Startseite Flavonoid derivatives from red propolis: In silico predictions of their interactions with Staphylococcus aureus sortase A and studies on their antibiofilm potential
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Flavonoid derivatives from red propolis: In silico predictions of their interactions with Staphylococcus aureus sortase A and studies on their antibiofilm potential

  • Dipto Kumer Sarker , Emma Ratcliffe , Fraser Burnett , Shaikh Jamal Uddin , Jamil A. Shilpi , Georgios Efthimiou und Veronique Seidel ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sortase A (SrtA) is an enzyme essential for biofilm formation in Gram-positive bacteria including Staphylococcus aureus. In silico investigations were conducted to investigate the interactions of flavonoid derivatives from red propolis with S. aureus SrtA (PDB ID:1T2P). Molecular docking, MD and ADME/drug-likeness predictions used Autodock Vina, GROMACS-2021 and SwissADME, respectively. Chrysin, galangin, thevetiaflavone and vestitone showed the best size-independent ligand efficiency (SILE) scores–higher than those of the control ligand. The chrysin- and thevetiaflavone-protein complexes showed the most stable behaviour and compactness in MD analysis. Chrysin and thevetiaflavone exhibited high binding free energy values towards SrtA. Chrysin interacted strongly with eight active site residues (including two from the catalytic triad) while thevetiaflavone interacted with four active site residues (including one from the catalytic triad). An in vitro crystal violet staining assay confirmed that chrysin and galangin showed significant antibiofilm activity against S. aureus. It remains to be seen if thevetiaflavone displays any similar activity. Further studies are warranted to confirm if the binding of these flavonoids to sortase A is a possible mechanism of their antibiofilm activity. As such, they may prove useful for the discovery of new antibiofilm agents against S. aureus.


Corresponding author: Veronique Seidel, Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK, E-mail:

  1. Research ethics: Not applicable

  2. Informed consent: Not applicable

  3. Author contributions: Conceptualization: V.S; Methodology: D.K.S, G.E. and V.S; Software: D.K.S, S.J.U and V.S; Validation: D.K.S, G.E. and V.S; Formal analysis: E.R, F.B, J.S. D.K.S and V.S; Investigation: E.R, F.B, D.K.S, G.E. and V.S; Resources: D.K.S, S.J.U, G.E. and V.S; Data curation: D.K.S, G.E. and V.S; Writing – original draft preparation: E.R, F.B, D.K.S and V.S; Writing – review and editing: J.S., D.K.S, G.E. and V.S; Visualization: E.R, F.B, D.K.S and V.S; Supervision: V.S, J.S and S.J.U; Project administration: D.K.S and V.S. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: This research received no external funding.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Dadgostar, P. Antimicrobial resistance: implications and costs. Infect Drug Resist 2019;12:3903–10. https://doi.org/10.2147/idr.s234610.Suche in Google Scholar

2. Chandra, H, Bishnoi, P, Yadav, A, Patni, B, Mishra, AP, Nautiyal, AR, et al.. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—A review. Plants 2017;6:16. https://doi.org/10.3390/plants6020016.Suche in Google Scholar PubMed PubMed Central

3. Rossiter, SE, Fletcher, MH, Wuest, WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev 2017;117:12415–74. https://doi.org/10.1021/acs.chemrev.7b00283.Suche in Google Scholar PubMed PubMed Central

4. Lu, L, Hu, W, Tian, Z, Yuan, D, Yi, G, Zhou, Y, et al.. Developing natural products as potential anti-biofilm agents. Chin Med 2019;14:11. https://doi.org/10.1186/s13020-019-0232-2.org/10.1186/s13020-019-0232-2Suche in Google Scholar PubMed PubMed Central

5. Melander, RJ, Basak, AK, Melander, C. Natural products as inspiration for the development of bacterial antibiofilm agents. Nat Prod Rep 2020;37:1454–77. https://doi.org/10.1039/d0np00022a.Suche in Google Scholar PubMed PubMed Central

6. Song, X, Xia, YX, He, ZD, Zhang, H. A review of natural products with anti-biofilm activity. Curr Org Chem 2018;22:789–817. https://doi.org/10.2174/1385272821666170620110041.Suche in Google Scholar

7. Flemming, H-C, Wingender, J. The biofilm matrix. Nat Rev Microbiol 2010;8:623–33. https://doi.org/10.1038/nrmicro2415.Suche in Google Scholar PubMed

8. Høiby, N, Bjarnsholt, T, Givskov, M, Molin, S, Ciofu, O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010;35:322–32. https://doi.org/10.1016/j.ijantimicag.2009.12.011.Suche in Google Scholar PubMed

9. Jamal, M, Ahmad, W, Andleeb, S, Jalil, F, Imran, M, Nawaz, MA, et al.. Bacterial biofilm and associated infections. J Chin Med Assoc 2018;81:7–11. https://doi.org/10.1016/j.jcma.2017.07.012.Suche in Google Scholar PubMed

10. Kumar, A, Alam, A, Rani, M, Ehtesham, NZ, Hasnain, SE. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 2017;307:481–9. https://doi.org/10.1016/j.ijmm.2017.09.016.Suche in Google Scholar PubMed

11. Li, XH, Lee, JH. Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol 2017;55:753–66. https://doi.org/10.1007/s12275-017-7274-x.Suche in Google Scholar PubMed

12. Muhammad, MH, Idris, AL, Fan, X, Guo, Y, Yu, Y, Jin, X, et al.. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 2020;11:928. https://doi.org/10.3389/fmicb.2020.00928.Suche in Google Scholar PubMed PubMed Central

13. Rabin, N, Zheng, Y, Opoku-Temeng, C, Du, Y, Bonsu, E, Sintim, HO, et al.. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015;7:1362. https://doi.org/10.4155/fmc.15.77. [published correction appears in.Suche in Google Scholar PubMed

14. Cheung, GYC, Bae, JS, Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021;12:547–69. https://doi.org/10.1080/21505594.2021.1878688.Suche in Google Scholar PubMed PubMed Central

15. Serra, R, Grande, R, Butrico, L, Rossi, A, Settimio, UF, Caroleo, B, et al.. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 2015;13:605–13. https://doi.org/10.1586/14787210.2015.1023291.Suche in Google Scholar PubMed

16. Cascioferro, S, Totsika, M, Schillaci, D. Sortase A: an ideal target for anti-virulence drug development. Microb Pathog 2014;77:105–12. https://doi.org/10.1016/j.micpath.2014.10.007.Suche in Google Scholar PubMed

17. Cossart, P, Jonquières, R. Sortase, a universal target for therapeutic agents against Gram-positive bacteria? Proc Natl Acad Sci U S A 2000;97:5013–5. https://doi.org/10.1073/pnas.97.10.5013.Suche in Google Scholar PubMed PubMed Central

18. Kumari, P, Nath, Y, Murty, US, Ravichandiran, V, Mohan, U. Sortase A mediated bioconjugation of common epitopes decreases biofilm formation in Staphylococcus aureus. Front Microbiol 2020;11:1702. https://doi.org/10.3389/fmicb.2020.01702.Suche in Google Scholar PubMed PubMed Central

19. Aminimoghadamfarouj, N, Nematollahi, A. Propolis diterpenes as a remarkable bio-source for drug discovery development: a review. Int J Mol Sci 2017;18:1290. https://doi.org/10.3390/ijms18061290.Suche in Google Scholar PubMed PubMed Central

20. Blicharska, N, Seidel, V. Chemical diversity and biological activity of African propolis. Prog Chem Org Nat Prod 2019;109:415–50. https://doi.org/10.1007/978-3-030-12858-6_3.Suche in Google Scholar PubMed

21. Khoshandam, A, Hedayatian, A, Mollazadeh, A, Razavi, BM, Hosseinzadeh, H. Propolis and its constituents against cardiovascular risk factors including obesity, hypertension, atherosclerosis, diabetes, and dyslipidemia: a comprehensive review. Iran J Basic Med Sci 2023;26:853–71. https://doi.org/10.22038/IJBMS.2023.67793.14835.Suche in Google Scholar PubMed PubMed Central

22. Santos, LM, Fonseca, MS, Sokolonski, AR, Deegan, KR, Araújo, RP, UmszaGuez, MA, et al.. Propolis: types, composition, biological activities, and veterinary product patent prospecting; 2020;100:1369–82. https://doi.org/10.1002/jsfa.10024.J Sci Food Agric4Suche in Google Scholar PubMed

23. Silva-Carvalho, R, Baltazar, F, Almeida-Aguiar, C. Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015;2015:206439. https://doi.org/10.1155/2015/206439.Suche in Google Scholar PubMed PubMed Central

24. Hadjab, W, Zellagui, A, Mokrani, M, Öztürk, M, Ceylan, Ö, Gherraf, N, et al.. Pharmacological potential effects of Algerian propolis against oxidative stress, multidrug-resistant pathogens biofilm and quorum-sensing. Turk J Pharm Sci 2024;21:71–80. https://doi.org/10.4274/tjps.galenos.2023.64369.Suche in Google Scholar PubMed PubMed Central

25. Queiroga, MC, Laranjo, M, Andrade, N, Marques, M, Costa, AR, Antunes, CM, et al.. Antimicrobial, antibiofilm and toxicological assessment of propolis. Antibiotics (Basel) 2023;12:347. https://doi.org/10.3390/antibiotics12020347.Suche in Google Scholar PubMed PubMed Central

26. Vadillo-Rodríguez, V, Fernández-Babiano, I, Pérez-Giraldo, C, Fernández-Calderón, MC. Anti-biofilm perspectives of propolis against Staphylococcus epidermidis infections. Biomolecules 2024;14:779. https://doi.org/10.3390/biom14070779.Suche in Google Scholar PubMed PubMed Central

27. Corbellini, RL, Amilton dos Santos, D, Marinho, F, Pêgas Henriques, JA, Roesch Ely, M, Moura, S, et al.. Red propolis: chemical composition and pharmacological activity. Asian Pac J Trop Biomed 2017;7:591–8. https://doi.org/10.1016/j.apjtb.2017.06.009.Suche in Google Scholar

28. Freires, IA, Pingueiro, JMS, Miranda, SLF, Bueno-Silva, B. Chapter 24 - red propolis: phenolics, polyphenolics, and applications to microbiological health and disease. In: Watson, RR, Preedy, VR, Zibadi, S, Editor(s). Polyphenols: Prevention and Treatment of Human Disease (2nd ed.). Academic Press; 2018, 293-300.10.1016/B978-0-12-813008-7.00024-2Suche in Google Scholar

29. Leite, KF, Martins, ML, de Medeiros, MM, Bezerra, N, Brito, C, de Almeida, L, et al.. Red propolis hydroalcoholic extract inhibits the formation of Candida albicans biofilms on denture surface. J Clin Exp Dent 2020;12:e626–31. https://doi.org/10.4317/jced.56843.Suche in Google Scholar PubMed PubMed Central

30. Martins, ML, Leite, KLF, Pacheco-Filho, EF, Pereira, AFM, Romanos, MTV, Maia, LC, et al.. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization. Arch Oral Biol 2018;93:56–65. https://doi.org/10.1016/j.archoralbio.2018.05.017.Suche in Google Scholar PubMed

31. Santiago, MB, Tanimoto, MH, Ambrosio, MALV, Veneziani, RCS, Bastos, JK, Sabino-Silva, R, et al.. The antibacterial potential of Brazilian red propolis against the formation and eradication of biofilm of Helicobacter pylori. Antibiotics (Basel) 2024;13:719. https://doi.org/10.3390/antibiotics13080719.Suche in Google Scholar PubMed PubMed Central

32. Morris, GM, Huey, R, Lindstrom, W, Sanner, MF, Belew, RK, Goodsell, DS, et al.. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.Suche in Google Scholar PubMed PubMed Central

33. Andrade, JKS, Denadai, M, de Oliveira, CS, Nunes, ML, Narain, N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int 2017;101:129–38. https://doi.org/10.1016/j.foodres.2017.08.066.Suche in Google Scholar PubMed

34. Costa, AGJ, Yoshida, NC, Garcez, WS, Perdomo, RT, Matos, MFC, Garcez, FR, et al.. Metabolomics approach expands the classification of propolis samples from midwest Brazil. J Nat Prod 2020;83:333–43. https://doi.org/10.1021/acs.jnatprod.9b00783.Suche in Google Scholar PubMed

35. de Mendonça, IC, Porto, IC, do Nascimento, TG, de Souza, NS, Oliveira, JMS, Arruda, RES, et al.. Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells. BMC Compl Alternative Med 2015;15:357. https://doi.org/10.1186/s12906-015-0888-9.Suche in Google Scholar PubMed PubMed Central

36. Frozza, CO, Garcia, CS, Gambato, G, de Souza, MDO, Salvador, M, Moura, S, et al.. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem Toxicol 2013;52:137–42. https://doi.org/10.1016/j.fct.2012.11.013.Suche in Google Scholar PubMed

37. Oldoni, TLC, Cabral, ISR, d’Arce, MABR, Rosalen, PL, Ikegaki, M, Nascimento, AM, et al.. Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis. Sep Purif Technol 2011;77:208–13.10.1016/j.seppur.2010.12.007Suche in Google Scholar

38. Piccinelli, AL, Lotti, C, Campone, L, Cuesta-Rubio, O, Campo Fernandez, M, Rastrelli, L, et al.. Cuban and Brazilian red propolis: botanical origin and comparative analysis by high-performance liquid chromatography-photodiode array detection/electrospray ionization tandem mass spectrometry. J Agric Food Chem 2011;59:6484–91. https://doi.org/10.1021/jf201280z.Suche in Google Scholar PubMed

39. Silva, VC, Silva, AMGS, Basílio, JAD, Xavier, JA, do Nascimento, TG, Naal, RMZG, et al.. New insights for red propolis of alagoas-chemical constituents, topical membrane formulations and their physicochemical and biological properties. Molecules 2020;25:5811. https://doi.org/10.3390/molecules25245811.Suche in Google Scholar PubMed PubMed Central

40. Trusheva, B, Popova, M, Bankova, V, Simova, S, Marcucci, MC, Miorin, PL, et al.. Bioactive constituents of brazilian red propolis. Evid Based Complement Alternat Med 2006;3:249–54. https://doi.org/10.1093/ecam/nel006.Suche in Google Scholar PubMed PubMed Central

41. Ouyang, P, He, X, Yuan, ZW, Yin, ZQ, Fu, H, Lin, J, et al.. Erianin against Staphylococcus aureus infection via inhibiting sortase A. Toxins 2018;10:385. https://doi.org/10.3390/toxins10100385.Suche in Google Scholar PubMed PubMed Central

42. Trott, O, Olson, AJ. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61. https://doi.org/10.1002/jcc.21334.Suche in Google Scholar PubMed PubMed Central

43. Gasteiger, J, Marsili, M. Iterative partial equalization of orbital electronegativity-A rapid access to atomic charges. Tetrahedron 1980;36:3219–28. https://doi.org/10.1016/0040-4020(80)80168-2.Suche in Google Scholar

44. Nissink, JW. Simple size-independent measure of ligand efficiency. J Chem Inf Model 2009;49:1617–22. https://doi.org/10.1021/ci900094m.Suche in Google Scholar PubMed

45. Abraham, MJ, Murtola, T, Schulz, r, Pall, S, Smith, JC, Hess, B, et al.. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1:19-25.doi.org/https://doi.org/10.1016/j.softx.2015.06.001 Suche in Google Scholar

46. Huang, J, Rauscher, S, Nawrocki, G, Ran, T, Feig, M, de Groot, BL, et al.. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017;14:71–3. https://doi.org/10.1038/nmeth.4067.Suche in Google Scholar PubMed PubMed Central

47. Vanommeslaeghe, K, Hatcher, E, Acharya, C, Kundu, S, Zhong, S, Shim, J, et al.. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010;31:671–90. https://doi.org/10.1002/jcc.21367.Suche in Google Scholar PubMed PubMed Central

48. Kumari, R, Kumar, R. Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 2014;54:1951–62. https://doi.org/10.1021/ci500020m.Suche in Google Scholar PubMed

49. Daina, A, Michielin, O, Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.Suche in Google Scholar PubMed PubMed Central

50. Lipinski, CA, Lombardo, F, Dominy, BW, Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26. https://doi.org/10.1016/s0169-409x(00)00129-0.Suche in Google Scholar PubMed

51. Delaney, JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 2004;44:1000–5. https://doi.org/10.1021/ci034243x.Suche in Google Scholar PubMed

52. Ali, J, Camilleri, P, Brown, MB, Hutt, AJ, Kirton, SB. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J Chem Inf Model 2012;52:420-8. doi.org/https://doi.org/10.1021/ci200387c Suche in Google Scholar PubMed

53. Shirlaw, O, Billah, Z, Attar, B, Hughes, L, Qasaymeh, RM, Seidel, V, et al.. Antibiofilm activity of heather and manuka honeys and antivirulence potential of some of their constituents on the DsbA1 enzyme of Pseudomonas aeruginosa. Antibiotics (Basel). 2020;9:911. https://doi.org/10.3390/antibiotics9120911.Suche in Google Scholar PubMed PubMed Central

54. Bazargani, MM, Rohloff, J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 2016;61:156–64. https://doi.org/10.1016/j.foodcont.2015.09.036.Suche in Google Scholar

55. Woo, SG, Lee, SY, Lee, SM, Lim, KH, Ha, EJ, Eom, YB, et al.. Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol (Praha) 2017;62:157–67. https://doi.org/10.1007/s12223-016-0485-4.Suche in Google Scholar PubMed

56. Jhanji, R, Bhati, V, Singh, A, Kumar, A. Phytomolecules against bacterial biofilm and efflux pump: an in silico and in vitro study. J Biomol Struct Dyn 2020;38:5500–512. https://doi.org/10.1080/07391102.2019.1704884.Suche in Google Scholar PubMed

57. Kolouchová, I, Maťátková, O, Paldrychová, M, Kodeš, Z, Kvasničková, E, Sigler, K, et al.. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol (Praha) 2018;63:261–72. https://doi.org/10.1007/s12223-017-0549-0.Suche in Google Scholar PubMed

58. Matilla-Cuenca, L, Gil, C, Cuesta, S, Rapún-Araiz, B, Žiemytė, M, Mira, A, et al.. Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Sci Rep 2020;10:18968. https://doi.org/10.1038/s41598-020-75929-2.Suche in Google Scholar PubMed PubMed Central

59. Mishra, R, Panda, AK, De Mandal, S, Shakeel, M, Bisht, SS, Khan, J. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol 2020;11:566325. https://doi.org/10.3389/fmicb.2020.566325.Suche in Google Scholar PubMed PubMed Central

60. Pruteanu, M, Hernández Lobato, JI, Stach, T, Hengge, R. Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environ Microbiol 2020;22:5280–99. https://doi.org/10.1111/1462-2920.15216.Suche in Google Scholar PubMed

61. Yan, L, Zhang, S, Zhou, X, Tian, S. Anti-biofilm and bacteriostatic effects of three flavonoid compounds on Streptococcus mutans. Biofouling 2023;39:245–56. https://doi.org/10.1080/08927014.2023.2209012.Suche in Google Scholar PubMed

62. Nain, Z, Mansur, FJ, Syed, SB, Islam, MA, Azakami, H, Islam, MR, et al.. Inhibition of biofilm formation, quorum sensing and other virulence factors in Pseudomonas aeruginosa by polyphenols of Gynura procumbens leaves. J Biomol Struct Dyn 2022;40:5357–71. https://doi.org/10.1080/07391102.2020.1870563.Suche in Google Scholar PubMed

63. Clancy, KW, Melvin, JA, McCafferty, DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition [published correction appears in biopolymers 2010;94(5):681]. Biopolymers 2010;94:385–96. https://doi.org/10.1002/bip.21472.Suche in Google Scholar PubMed PubMed Central

64. Sapra, R, Rajora, AK, Kumar, P, Maurya, GP, Pant, N, Haridas, V, et al.. Chemical biology of sortase A inhibition: a gateway to anti-infective therapeutic agents. J Med Chem 2021;64:13097–130. https://doi.org/10.1021/acs.jmedchem.1c00386.Suche in Google Scholar PubMed

65. Bhavyashree, N, Vaishnavi, MS, Shravani, P, Sabat, S. Molecular dynamics simulation studies of beta-glucogallin and dihydro dehydro coniferyl alcohol from Syzygium cumini for its antimicrobial activity on Staphylococcus aureus. Cell Biochem Biophys 2025;83:599–617. https://doi.org/10.1007/s12013-024-01489-1.Suche in Google Scholar PubMed

66. Bhattacharya, S, Khanra, PK, Dutta, A, Gupta, N, Aliakbar Tehrani, Z, Severová, L, et al.. Computational screening of T-Muurolol for an alternative antibacterial solution against Staphylococcus aureus infections: an in silico approach for phytochemical-based drug discovery. Int J Mol Sci 2024;25:9650. https://doi.org/10.3390/ijms25179650.Suche in Google Scholar PubMed PubMed Central

67. Saritha, K, Alivelu, M, Mohammad, M. Drug-likeness analysis, in silico ADMET profiling of compounds in Kedrostis foetidissima (Jacq.) cogn, and antibacterial activity of the plant extract. Silico Pharmacol 2024;12:67. https://doi.org/10.1007/s40203-024-00240-1.Suche in Google Scholar PubMed PubMed Central

68. Thappeta, KRV, Zhao, LN, Nge, CE, Crasta, S, Leong, CY, Ng, V, et al.. In-Silico identified new natural sortase A inhibitors disrupt S. aureus biofilm formation. Int J Mol Sci 2020;21:8601. https://doi.org/10.3390/ijms21228601.Suche in Google Scholar PubMed PubMed Central

69. Ilangovan, U, Ton-That, H, Iwahara, J, Schneewind, O, Clubb, RT. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc Natl Acad Sci USA 2001;98:6056–61. https://doi.org/10.1073/pnas.101064198.Suche in Google Scholar PubMed PubMed Central

70. Mazmanian, SK, Ton-That, H, Schneewind, O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 2001;40:1049–57. https://doi.org/10.1046/j.1365-2958.2001.02411.x.Suche in Google Scholar PubMed

71. Wang, L, Bi, C, Cai, H, Liu, B, Zhong, X, Deng, X, et al.. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front Microbiol 2015;6:1031. https://doi.org/10.3389/fmicb.2015.01031.Suche in Google Scholar PubMed PubMed Central

72. Zong, Y, Bice, TW, Ton-That, H, Schneewind, O, Narayana, SV. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem 2004;279:31383–9. https://doi.org/10.1074/jbc.M401374200.Suche in Google Scholar PubMed

73. Durrant, JD, McCammon, JA. Molecular dynamics simulations and drug discovery. BMC Biol 2011;9:71. https://doi.org/10.1186/1741-7007-9-71.Suche in Google Scholar PubMed PubMed Central

74. Sargsyan, K, Grauffel, C, Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theor Comput 2017;13:1518–24. https://doi.org/10.1021/acs.jctc.7b00028.Suche in Google Scholar PubMed

75. Zaki, AA, Ashour, A, Elhady, SS, Darwish, KM, Al-Karmalawy, AA. Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: molecular docking, molecular dynamics, and SAR studies. J Tradit Complement Med 2022;12:16–34. https://doi.org/10.1016/j.jtcme.2021.05.001.Suche in Google Scholar PubMed PubMed Central

76. Lobanov, MI, Bogatyreva, NS, Galzitskaia, OV. Radius of gyration is indicator of compactness of protein structure. Mol Biol (Mosk). 2008;42:701–6.10.1134/S0026893308040195Suche in Google Scholar

77. Sarker, DK, Ray, PR, Rouf, R, Shilpi, JA, Uddin, SJ. In silico molecular docking and dynamic investigations of bioactive phytoconstituents from fenugreek seeds as a potent drug against DPP-IV enzyme. ACS Food Sci Technol 2023;3:1423–39. https://doi.org/10.1021/acsfoodscitech.3c00102.org/10.1021/acsfoodscitech.3c00102Suche in Google Scholar

78. Chen, D, Oezguen, N, Urvil, P, Ferguson, C, Dann, SM, Savidge, TC, et al.. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv 2016;2:e1501240. https://doi.org/10.1126/sciadv.1501240.Suche in Google Scholar PubMed PubMed Central

79. Wang, E, Sun, H, Wang, J, Wang, Z, Liu, H, Zhang, JZH, et al.. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 2019;119: 9478-508. doi.org/https://doi.org/10.1021/acs.chemrev.9b00055 Suche in Google Scholar PubMed

80. Homeyer, N, Gohlke, H. Free energy calculations by the molecular mechanics poisson-boltzmann surface area method. Mol Inform 2012;31:114–22. https://doi.org/10.1002/minf.201100135.Suche in Google Scholar PubMed

81. Siddhardha, B, Pandey, U, Kaviyarasu, K, Pala, R, Syed, A, Bahkali, AH, et al.. Chrysin-loaded chitosan nanoparticles potentiates antibiofilm activity against Staphylococcus aureus. Pathogens 2020;9:115. https://doi.org/10.3390/pathogens9020115. Erratum in: Pathogens. 2023Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znc-2024-0270).


Received: 2024-11-26
Accepted: 2025-08-28
Published Online: 2025-10-14

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2024-0270/pdf?lang=de
Button zum nach oben scrollen