Plant-derived secondary metabolites for malaria treatment: extraction, mechanisms, and therapeutic potential
-
Addisu Tamir Wassie
, Rakesh Kumar Bachheti
, Mesfin Getachew Tadesse
, Yilma Hunde Gonfa
Abstract
Medicinal plants have long been used as a primary healthcare resource for treating malaria and other diseases globally. Malaria, caused by Plasmodium species, remains a serious health threat, with the World Health Organization reporting that over 40 % of the global population lives in malaria-endemic regions. The rise of drug-resistant strains has further complicated treatment efforts, necessitating the search for new therapeutic agents. This review emphasizes the antimalarial potential of plant-derived secondary metabolites, which exhibit diverse pharmacological activities. Several compounds, such as ceramicine R (IC50 = 2.80 μM), knipholone clooxanthrone (IC50 = 14.58 μM for D6 and 9.42 μM for W2), joziknipholone A (IC50 = 0.17 μM), joziknipholone B (IC50 = 0.26 μM), and cajachalcone (IC50 = 7.4 μM), have shown potent activity against Plasmodium falciparum. Data were collected from Web of Science, PubMed, Scopus, Google Scholar, and Science Direct. A total of 34 medicinal plants were identified, along with details on extraction techniques and factors influencing metabolite efficacy. Key secondary metabolites include alkaloids, flavonoids, terpenoids, and their derivatives (e.g., quinine, artemisinin, quercetin, chalcones). This review highlights their mechanisms of action and their promise as templates for developing novel drugs to combat both drug-sensitive and drug-resistant malaria strains.
Acknowledgments
The authors are thankful to Wollo University and Addis Ababa Science and Technology University for providing the necessary facilities and support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state that they have no conflicts of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Nwobodo, DC, Okoye, NN, Sifir Mudkhur, M, Ikem, JC, Eze, PM, Okoye, FBC, et al.. In vitro antiplasmodial and anticancer analyses of endophytic fungal extracts isolated from selected Nigerian medicinal plants. Sci Rep 2024;14:19765. https://doi.org/10.1038/s41598-024-66456-5.Search in Google Scholar PubMed PubMed Central
2. Li, JY, Sun, XF, Li, JJ, Yu, F, Zhang, Y, Huang, XJ, et al.. The antimalarial activity of indole alkaloids and hybrids. Arch Pharmazie 2020;353:2000131. https://doi.org/10.1002/ardp.202000131.Search in Google Scholar PubMed
3. Organization WH. World malaria report 2023. Geneva: World Health Organization; 2023.Search in Google Scholar
4. Van Eijk, AM, Mannan, AS, Sullivan, SA, Carlton, JM. Defining symptoms of malaria in India in an era of asymptomatic infections. Malar J 2020;19:1–11. https://doi.org/10.1186/s12936-020-03310-9.Search in Google Scholar PubMed PubMed Central
5. Pollenus, E, Gouwy, M, Van den Steen, PE. Neutrophils in malaria: the good, the bad or the ugly? Parasite Immunol 2022;44:e12912. https://doi.org/10.1111/pim.12912.Search in Google Scholar PubMed
6. Nghochuzie, NN, Olwal, CO, Udoakang, AJ, Amenga-Etego, LN-K, Amambua-Ngwa, A. Pausing the fight against malaria to combat the COVID-19 pandemic in Africa: is the future of malaria bleak? Front Microbiol 2020;11:1476. https://doi.org/10.3389/fmicb.2020.01476.Search in Google Scholar PubMed PubMed Central
7. Lindsay, SW, Thomas, MB, Kleinschmidt, I. Threats to the effectiveness of insecticide-treated bednets for malaria control: thinking beyond insecticide resistance. Lancet Global Health 2021;9:e1325–1.10.1016/S2214-109X(21)00216-3Search in Google Scholar PubMed
8. Shretta, R, Silal, SP, Malm, K, Mohammed, W, Narh, J, Piccinini, D, et al.. Estimating the risk of declining funding for malaria in Ghana: the case for continued investment in the malaria response. Malar J 2020;19:1–15. https://doi.org/10.1186/s12936-020-03267-9.Search in Google Scholar PubMed PubMed Central
9. Laryea, MK, Borquaye, LS. Antimalarial efficacy and toxicological assessment of extracts of some Ghanaian medicinal plants. J Parasitol Res 2019;2019:1630405. https://doi.org/10.1155/2019/1630405.Search in Google Scholar PubMed PubMed Central
10. Nsanzabana, C. Resistance to artemisinin combination therapies (ACTs): do not forget the partner drug. Trop Med Infect Dis 2019;4:26. https://doi.org/10.3390/tropicalmed4010026.Search in Google Scholar PubMed PubMed Central
11. Lyu, H-N, Ma, N, Meng, Y, Zhang, X, Wong, Y-K, Xu, C, et al.. Study towards improving artemisinin-based combination therapies. Nat Prod Rep 2021;38:1243–50. https://doi.org/10.1039/d0np00079e.Search in Google Scholar PubMed
12. Dwivedi, MK, Shukla, R, Sharma, NK, Manhas, A, Srivastava, K, Kumar, N, et al.. Evaluation of ethnopharmacologically selected Vitex negundo L. for in vitro antimalarial activity and secondary metabolite profiling. J Ethnopharmacol 2021;275:114076. https://doi.org/10.1016/j.jep.2021.114076.Search in Google Scholar PubMed
13. Nigussie, G, Wale, M. Medicinal plants used in traditional treatment of malaria in Ethiopia: a review of ethnomedicine, anti-malarial and toxicity studies. Malar J 2022;21:262. https://doi.org/10.1186/s12936-022-04264-w.Search in Google Scholar PubMed PubMed Central
14. Bezerra, JJL, Pinheiro, AAV, Dourado, D. Antimalarial potential of Moringa oleifera Lam.(Moringaceae): a review of the ethnomedicinal, pharmacological, toxicological, and phytochemical evidence. J Venom Anim Toxins Incl Trop Dis 2023;29:e20220079. https://doi.org/10.1590/1678-9199-jvatitd-2022-0079.Search in Google Scholar
15. Khare, S, Singh, N, Singh, A, Hussain, I, Niharika, K, Yadav, V, et al.. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 2020;63:203–16. https://doi.org/10.1007/s12374-020-09245-7.Search in Google Scholar
16. Oli, AN, Edeh, PA, Al-Mosawi, RM, Mbachu, NA, Al-Dahmoshi, HO, Al-Khafaji, NS, et al.. Evaluation of the phytoconstituents of Auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. Eur J Integr Med 2020;38:101176. https://doi.org/10.1016/j.eujim.2020.101176.Search in Google Scholar PubMed PubMed Central
17. Pereira, AG, Fraga-Corral, M, Garcia-Oliveira, P, Lourenço-Lopes, C, Carpena, M, Prieto, MA, et al.. The use of invasive algae species as a source of secondary metabolites and biological activities: spain as case-study. Mar Drugs 2021;19:178. https://doi.org/10.3390/md19040178.Search in Google Scholar PubMed PubMed Central
18. Kumar, A. Beneficial plant product, their uses and their evolutionary perspectives: a review. Int J Commun Syst 2018;6:970–5.Search in Google Scholar
19. Maharana, C, Padala, VK, Hubballi, AB, Nikhil Raj, M, Paschapur, A, Bhat, C, et al.. Secondary metabolites of microbials as potential pesticides. In: Sustainable management of potato pests and diseases. Singapore: Springer; 2022:111–42 pp.10.1007/978-981-16-7695-6_5Search in Google Scholar
20. Dwivedi, MK, Mishra, S, Sonter, S, Singh, PK. Diterpenoids as potential anti-malarial compounds from Andrographis paniculata. Beni-Suef Univ J Basic Appl Sci 2021;10:1–16. https://doi.org/10.1186/s43088-021-00098-8.Search in Google Scholar
21. Umashankar, DD. Plant secondary metabolites as potential usage in regenerative medicine. J Phytopharmacol 2020;9:270–3P.10.31254/phyto.2020.9410Search in Google Scholar
22. Lefebvre, T, Destandau, E, Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: a review. J Chromatogr A 2021;1635:461770. https://doi.org/10.1016/j.chroma.2020.461770.Search in Google Scholar PubMed
23. Jha, AK, Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci Technol 2022;119:579–91. https://doi.org/10.1016/j.tifs.2021.11.019.Search in Google Scholar
24. Pant, P, Pandey, S, Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chem Biodivers 2021;18:e2100345. https://doi.org/10.1002/cbdv.202100345.Search in Google Scholar PubMed
25. Lezoul, NEH, Belkadi, M, Habibi, F, Guillén, F. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules 2020;25:4672. https://doi.org/10.3390/molecules25204672.Search in Google Scholar PubMed PubMed Central
26. Twaij, BM, Hasan, MN. Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Biol 2022;13:4–14. https://doi.org/10.3390/ijpb13010003.Search in Google Scholar
27. Zamri, MFMA, Bahru, R, Pramanik, SK, Fattah, IMR, Fattah, IMR. Treatment strategies for enhancing the removal of endocrine-disrupting chemicals in water and wastewater systems. J Water Proc Eng 2021;41:102017. https://doi.org/10.1016/j.jwpe.2021.102017.Search in Google Scholar
28. Dirar, A, Alsaadi, D, Wada, M, Mohamed, M, Watanabe, T, Devkota, H. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South Afr J Bot 2019;120:261–7. https://doi.org/10.1016/j.sajb.2018.07.003.Search in Google Scholar
29. Rafińska, K, Pomastowski, P, Rudnicka, J, Krakowska, A, Maruśka, A, Narkute, M, et al.. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem 2019;289:16–25. https://doi.org/10.1016/j.foodchem.2019.03.025.Search in Google Scholar PubMed
30. Che Sulaiman, IS, Basri, M, Fard Masoumi, HR, Chee, WJ, Ashari, SE, Ismail, M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of clinacanthus nutans lindau leaves by response surface methodology. Chem Cent J 2017;11:1–11. https://doi.org/10.1186/s13065-017-0285-1.Search in Google Scholar PubMed PubMed Central
31. Induli, M, Gebru, M, Abdissa, N, Akala, H, Wekesa, I, Byamukama, R, et al.. Antiplasmodial quinones from the rhizomes of Kniphofia foliosa. Nat Prod Commun 2013;8:1934578X1300800920 https://doi.org/10.1177/1934578x1300800920.Search in Google Scholar
32. Bekono, BD, Ntie-Kang, F, Onguéné, PA, Lifongo, LL, Sippl, W, Fester, K, et al.. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J 2020;19:1–35. https://doi.org/10.1186/s12936-020-03231-7.Search in Google Scholar PubMed PubMed Central
33. Rahman, AA, Samoylenko, V, Jacob, MR, Sahu, R, Jain, SK, Khan, SI, et al.. Antiparasitic and antimicrobial indolizidines from the leaves of Prosopis glandulosa var. glandulosa. Planta Med 2011;77:1639–43. https://doi.org/10.1055/s-0030-1270906.Search in Google Scholar PubMed PubMed Central
34. Samoylenko, V, Ashfaq, MK, Jacob, MR, Tekwani, BL, Khan, SI, Manly, SP, et al.. Indolizidine, antiinfective and antiparasitic compounds from Prosopis glandulosa Torr. Var. glandulosa. Planta Med 2009;75:P-48. https://doi.org/10.1055/s-2009-1216486.Search in Google Scholar
35. Ramanandraibe, V, Grellier, P, Martin, M-T, Deville, A, Joyeau, R, Ramanitrahasimbola, D, et al.. Antiplasmodial phenolic compounds from Piptadenia pervillei. Planta Med 2008;74:417–21. https://doi.org/10.1055/s-2008-1034328.Search in Google Scholar PubMed
36. Chukwujekwu, J, Coombes, P, Mulholland, D, Van Staden, J. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. South Afr J Bot 2006;72:295–7. https://doi.org/10.1016/j.sajb.2005.08.003.Search in Google Scholar
37. Bribi, N. Pharmacological activity of alkaloids: a review. Asian J Bot 2018;1:1–6.Search in Google Scholar
38. Roy, A. A review on the alkaloids an important therapeutic compound from plants. IJPB 2017;3:1–9.Search in Google Scholar
39. Abdel-Sattar, E, Abdallah, HM, El-Mekkawy, S, Ichino, C, Kiyohara, H, Yamada, H. Antimalarial alkaloid from Hypoestes forskaolii. Exp Parasitol 2020;211:107851. https://doi.org/10.1016/j.exppara.2020.107851.Search in Google Scholar PubMed
40. Cheong, DH, Tan, DW, Wong, FW, Tran, T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res 2020;158:104901. https://doi.org/10.1016/j.phrs.2020.104901.Search in Google Scholar PubMed PubMed Central
41. Khanal, P. Antimalarial and anticancer properties of artesunate and other artemisinins: current development. Monatsh Chemie-Chem Mon 2021;152:387–400. https://doi.org/10.1007/s00706-021-02759-x.Search in Google Scholar PubMed PubMed Central
42. Tisnerat, C, Dassonville-Klimpt, A, Gosselet, F, Sonnet, P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2022;29:3326–65. https://doi.org/10.2174/0929867328666210803152419.Search in Google Scholar PubMed
43. Cruz, JN, Cascaes, MM, Silva, AG, Vale, V, de Oliveira, MS, de Aguiar Andrade, EH. Essential oil antimalarial activity. In: Essential oils: applications and trends in food science and technology. Cham, Switzerland: Springer; 2022:351–67 pp.10.1007/978-3-030-99476-1_15Search in Google Scholar
44. Saito, AY, Rodriguez, AAM, Vega, DSM, Sussmann, RA, Kimura, EA, Katzin, AM. Antimalarial activity of the terpene nerolidol. Int J Antimicrob Agents 2016;48:641–6. https://doi.org/10.1016/j.ijantimicag.2016.08.017.Search in Google Scholar PubMed
45. Okpe, O, Ndidi, US, Ojowu, J, Maifada, SR, Etim, EE, Awen, DA, et al.. GC–MS profiling and antimalarial activity of Khaya grandifoliola on plasmodium berghei–infected mice. J Herbs, Spices, Med Plants 2019;25:21–32. https://doi.org/10.1080/10496475.2018.1545719.Search in Google Scholar
46. Jones, RA, Panda, SS, Hall, CD. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur J Med Chem 2015;97:335–55. https://doi.org/10.1016/j.ejmech.2015.02.002.Search in Google Scholar PubMed
47. Dubey, A, Singh, Y. Medicinal properties of cinchona alkaloids-A brief review. Asian J Res Pharm Sci 2021;11:224–8. https://doi.org/10.52711/2231-5659.2021.00036.Search in Google Scholar
48. Sánchez-Viesca, F, Gómez, R. The mechanism of the oxido-degradation of the cinchona alkaloids. Am J Chem 2022;12:18–21.Search in Google Scholar
49. Carsanba, E, Pintado, M, Oliveira, C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals 2021;14:295. https://doi.org/10.3390/ph14040295.Search in Google Scholar PubMed PubMed Central
50. Ungogo, MA, Ebiloma, GU, Ichoron, N, Igoli, JO, De Koning, HP, Balogun, EO. A review of the antimalarial, antitrypanosomal, and antileishmanial activities of natural compounds isolated from Nigerian flora. Front Chem 2020;8:617448. https://doi.org/10.3389/fchem.2020.617448.Search in Google Scholar PubMed PubMed Central
51. Yang, W, Chen, X, Li, Y, Guo, S, Wang, Z, Yu, X. Advances in pharmacological activities of terpenoids. Nat Prod Commun 2020;15:1934578X20903555 https://doi.org/10.1177/1934578x20903555.Search in Google Scholar
52. Nugroho, AE, Wong, CP, Hirasawa, Y, Kaneda, T, Tougan, T, Horii, T, et al.. Antimalarial ceramicines QT from Chisocheton ceramicus. J Nat Med 2023;77:596–603. https://doi.org/10.1007/s11418-023-01706-w.Search in Google Scholar PubMed PubMed Central
53. Crowley, VM, Ayi, K, Lu, Z, Liby, KT, Sporn, M, Kain, KC. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar J 2017;16:1–11. https://doi.org/10.1186/s12936-017-2109-0.Search in Google Scholar PubMed PubMed Central
54. Wahba, AE, El-Sayed, AK, El-Falal, AA, Soliman, EM. New antimalarial lanostane triterpenes from a new isolate of Egyptian Ganoderma species. Med Chem Res 2019;28:2246–51. https://doi.org/10.1007/s00044-019-02450-1.Search in Google Scholar
55. Herlina, T, Rudiana, T, Julaeha, E, Parubak, A, editors. Flavonoids from stem bark of akway (drymis beccariana gibs) and theirs antimalarial properties. Journal of Physics: Conference Series. Bristol, England, UK: IOP Publishing; 2019.10.1088/1742-6596/1280/2/022010Search in Google Scholar
56. Gadetskaya, AV, Tarawneh, AH, Zhusupova, GE, Gemejiyeva, NG, Cantrell, CL, Cutler, SJ, et al.. Sulfated phenolic compounds from limonium caspium: isolation, structural elucidation, and biological evaluation. Fitoterapia 2015;104:80–5. https://doi.org/10.1016/j.fitote.2015.05.017.Search in Google Scholar PubMed PubMed Central
57. Wong, SK, Chin, K-Y, Ima-Nirwana, S. Quercetin as an agent for protecting the bone: a review of the current evidence. Int J Mol Sci 2020;21:6448. https://doi.org/10.3390/ijms21176448.Search in Google Scholar PubMed PubMed Central
58. Chaniad, P, Mungthin, M, Payaka, A, Viriyavejakul, P, Punsawad, C. Antimalarial properties and molecular docking analysis of compounds from dioscorea bulbifera L. as new antimalarial agent candidates. BMC Compl Med Ther 2021;21:144. https://doi.org/10.1186/s12906-021-03317-y.Search in Google Scholar PubMed PubMed Central
59. Helgren, TR, Sciotti, RJ, Lee, P, Duffy, S, Avery, VM, Igbinoba, O, et al.. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorg Med Chem Lett 2015;25:327–32. https://doi.org/10.1016/j.bmcl.2014.11.039.Search in Google Scholar PubMed
60. Alizadeh, SR, Ebrahimzadeh, MA. Quercetin derivatives: drug design, development, and biological activities, a review. Eur J Med Chem 2022;229:114068. https://doi.org/10.1016/j.ejmech.2021.114068.Search in Google Scholar PubMed
61. Alkandahri, MY, Maulana, Y, Subarnas, A, Kwarteng, A, Berbudi, A. Antimalarial activity of extract and fractions of cayratia trifolia (L.) domin. Int J Pharm Res Int 2020;12:1435–41.10.31838/ijpr/2020.SP1.218Search in Google Scholar
62. Sinha, S, Batovska, DI, Medhi, B, Radotra, B, Bhalla, A, Markova, N, et al.. In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes. Malar J 2019;18:1–11. https://doi.org/10.1186/s12936-019-3060-z.Search in Google Scholar PubMed PubMed Central
63. Gopinathan, A, Moidu, M, Mukundan, M, Ellickal Narayanan, S, Narayanan, H, Adhikari, N. Design, synthesis and biological evaluation of several aromatic substituted chalcones as antimalarial agents. Drug Dev Res 2020;81:1048–56. https://doi.org/10.1002/ddr.21727.Search in Google Scholar PubMed
64. Al-Maharik, N. Isolation of naturally occurring novel isoflavonoids: an update. Nat Prod Rep 2019;36:1156–95. https://doi.org/10.1039/c8np00069g.Search in Google Scholar PubMed
65. Minatel, IO, Borges, CV, Ferreira, MI, Gomez, HAG, Chen, C-YO, Lima, GPP. Phenolic compounds: functional properties, impact of processing and bioavailability. Phenolic Compd Biol Act 2017;8:1–24.10.5772/66368Search in Google Scholar
66. Mamede, L, Ledoux, A, Jansen, O, Frédérich, M. Natural phenolic compounds and derivatives as potential antimalarial agents. Planta Med 2020;86:585–618. https://doi.org/10.1055/a-1148-9000.Search in Google Scholar PubMed
67. Küpeli, AE, Genç, Y, Karpuz, B, Sobarzo-Sánchez, E, Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2020;12:1959. https://doi.org/10.3390/cancers12071959.Search in Google Scholar PubMed PubMed Central
68. da Silva, DF, de Souza, JL, da Costa, DM, Costa, JDB, Moreira, POL, Fonseca, AL, et al.. Antiplasmodial activity of coumarins isolated from polygala boliviensis: in vitro and in silico studies. J Biomol Struct Dyn 2023;41:13383–403. https://doi.org/10.1080/07391102.2023.2173295.Search in Google Scholar PubMed
69. Tjahjani, S. Antimalarial activity of garcinia mangostana L rind and its synergistic effect with artemisinin in vitro. BMC Compl Alternative Med 2017;17:1–5. https://doi.org/10.1186/s12906-017-1649-8.Search in Google Scholar PubMed PubMed Central
70. Auranwiwat, C, Laphookhieo, S, Rattanajak, R, Kamchonwongpaisan, S, Pyne, SG, Ritthiwigrom, T. Antimalarial polyoxygenated and prenylated xanthones from the leaves and branches of garcinia mckeaniana. Tetrahedron 2016;72:6837–42. https://doi.org/10.1016/j.tet.2016.09.018.Search in Google Scholar
71. Gautam, K, Khedkar, R. Functional properties and health benefits of underutilized crops and plants in Northern India. In: Sustainable food systems (volume I) SFS: framework, sustainable diets, traditional food culture & food production. Cham, Switzerland: Springer; 2024:191–246 pp.10.1007/978-3-031-47122-3_11Search in Google Scholar
72. Akkawi, M, Abu-Lafi, S, Attieh, H, Abu-Remeleh, Q, Makhamra, S, Qutob, M. Preparative HPLC fractionation of cinnamomum cassia water extract and their in-vitro antimalarial activities. J Appl Pharmaceut Sci 2017;7:129–34. https://doi.org/10.7324/japs.2017.70117.Search in Google Scholar
73. Dwivedi, MK, Mishra, S, Sonter, S, Singh, PK. Diterpenoids as potential anti-malarial compounds from Andrographis paniculata. Beni-Suef Univ J Basic Appl Sci 2021;10:1–16. https://doi.org/10.1186/s43088-021-00098-8.Search in Google Scholar
74. Kumatia, EK, Ayertey, F, Appiah-Opong, R, Bolah, P, Ehun, E, Dabo, J. Antrocaryon micraster (A. Chev. And guillaumin) stem bark extract demonstrated anti-malaria action and normalized hematological indices in Plasmodium berghei infested mice in the Rane’s test. J Ethnopharmacol 2021;266:113427. https://doi.org/10.1016/j.jep.2020.113427.Search in Google Scholar PubMed
75. Kane, N, Kyama, M, Nganga, J, Hassanali, A, Diallo, M, Kimani, F. Comparison of phytochemical profiles and antimalarial activities of Artemisia afra plant collected from five countries in Africa. South Afr J Bot 2019;125:126–33. https://doi.org/10.1016/j.sajb.2019.07.001.Search in Google Scholar
76. Pala, Z, Shukla, V, Alok, A, Kudale, S, Desai, N. Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens wall. 3 Biotech 2016;6:1–8. https://doi.org/10.1007/s13205-016-0496-5.Search in Google Scholar PubMed PubMed Central
77. Hidayati, AR, Widyawaruyanti, A, Ilmi, H, Tanjung, M, Widiandani, T, Syafruddin, D, et al.. Antimalarial activity of flavonoid compound isolated from leaves of Artocarpus altilis. Pharmacogn J 2020;12. https://doi.org/10.5530/pj.2020.12.120.Search in Google Scholar
78. Alkandahri, MY, Berbudi, A, Utami, NV, Subarnas, A. Antimalarial activity of extract and fractions of Castanopsis costata (blume) A. DC. Avicenna J Phytomed 2019;9:474.Search in Google Scholar
79. Rawe, SL, McDonnell, C. The cinchona alkaloids and the aminoquinolines. In: Antimalarial Agents. Scotland, UK: Elsevier; 2020:65–98 pp.10.1016/B978-0-08-101210-9.00003-2Search in Google Scholar
80. Brahmam, P, Sunita, K. Phytochemical investigation and in vitro antimalarial activity of acalypha indica (L.) and cocculus hirsutus (L.) from Prakasam District, Andhra Pradesh, India. Biomed Pharmacol J 2018;11:2123–34. https://doi.org/10.13005/bpj/1592.Search in Google Scholar
81. du Preez-Bruwer, I, Mumbengegwi, DR, Louw, S. In vitro antimalarial properties and chemical composition of Diospyros chamaethamnus extracts. South Afr J Bot 2022;149:290–6. https://doi.org/10.1016/j.sajb.2022.06.006.Search in Google Scholar
82. Alexandre, LS, Oliveira, MS, Dittz, D, Sousa, RW, Ferreira, PM, Pessoa, C, et al.. Flavonoids, cytotoxic, and antimalarial activities of Dipteryx lacunifera. Rev Bras Farmacogn 2020;30:544–50. https://doi.org/10.1007/s43450-020-00082-w.Search in Google Scholar
83. Tomani, JCD, Bonnet, O, Nyirimigabo, A, Deschamps, W, Tchinda, AT, Jansen, O, et al.. In vitro antiplasmodial and cytotoxic activities of compounds from the roots of eriosema montanum baker f.(fabaceae). Molecules 2021;26:2795. https://doi.org/10.3390/molecules26092795.Search in Google Scholar PubMed PubMed Central
84. Wairata, J, Sukandar, ER, Fadlan, A, Purnomo, AS, Taher, M, Ersam, T. Evaluation of the antioxidant, antidiabetic, and antiplasmodial activities of xanthones isolated from Garcinia forbesii and their in silico studies. Biomedicines 2021;9:1380. https://doi.org/10.3390/biomedicines9101380.Search in Google Scholar PubMed PubMed Central
85. Nurain, IO, Bewaji, CO, Abubakar, AA, Mustapha, A, Ajani, EO, Sabiu, S, et al.. Antimalarial and reno-protective potentials of combined stem bark extracts of Khaya grandifoliola and Enantia chlorantha in plasmodium infected mice. Iran J Toxicol 2018;12:29–37. https://doi.org/10.32598/ijt.12.3.440.3.Search in Google Scholar
86. Sidjui, LS, Soh, D, Herbette, G, Toghueo, RMK, Folefoc, GN, Mahiou-Leddet, V, et al.. Antiplasmodial and cytotoxic activity of lanostane type triterpenoids isolated from Leplaea mayombensis. Phytochem Lett 2022;51:50–6. https://doi.org/10.1016/j.phytol.2022.06.010.Search in Google Scholar
87. Chaniad, P, Chukaew, A, Payaka, A, Phuwajaroanpong, A, Techarang, T, Plirat, W, et al.. Antimalarial potential of compounds isolated from mammea siamensis T. anders. flowers: in vitro and molecular docking studies. BMC Compl Med Ther 2022;22:266. https://doi.org/10.1186/s12906-022-03742-7.Search in Google Scholar PubMed PubMed Central
88. Bankole, A, Adekunle, A, Sowemimo, A, Umebese, C, Abiodun, O, Gbotosho, G. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitol Res 2016;115:299–305. https://doi.org/10.1007/s00436-015-4747-x.Search in Google Scholar PubMed PubMed Central
89. Chithambo, B, Noundou, XS, Krause, RW. Anti-malarial synergy of secondary metabolites from morinda lucida benth. J Ethnopharmacol 2017;199:91–6. https://doi.org/10.1016/j.jep.2017.01.051.Search in Google Scholar PubMed
90. Abdulkadir, AR, Hasan, MM, Jahan, MS. Antimalarial, antioxidant, antimicrobial properties of moringa oliefera lam: a review. Aust J Crop Sci 2018;12:905–8. https://doi.org/10.21475/ajcs.18.12.06.pne920.Search in Google Scholar
91. Misganaw, D, Engidawork, E, Nedi, T. Evaluation of the anti-malarial activity of crude extract and solvent fractions of the leaves of Olea europaea (oleaceae) in mice. BMC Compl Alternative Med 2019;19:1–12. https://doi.org/10.1186/s12906-019-2567-8.Search in Google Scholar PubMed PubMed Central
92. Jeje, TO, Bando, H, Azad, MTA, Fukuda, Y, Oluwafemi, IE, Kato, K. Antiplasmodial and interferon-gamma-modulating activities of the aqueous extract of stone breaker (Phyllanthus niruri linn.) in malaria infection. Parasitol Int 2023;97:102789. https://doi.org/10.1016/j.parint.2023.102789.Search in Google Scholar PubMed
93. Ledoux, A, St-Gelais, A, Cieckiewicz, E, Jansen, O, Bordignon, A, Illien, B, et al.. Antimalarial activities of alkyl cyclohexenone derivatives isolated from the leaves of poupartia borbonica. J Nat Prod 2017;80:1750–7. https://doi.org/10.1021/acs.jnatprod.6b01019.Search in Google Scholar PubMed
94. Diao, H-M, Hao, Y, Li, J, Ling, H-W, Shi, K-X, Zhang, W, et al.. Flavonoids from scutellaria likiangensis diels and their antimalarial activities. Fitoterapia 2023;164:105357. https://doi.org/10.1016/j.fitote.2022.105357.Search in Google Scholar PubMed
95. Amelia, P, Nugroho, AE, Hirasawa, Y, Kaneda, T, Tougan, T, Horii, T, et al.. Two new sarpagine-type indole alkaloids and antimalarial activity of 16-demethoxycarbonylvoacamine from tabernaemontana macrocarpa Jack. J Nat Med 2019;73:820–5. https://doi.org/10.1007/s11418-019-01317-4.Search in Google Scholar PubMed
96. Singh, N, Chatterjee, A, Chanu, WK, Vaishalli, PM, Singh, CB, Nagaraj, VA. Antimalarial activity of Toona ciliata MJ Roem aqueous methanolic leaf extract and its antioxidant and phytochemical properties. J Tradit Complement Med 2023;13:550–60. https://doi.org/10.1016/j.jtcme.2023.05.004.Search in Google Scholar PubMed PubMed Central
97. Puttappa, N, Kumar, RS, Yamjala, K. Artesunate-quercetin/luteolin dual drug nanofacilitated synergistic treatment for malaria: a plausible approach to overcome artemisinin combination therapy resistance. Med Hypotheses 2017;109:176–80. https://doi.org/10.1016/j.mehy.2017.10.016.Search in Google Scholar PubMed
98. Aguiar, ACC, Parisi, JR, Granito, RN, de Sousa, LRF, Renno, ACM, Gazarini, ML. Metabolites from marine sponges and their potential to treat malarial protozoan parasites infection: a systematic review. Mar Drugs 2021;19:134. https://doi.org/10.3390/md19030134.Search in Google Scholar PubMed PubMed Central
99. Kapishnikov, S, Hempelmann, E, Elbaum, M, Als‐Nielsen, J, Leiserowitz, L. Malaria pigment crystals: the achilles’ heel of the malaria parasite. ChemMedChem 2021;16:1515–32. https://doi.org/10.1002/cmdc.202000895.Search in Google Scholar PubMed PubMed Central
100. Singh, SK, Srivastav, S, Castellani, RJ, Plascencia-Villa, G, Perry, G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019;16:666–74. https://doi.org/10.1007/s13311-019-00767-8.Search in Google Scholar PubMed PubMed Central
101. Prescott, CE, Grayston, SJ, Helmisaari, H-S, Kaštovská, E, Körner, C, Lambers, H, et al.. Surplus carbon drives allocation and plant–soil interactions. Trends Ecol Evol 2020;35:1110–8. https://doi.org/10.1016/j.tree.2020.08.007.Search in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston