemo-immunotherapy. Chem Eng J 2024;490:151728. https://doi.org/10.1016/j.cej.2024.151728.Suche in Google Scholar

101. Wang, S, Liu, Z, Tong, Y, Zhai, Y, Zhao, X, Yue, X, et al.. Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA. J Contr Release 2021;330:483–92. https://doi.org/10.1016/j.jconrel.2020.12.048.Suche in Google Scholar PubMed

102. Jiang, Y, Li, S, Shi, R, Yin, W, Lv, W, Tian, T, et al.. A novel bioswitchable miRNA mimic delivery system: therapeutic strategies upgraded from tetrahedral framework nucleic acid system for fibrotic disease treatment and pyroptosis pathway inhibition. Adv Sci 2024;11:2305622. https://doi.org/10.1002/advs.202305622.Suche in Google Scholar PubMed PubMed Central

103. Li, C, Feng, X, Li, S, He, X, Luo, Z, Cheng, X, et al.. Tetrahedral DNA loaded siCCR2 restrains M1 macrophage polarization to ameliorate pulmonary fibrosis in chemoradiation-induced murine model. Mol Ther 2024;32:766–82. https://doi.org/10.1016/j.ymthe.2024.01.022.Suche in Google Scholar PubMed PubMed Central

104. Chen, Y, Xu, J, Shi, S, Ma, W, Cui, W, Yan, R, et al.. A DNA nanostructure‐Hif‐1α inducer complex as novel nanotherapy against cisplatin‐induced acute kidney injury. Cell Prolif 2024;57:e13601. https://doi.org/10.1111/cpr.13601.Suche in Google Scholar PubMed PubMed Central

105. Zhao, Y, Zhao, Y, Ling, Y, Chen, Z, Wu, X, Lu, X, et al.. A dual‐response DNA origami platform for imaging and treatment of sepsis‐associated acute kidney injury. Adv Sci 2025;12:2416330. https://doi.org/10.1002/advs.202416330.Suche in Google Scholar PubMed PubMed Central

106. Li, J, Wei, L, Zhang, Y, Wu, M. Tetrahedral DNA nanostructures inhibit ferroptosis and apoptosis in cisplatin-induced renal injury. ACS Appl Bio Mater 2021;4:5026–32. https://doi.org/10.1021/acsabm.1c00294.Suche in Google Scholar PubMed

107. Teodori, L, Omer, M, Kjems, J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024;21:391–409. https://doi.org/10.1080/15476286.2024.2328440.Suche in Google Scholar PubMed PubMed Central

108. Li, N, Sun, Y, Fu, Y, Sun, K. RNA drug delivery using biogenic nanovehicles for cancer therapy. Front Pharmacol 2021;12:734443. https://doi.org/10.3389/fphar.2021.734443.Suche in Google Scholar PubMed PubMed Central

109. Li, X, Bhullar, AS, Binzel, DW, Guo, P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv Drug Deliv Rev 2022;186:114316. https://doi.org/10.1016/j.addr.2022.114316.Suche in Google Scholar PubMed PubMed Central

110. Liu, X, Duan, D, Wang, Y, Liu, J, Duan, D. Advancements in 3WJ-based RNA nanotechnology and its application for cancer diagnosis and therapy. Front Biosci Landmark 2022;27:61. https://doi.org/10.31083/j.fbl2702061.Suche in Google Scholar PubMed

111. Shu, D, Shu, Y, Haque, F, Abdelmawla, S, Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 2011;6:658–67. https://doi.org/10.1038/nnano.2011.105.Suche in Google Scholar PubMed PubMed Central

112. Al-Shareef, W, Brown, Y, Bryan, C, Shuvaeva, E, Bsoul, S, Greenman, R, et al.. Functional interactions of Kluyveromyces lactis telomerase reverse transcriptase with the three-way junction and the template domains of telomerase RNA. Int J Mol Sci 2022;23:10757. https://doi.org/10.3390/ijms231810757.Suche in Google Scholar PubMed PubMed Central

113. Dantsu, Y, Zhang, Y, Zhang, W. Advances in therapeutic L-nucleosides and L-nucleic acids with unusual handedness. Genes 2021;13:46. https://doi.org/10.3390/genes13010046.Suche in Google Scholar PubMed PubMed Central

114. Panigaj, M, Johnson, MB, Ke, W, McMillan, J, Goncharova, EA, Chandler, M, et al.. Aptamers as modular components of therapeutic nucleic acid nanotechnology. Ther RNA Nanotechnol 2021:825–82.Suche in Google Scholar

115. Yu, C-H, Kabza, AM, Sczepanski, JT. Assembly of long l-RNA by native RNA ligation. Chem Commun 2021;57:10508–11. https://doi.org/10.1039/d1cc04296c.Suche in Google Scholar PubMed PubMed Central

116. Poppleton, E, Urbanek, N, Chakraborty, T, Griffo, A, Monari, L, Göpfrich, K. RNA origami: design, simulation and application. RNA Biol 2023;20:510–24. https://doi.org/10.1080/15476286.2023.2237719.Suche in Google Scholar PubMed PubMed Central

117. Ohno, H, Akamine, S, Saito, H. RNA nanostructures and scaffolds for biotechnology applications. Curr Opin Biotechnol 2019;58:53–61. https://doi.org/10.1016/j.copbio.2018.11.006.Suche in Google Scholar PubMed

118. Geary, C, Grossi, G, McRae, EKS, Rothemund, PWK, Andersen, ES. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem 2021;13:549–58. https://doi.org/10.1038/s41557-021-00679-1.Suche in Google Scholar PubMed PubMed Central

119. Hu, M, Feng, C, Yuan, Q, Liu, C, Ge, B, Sun, F, et al.. Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat Commun 2023;14:1307. https://doi.org/10.1038/s41467-023-37020-y.Suche in Google Scholar PubMed PubMed Central

120. Sampedro, VN, McRae, EKS, Hansen, BK, Boussebayle, A, Andersen, ES. RNA origami scaffolds facilitate cryo-EM characterization of a broccoli–pepper aptamer FRET pair. Nucleic Acids Res 2023;51:4613–24. https://doi.org/10.1093/nar/gkad224.Suche in Google Scholar PubMed PubMed Central

121. Sharma, P. CRISPR technology: a revolutionary tool in genome editing. Explor Intersections 2025;45.Suche in Google Scholar

122. Rabiee, N, Rabiee, M. Engineered metal–organic frameworks for targeted CRISPR/Cas9 gene editing. ACS Pharmacol Transl Sci 2025;8:1028–49. https://doi.org/10.1021/acsptsci.5c00047.Suche in Google Scholar PubMed PubMed Central

123. Masarwy, R, Breier, D, Stotsky‐Oterin, L, Ad‐El, N, Qassem, S, Naidu, GS, et al.. Targeted CRISPR/Cas9 lipid nanoparticles elicits therapeutic genome editing in head and neck cancer. Adv Sci 2025;12:2411032. https://doi.org/10.1002/advs.202411032.Suche in Google Scholar PubMed PubMed Central

124. Qiu, M, Glass, Z, Chen, J, Haas, M, Jin, X, Zhao, X, et al.. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci 2021;118. https://doi.org/10.1073/pnas.2020401118. e2020401118.Suche in Google Scholar PubMed PubMed Central

125. Li, B, Manan, RS, Liang, S-Q, Gordon, A, Jiang, A, Varley, A, et al.. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat Biotechnol 2023;41:1410–5. https://doi.org/10.1038/s41587-023-01679-x.Suche in Google Scholar PubMed PubMed Central

126. Walther, J, Porenta, D, Wilbie, D, Seinen, C, Benne, N, Yang, Q, et al.. Comparative analysis of lipid nanoparticle-mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur J Pharm Biopharm 2024;196:114207. https://doi.org/10.1016/j.ejpb.2024.114207.Suche in Google Scholar PubMed

127. Lin, Y, Wu, J, Gu, W, Huang, Y, Tong, Z, Huang, L, et al.. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci 2018;5:1700611. https://doi.org/10.1002/advs.201700611.Suche in Google Scholar PubMed PubMed Central

128. Wei, T, Cheng, Q, Min, Y-L, Olson, EN, Siegwart, DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun 2020;11:3232. https://doi.org/10.1038/s41467-020-17029-3.Suche in Google Scholar PubMed PubMed Central

129. Kim, B, Seo, HW, Lee, K, Yong, D, Park, YK, Lee, Y, et al.. Lipid nanoparticle‐mediated CRISPR‐Cas13a delivery for the control of bacterial infection. Adv Healthcare Mater 2025;14:2403281. https://doi.org/10.1002/adhm.202403281.Suche in Google Scholar PubMed PubMed Central

130. Wang, P, Zhang, L, Zheng, W, Cong, L, Guo, Z, Xie, Y, et al.. Thermo‐triggered release of CRISPR‐Cas9 system by lipid‐encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed 2018;57:1491–6. https://doi.org/10.1002/anie.201708689.Suche in Google Scholar PubMed

131. Liu, Y, Zhao, G, Xu, C-F, Luo, Y-L, Lu, Z-D, Wang, J. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater Sci 2018;6:1592–603. https://doi.org/10.1039/c8bm00263k.Suche in Google Scholar PubMed

Received: 2025-07-24
Accepted: 2025-09-19
Published Online: 2025-10-09

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2025-0164/html?lang=de
Button zum nach oben scrollen