Home Biogenic selenium nanoparticles: a comprehensive update on the multifaceted application, stability, biocompatibility, risk, and opportunity
Article
Licensed
Unlicensed Requires Authentication

Biogenic selenium nanoparticles: a comprehensive update on the multifaceted application, stability, biocompatibility, risk, and opportunity

  • Pooja V. Nagime ORCID logo , Vinay Kumar Pandey , Charu Rajpal , Titilope John Jayeoye , Ashwini Kumar ORCID logo EMAIL logo , Vijay R. Chidrawar and Sudarshan Singh ORCID logo EMAIL logo
Published/Copyright: February 10, 2025
Become an author with De Gruyter Brill

Abstract

Biogenic selenium nanoparticles (SeNPs) have emerged as promising area of research due to their unique properties and potential multifaceted applications. The biosynthesis of SeNPs through biological methods, such as using microorganism, plant extracts, etc., offers a safe, eco-friendly, and biocompatible approach, compared to traditional chemical synthesis. Recent several studies demonstrated that multifaceted application of SeNPs includes a broad area such as antibacterial, anticancer, antioxidant, antiviral, anti-inflammatory, antidiabetic, and excellent wound healing activity. On the other hand, SeNPs have also shown promising application in sensing of inorganic toxic metals, electrochemistry, agro-industries, aqua-cultures, and in fabrication of solar panels. Additionally, SeNPs capability to enhance the efficacy of traditional antibiotics and act as effective agents against multidrug-resistant pathogens has shown their potential in addressing critical health challenges. Although, the SeNPs exhibit wide applicability, the potential toxicity of Se, particularly in its various oxidative states, necessitates careful assessment of the environmental and health impacts associated with their use. Therefore, understanding the balance between their beneficial properties and potential risks is crucial for its safe applications. This review focuses exclusively on SeNPs synthesized via eco-friendly process, excluding research utilizing other synthesis processes. Moreover, this review aims to offer an overview of the diverse applications, potential risks, stability requirement, and cytocompatibility requirement, and multifaceted opportunities associated with SeNPs. Ultimately, the review bridges a gap in knowledge by providing an updated details of multifaceted applications of SeNPs.


Corresponding authors: Ashwini Kumar, Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India; and Research and Development Cell, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121003, India, E-mail: ; and Sudarshan Singh, Office of Research Administration, Chaing Mai University, Chiang Mai 50200, Thailand; and Faculty of Pharmacy, Chaing Mai University, Chiang Mai 50200, Thailand, E-mail:

Acknowledgments

This work was partially supported for Sudarshan Singh by CMU Proactive Researcher Scheme (2023), Chiang Mai University under contract no. 933/2566. Moreover, Ashwini Kumar would like to acknowledge the generous support of Research and Development cell, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121003, India.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Pooja V Nagime, Charu Rajpal, Titilope John Jayeoye, Vinay Kumar Pandey, and Ashwini Kumar: Writing and reviewing; Vijay R Chidrawar: formal analysis and editing the draft; Sudarshan Singh: Conceptualization, reviewing, editing, and supervision.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: The authors declare that they have no known conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: Not applicable.

References

1. Olawale, F, Oladimeji, O, Ariatti, M, Singh, M. Emerging roles of green-synthesized chalcogen and chalcogenide nanoparticles in cancer theranostics. J Nanotechnol 2022;2022:6176610. https://doi.org/10.1155/2022/6176610.Search in Google Scholar

2. Lu, W, Li, Z, Feng, M, Zheng, L, Liu, S, Yan, B, et al.. Structure of amorphous selenium: small ring, big controversy. J Am Chem Soc 2024;146:6345–51. https://doi.org/10.1021/jacs.4c00219.Search in Google Scholar PubMed

3. Kessi, J, Hanselmann, KW. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 2004;279:50662–9. https://doi.org/10.1074/jbc.M405887200.Search in Google Scholar PubMed

4. Nie, X, Yang, X, He, J, Liu, P, Shi, H, Wang, T, et al.. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: a review. Front Bioeng Biotechnol 2023;11. https://doi.org/10.3389/fbioe.2023.1167123.Search in Google Scholar PubMed PubMed Central

5. Nayak, V, Singh, KRB, Singh, AK, Singh, RP. Potentialities of selenium nanoparticles in biomedical science. New J Chem 2021;45:2849–78. https://doi.org/10.1039/D0NJ05884J.Search in Google Scholar

6. Schiavon, M, Pilon-Smits, EAH. The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol 2017;213:1582–96. https://doi.org/10.1111/nph.14378.Search in Google Scholar PubMed

7. Wells, M, Basu, P, Stolz, JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021;13. https://doi.org/10.1093/mtomcs/mfab024.Search in Google Scholar PubMed

8. Lenz, M, Lens, PNL. The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 2009;407:3620–33. https://doi.org/10.1016/j.scitotenv.2008.07.056.Search in Google Scholar PubMed

9. Rocourt, CRB, Cheng, W-H. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients 2013;5:1349–65. https://doi.org/10.3390/nu5041349.Search in Google Scholar PubMed PubMed Central

10. Zhao, C-X, Liu, J-N, Li, B-Q, Ren, D, Chen, X, Yu, J, et al.. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc–air batteries. Adv Funct Mater 2020;30:2003619. https://doi.org/10.1002/adfm.202003619.Search in Google Scholar

11. Puri, A, Mohite, P, Patil, S, Chidrawar, VR, Ushir, YV, Dodiya, R, et al.. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: a biocompatible and green nano-biomaterial for multifaceted biological applications. Front Chem 2023;11. https://doi.org/10.3389/fchem.2023.1273360.Search in Google Scholar PubMed PubMed Central

12. Hosnedlova, B, Kepinska, M, Skalickova, S, Fernandez, C, Ruttkay-Nedecky, B, Malevu, TD, et al.. A summary of new findings on the biological effects of selenium in selected animal species – a critical review. Int J Mol Sci 2017;18:2209. https://doi.org/10.3390/ijms18102209.Search in Google Scholar PubMed PubMed Central

13. Long, JA, Large, RR, Lee, MSY, Benton, MJ, Danyushevsky, LV, Chiappe, LM, et al.. Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events. Gondwana Res 2016;36:209–18. https://doi.org/10.1016/j.gr.2015.10.001.Search in Google Scholar

14. Etteieb, S, Magdouli, S, Zolfaghari, M, Brar, S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: a critical review. Sci Total Environ 2020;698:134339. https://doi.org/10.1016/j.scitotenv.2019.134339.Search in Google Scholar PubMed

15. Avnee, SS, Chaudhary, DR, Jhorar, P, Rana, RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr 2023;10. https://doi.org/10.3389/fnut.2023.1233070.Search in Google Scholar PubMed PubMed Central

16. Singhal, RK, Fahad, S, Kumar, P, Choyal, P, Javed, T, Jinger, D, et al.. Beneficial elements: new players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regul 2023;100:237–65. https://doi.org/10.1007/s10725-022-00843-8.Search in Google Scholar

17. Radawiec, A, Rutkowska, B, Tidaback, JA, Gozdowski, D, Knapowski, T, Szulc, W. The impact of selenium fertilization on the quality characteristics of spring wheat grain. Agronomy 2021;11:2100. https://doi.org/10.3390/agronomy11112100.Search in Google Scholar

18. Khan, Z, Thounaojam, TC, Chowdhury, D, Upadhyaya, H. The role of selenium and nano selenium on physiological responses in plant: a review. Plant Growth Regul 2023;100:409–33. https://doi.org/10.1007/s10725-023-00988-0.Search in Google Scholar PubMed PubMed Central

19. Mariotti, M, Salinas, G, Gabaldón, T, Gladyshev, VN. Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol 2019;4:759–65. https://doi.org/10.1038/s41564-018-0354-9.Search in Google Scholar PubMed PubMed Central

20. Kumar, A, Prasad, KS. Role of nano-selenium in health and environment. J Biotechnol 2021;325:152–63. https://doi.org/10.1016/j.jbiotec.2020.11.004.Search in Google Scholar PubMed

21. Hadrup, N, Ravn-Haren, G. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: a review. J Trace Elem Med Biol 2021;67:126801. https://doi.org/10.1016/j.jtemb.2021.126801.Search in Google Scholar PubMed

22. Ferrari, L, Cattaneo, DMIR, Abbate, R, Manoni, M, Ottoboni, M, Luciano, A, et al.. Advances in selenium supplementation: from selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles. Animal Nutrition 2023;14:193–203. https://doi.org/10.1016/j.aninu.2023.05.002.Search in Google Scholar PubMed PubMed Central

23. Parvin, S, Khan, S, Alam, P, Khan, T, Khataibeh, M, Khan, M, et al.. A review on potentialities of selenium nanoparticles and its application using air borne fungus. Appl Ecol Environ Sci 2021;9:607–12. https://doi.org/10.12691/aees-9-6-5.Search in Google Scholar

24. Blinov, AV, Maglakelidze, DG, Yasnaya, MA, Gvozdenko, AA, Blinova, AA, Golik, AB, et al.. Synthesis of selenium nanoparticles stabilized by quaternary ammonium compounds. Russ J Gen Chem 2022;92:424–9. https://doi.org/10.1134/S1070363222030094.Search in Google Scholar

25. Kong, H, Yang, J, Zhang, Y, Fang, Y, Nishinari, K, Phillips, GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol 2014;65:155–62. https://doi.org/10.1016/j.ijbiomac.2014.01.011.Search in Google Scholar PubMed

26. Han, J, Guo, X, Lei, Y, Dennis, BS, Wu, S, Wu, C. Synthesis and characterization of selenium–chondroitin sulfate nanoparticles. Carbohydr Polym 2012;90:122–6. https://doi.org/10.1016/j.carbpol.2012.04.068.Search in Google Scholar PubMed

27. Zhai, X, Zhang, C, Zhao, G, Stoll, S, Ren, F, Leng, X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnol 2017;15:4. https://doi.org/10.1186/s12951-016-0243-4.Search in Google Scholar PubMed PubMed Central

28. Lesnichaya, M, Shendrik, R, Titov, E, Sukhov, B. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ-carrageenan-capped selenium nanoparticles of different size: in vivo and in vitro study. IET Nanobiotechnol 2020;14:519–26. https://doi.org/10.1049/iet-nbt.2020.0023.Search in Google Scholar PubMed PubMed Central

29. Modrzejewska-Sikorska, A, Konował, E, Klapiszewski, Ł, Nowaczyk, G, Jurga, S, Jesionowski, T, et al.. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica. Int J Biol Macromol 2017;103:403–8. https://doi.org/10.1016/j.ijbiomac.2017.05.083.Search in Google Scholar PubMed

30. Wang, H, Xu, M-Z, Liang, X-Y, Nag, A, Zeng, Q-Z, Yuan, Y. Fabrication of food grade zein-dispersed selenium dual-nanoparticles with controllable size, cell friendliness and oral bioavailability. Food Chem 2023;398:133878. https://doi.org/10.1016/j.foodchem.2022.133878.Search in Google Scholar PubMed

31. Zhang, J, Teng, Z, Yuan, Y, Zeng, Q-Z, Lou, Z, Lee, S-H, et al.. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin. Int J Biol Macromol 2018;107:1406–13. https://doi.org/10.1016/j.ijbiomac.2017.09.117.Search in Google Scholar PubMed

32. Ershov, DY, Kipper, AI, Borovikova, LN, Pisarev, OA. Effect of the conditions of synthesis and the pH of the medium on the dimensional characteristics of nanocomplexes of selenium with chymotrypsin. Russ J Phys Chem A 2013;87:2074–6. https://doi.org/10.1134/S0036024413120066.Search in Google Scholar

33. Ye, M-J, Xu, Q-L, Tang, H-Y, Jiang, W-Y, Su, D-X, He, S, et al.. Development and stability of novel selenium colloidal particles complex with peanut meal peptides. Lebensm Wiss Technol 2020;126:109280. https://doi.org/10.1016/j.lwt.2020.109280.Search in Google Scholar

34. Tang, H-Y, Huang, Q, Wang, Y-L, Yang, X-Q, Su, D-X, He, S, et al.. Development, structure characterization and stability of food grade selenium nanoparticles stabilized by tilapia polypeptides. J Food Eng 2020;275:109878. https://doi.org/10.1016/j.jfoodeng.2019.109878.Search in Google Scholar

35. Hashemi-Firouzi, N, Afshar, S, Asl, SS, Samzadeh-Kermani, A, Gholamigeravand, B, Amiri, K, et al.. The effects of polyvinyl alcohol-coated selenium nanoparticles on memory impairment in rats. Metab Brain Dis 2022;37:3011–21. https://doi.org/10.1007/s11011-022-01084-4.Search in Google Scholar PubMed

36. Giammaria, G, van Rooij, G, Lefferts, L. Plasma catalysis: distinguishing between thermal and chemical effects. Catalysts 2019;9:185. https://doi.org/10.3390/catal9020185.Search in Google Scholar

37. Wadhwani, SA, Shedbalkar, UU, Singh, R, Chopade, BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 2016;100:2555–66. https://doi.org/10.1007/s00253-016-7300-7.Search in Google Scholar PubMed

38. Nag, S, Kar, S, Mishra, S, Stany, B, Seelan, A, Mohanto, S, et al.. Unveiling green synthesis and biomedical theranostic paradigms of selenium nanoparticles (SeNPs) – a state-of-the-art comprehensive update. Int J Pharm 2024;662:124535. https://doi.org/10.1016/j.ijpharm.2024.124535.Search in Google Scholar PubMed

39. Zhang, H, Zhou, H, Bai, J, Li, Y, Yang, J, Ma, Q, et al.. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp 2019;571:9–16. https://doi.org/10.1016/j.colsurfa.2019.02.070.Search in Google Scholar

40. Sowmya, R, Karthick Raja Namasivayam, S, Krithika Shree, S. A critical review on nano-selenium based materials: synthesis, biomedicine applications and biocompatibility assessment. J Inorg Organomet Polym Mater 2024;34:3037–55. https://doi.org/10.1007/s10904-023-02959-4.Search in Google Scholar

41. Pooja, VNDMS, Sjahriani, T, Hermawan, D, Shaikh, NM, Shafi, S, Chidrawar, VR, et al.. Phyto-mediated biosynthesis of silver nanoparticles using Aloe barbadensis Miller leaves gel with improved antibacterial, anti-fungal, antioxidant, anti-inflammatory, anti-diabetic, and anti-cancer activities. Nano-Struct Nano-Obj 2024. https://doi.org/10.1016/j.nanoso.2024.101368.Search in Google Scholar

42. dos Santos, VCT, Cusioli, LF, Nishi, L, Ottoni, CA, Bergamasco, R. Metallic nanoparticles synthesized by marine microorganisms and its application against pathogenic microorganisms: challenges and opportunities in marine nanotechnology. Desalination Water Treat 2024;317:100283. https://doi.org/10.1016/j.dwt.2024.100283.Search in Google Scholar

43. Kumar, A, Jayeoye, TJ, Mohite, P, Singh, S, Rajput, T, Munde, S, et al.. Sustainable and consumer-centric nanotechnology-based materials: an update on the multifaceted applications, risks and tremendous opportunities. Nano-Struct Nano-Obj 2024;38:101148. https://doi.org/10.1016/j.nanoso.2024.101148.Search in Google Scholar

44. Karthik, KK, Cheriyan, BV, Rajeshkumar, S, Gopalakrishnan, M. A review on selenium nanoparticles and their biomedical applications. Biomed Technol 2024;6:61–74. https://doi.org/10.1016/j.bmt.2023.12.001.Search in Google Scholar

45. Holmes, AB, Gu, FX. Emerging nanomaterials for the application of selenium removal for wastewater treatment. Environ Sci Nano 2016;3:982–96. https://doi.org/10.1039/C6EN00144K.Search in Google Scholar

46. Ali, I, Shrivastava, V. Recent advances in technologies for removal and recovery of selenium from (waste)water: a systematic review. J Environ Manag 2021;294:112926. https://doi.org/10.1016/j.jenvman.2021.112926.Search in Google Scholar PubMed

47. Saleh, TA. Trends in nanomaterial types, synthesis methods, properties and uses: toxicity, environmental concerns and economic viability. Nano-Struct Nano-Obj 2024;37:101109. https://doi.org/10.1016/j.nanoso.2024.101109.Search in Google Scholar

48. Bisht, N, Phalswal, P, Khanna, PK. Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv 2022;3:1415–31. https://doi.org/10.1039/D1MA00639H.Search in Google Scholar

49. Ontong, JC, Singh, S, Nwabor, OF, Chusri, S, Voravuthikunchai, SP. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol Lett 2020;42:2653–64. https://doi.org/10.1007/s10529-020-02971-5.Search in Google Scholar PubMed

50. Kumar, A, Shah, SR, Jayeoye, TJ, Kumar, A, Parihar, A, Prajapati, B, et al.. Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products. Front Nanotechnol 2023;5. https://doi.org/10.3389/fnano.2023.1175149.Search in Google Scholar

51. Jayeoye, TJ, Nwude, EF, Singh, S, Prajapati, BG, Kapoor, DU, Muangsin, N. Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: a review. BioNanoScience 2024;14:3355–84. https://doi.org/10.1007/s12668-024-01436-7.Search in Google Scholar

52. Nwabor, OF, Singh, S, Wunnoo, S, Lerwittayanon, K, Voravuthikunchai, SP. Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling 2021;37:538–54. https://doi.org/10.1080/08927014.2021.1934457.Search in Google Scholar PubMed

53. Syukri, DM, Nwabor, OF, Singh, S, Voravuthikunchai, SP. Antibacterial functionalization of nylon monofilament surgical sutures through in situ deposition of biogenic silver nanoparticles. Surf Coating Technol 2021;413:127090. https://doi.org/10.1016/j.surfcoat.2021.127090.Search in Google Scholar

54. Jayeoye, TJ, Eze, FN, Singh, S, Olatunde, OO, Benjakul, S, Rujiralai, T. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 2021;179:196–205. https://doi.org/10.1016/j.ijbiomac.2021.02.199.Search in Google Scholar PubMed

55. Nwabor, OF, Singh, S, Paosen, S, Vongkamjan, K, Voravuthikunchai, SP. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 2020;36:100609. https://doi.org/10.1016/j.fbio.2020.100609.Search in Google Scholar

56. Eze, FN, Eze, RC, Singh, S, Okpara, KE. Fabrication of a versatile and efficient ultraviolet blocking biodegradable composite film consisting of Tara gum/PVA/riceberry phenolics reinforced with biogenic riceberry phenolic-rich extract-nano-silver. Int J Biol Macromol 2024;278:134914. https://doi.org/10.1016/j.ijbiomac.2024.134914.Search in Google Scholar PubMed

57. Syukri, DM, Nwabor, OF, Singh, S, Ontong, JC, Wunnoo, S, Paosen, S, et al.. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J Microbiol Methods 2020;174:105955. https://doi.org/10.1016/j.mimet.2020.105955.Search in Google Scholar PubMed

58. Singh, S, Chunglok, W, Nwabor, OF, Ushir, YV, Singh, S, Panpipat, W. Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J Polym Environ 2022;30:938–53. https://doi.org/10.1007/s10924-021-02249-5.Search in Google Scholar

59. Nagime, PV, Singh, S, Shaikh, NM, Gomare, KS, Chitme, H, Abdel-Wahab, BA, et al.. Biogenic fabrication of silver nanoparticles using calotropis procera flower extract with enhanced biomimetics attributes. Materials 2023;16:4058. https://doi.org/10.3390/ma16114058.Search in Google Scholar PubMed PubMed Central

60. Jayeoye, TJ, Singh, S, Eze, FN, Olatunji, OJ, Olatunde, OO, Omaka, ON, et al.. Exploration of biocompatible ascorbic acid reduced and stabilized gold nanoparticles, as sensitive and selective detection nanoplatform for silver ion in solution. Plasmonics 2024. https://doi.org/10.1007/s11468-024-02413-2.Search in Google Scholar

61. Nwabor, OF, Singh, S, Ontong, JC, Vongkamjan, K, Voravuthikunchai, SP. Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite. Waste and Biomass Valorization 2021;12:3287–301. https://doi.org/10.1007/s12649-020-01237-5.Search in Google Scholar

62. Cao, B, Zhang, Q, Guo, J, Guo, R, Fan, X, Bi, Y. Synthesis and evaluation of Grateloupia livida polysaccharides-functionalized selenium nanoparticles. Int J Biol Macromol 2021;191:832–9. https://doi.org/10.1016/j.ijbiomac.2021.09.087.Search in Google Scholar PubMed

63. Gunti, L, Dass, RS, Kalagatur, NK. Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 2019;10. https://doi.org/10.3389/fmicb.2019.00931.Search in Google Scholar PubMed PubMed Central

64. Salem, SS, Badawy, MSEM, Al-Askar, AA, Arishi, AA, Elkady, FM, Hashem, AH. Green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 2022;12:893. https://doi.org/10.3390/life12060893.Search in Google Scholar PubMed PubMed Central

65. Cittrarasu, V, Kaliannan, D, Dharman, K, Maluventhen, V, Easwaran, M, Liu, WC, et al.. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep 2021;11:1032. https://doi.org/10.1038/s41598-020-80327-9.Search in Google Scholar PubMed PubMed Central

66. Tuyen, NNK, Huong, QTT, Nam, NTH, Hai, ND, Tinh, NT, Buu, TT, et al.. Applicable orientation of eco-friendly phyto-synthesized selenium nanoparticles: bioactive investigation and dye photodegradation. Biomass Convers Bioref 2024;14:15265–81. https://doi.org/10.1007/s13399-023-03823-8.Search in Google Scholar

67. Nassar, A-RA, Eid, AM, Atta, HM, El Naghy, WS, Fouda, A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci Rep 2023;13:9054. https://doi.org/10.1038/s41598-023-35360-9.Search in Google Scholar PubMed PubMed Central

68. El-Sayed, AIM, El-Sheekh, MM, Abo-Neima, SE. Mycosynthesis of selenium nanoparticles using Penicillium tardochrysogenum as a therapeutic agent and their combination with infrared irradiation against Ehrlich carcinoma. Sci Rep 2024;14:2547. https://doi.org/10.1038/s41598-024-52982-9.Search in Google Scholar PubMed PubMed Central

69. Alghuthaymi, MA, Diab, AM, Elzahy, AF, Mazrou, KE, Tayel, AA, Moussa, SH. Green biosynthesized selenium nanoparticles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan. J Food Qual 2021;2021:6670709. https://doi.org/10.1155/2021/6670709.Search in Google Scholar

70. Alagesan, V, Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoScience 2019;9:105–16. https://doi.org/10.1007/s12668-018-0566-8.Search in Google Scholar

71. Rajagopal, G, Nivetha, A, Ilango, S, Muthudevi, GP, Prabha, I, Arthimanju, R. Phytofabrication of selenium nanoparticles using Azolla pinnata: evaluation of catalytic properties in oxidation, antioxidant and antimicrobial activities. J Environ Chem Eng 2021;9:105483. https://doi.org/10.1016/j.jece.2021.105483.Search in Google Scholar

72. Zeebaree, SYS, Zeebaree, AYS, Zebari, OIH. Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustain Chem Pharm 2020;15:100210. https://doi.org/10.1016/j.scp.2019.100210.Search in Google Scholar

73. Zhou, L, Li, Y, Gong, X, Li, Z, Wang, H, Ma, L, et al.. Preparation, characterization, and antitumor activity of Chaenomeles speciosa polysaccharide-based selenium nanoparticles. Arab J Chem 2022;15:103943. https://doi.org/10.1016/j.arabjc.2022.103943.Search in Google Scholar

74. Anu, K, Devanesan, S, Prasanth, R, AlSalhi, MS, Ajithkumar, S, Singaravelu, G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J King Saud Univ Sci 2020;32:2520–6. https://doi.org/10.1016/j.jksus.2020.04.018.Search in Google Scholar

75. Deepa, T, Mohan, S, Manimaran, P. A crucial role of selenium nanoparticles for future perspectives. Res Chem 2022;4:100367. https://doi.org/10.1016/j.rechem.2022.100367.Search in Google Scholar

76. Perumal, S, Gopal Samy, MV, Subramanian, D. Selenium nanoparticle synthesis from endangered medicinal herb (Enicostema axillare). Bioproc Biosyst Eng 2021;44:1853–63. https://doi.org/10.1007/s00449-021-02565-z.Search in Google Scholar PubMed

77. Tripathi, RM, Hameed, P, Rao, RP, Shrivastava, N, Mittal, J, Mohapatra, S. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. BioNanoScience 2020;10:389–96. https://doi.org/10.1007/s12668-020-00718-0.Search in Google Scholar

78. Sarkar, RD, Lahkar, P, Kalita, MC. Glycosmis pentaphylla (Retz.) DC leaf extract mediated synthesis of selenium nanoparticle and investigation of its antibacterial activity against urinary tract pathogens. Bioresour Technol Rep 2022;17:100894. https://doi.org/10.1016/j.biteb.2021.100894.Search in Google Scholar

79. Shah, DD, Chorawala, MR, Mansuri, MKA, Parekh, PS, Singh, S, Prajapati, BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. N Schmied Arch Pharmacol 2024;397:8603–31. https://doi.org/10.1007/s00210-024-03236-y.Search in Google Scholar PubMed

80. Jayeoye, TJ, Singh, S, Eze, FN, Olatunji, O, Oguntimehin, I, Tyopine, AA, et al.. Green synthesis of silver nanoparticles using cyto-compatible polymer derivative of Tara gum for Gold(III) ion detection in water samples. J Polym Environ 2024;32:6667–86. https://doi.org/10.1007/s10924-024-03393-4.Search in Google Scholar

81. Syukri, DM, Singh, S, Nwabor, OF, Ontong, JC, Dejyong, K, Sunghan, J, et al.. Prevention of post-operative bacterial colonization on mice buccal mucosa using biogenic silver nanoparticles-coated nylon sutures. Regen Eng Transl Med 2024;10:294–308. https://doi.org/10.1007/s40883-024-00335-3.Search in Google Scholar

82. Piacenza, E, Presentato, A, Heyne, B, Turner, RJ. Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis. Nanophotonics 2020;9:3615–28. https://doi.org/10.1515/nanoph-2020-0239.Search in Google Scholar

83. Baggio, G, Groves, RA, Chignola, R, Piacenza, E, Presentato, A, Lewis, IA, et al.. Untargeted metabolomics investigation on selenite reduction to elemental selenium by Bacillus mycoides SeITE01. Front Microbiol 2021;12. https://doi.org/10.3389/fmicb.2021.711000.Search in Google Scholar PubMed PubMed Central

84. Chen, W, Liu, Z, Zheng, Y, Wei, B, Shi, J, Shao, B, et al.. Selenium donor restricts the intracellular growth of mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages. Microb Pathog 2021;161:105269. https://doi.org/10.1016/j.micpath.2021.105269.Search in Google Scholar PubMed

85. Rajkuberan, C, Sudha, K, Sathishkumar, G, Sivaramakrishnan, S. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Spectrochim Acta Mol Biomol Spectrosc 2015;136:924–30. https://doi.org/10.1016/j.saa.2014.09.115.Search in Google Scholar PubMed

86. Rajkuberan, C, Prabukumar, S, Sathishkumar, G, Wilson, A, Ravindran, K, Sivaramakrishnan, S. Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J Saudi Chem Soc 2017;21:911–19. https://doi.org/10.1016/j.jscs.2016.01.002.Search in Google Scholar

87. Alvi, GB, Iqbal, MS, Ghaith, MMS, Haseeb, A, Ahmed, B, Qadir, MI. Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Sci Rep 2021;11:4811. https://doi.org/10.1038/s41598-021-84099-8.Search in Google Scholar PubMed PubMed Central

88. Garcia-Rubio, R, de Oliveira, HC, Rivera, J, Trevijano-Contador, N. the fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 2020;10. https://doi.org/10.3389/fmicb.2019.02993.Search in Google Scholar PubMed PubMed Central

89. Arciniegas-Grijalba, PA, Patiño-Portela, MC, Mosquera-Sánchez, LP, Guerrero-Vargas, JA, Rodríguez-Páez, JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 2017;7:225–41. https://doi.org/10.1007/s13204-017-0561-3.Search in Google Scholar

90. Hernández-Díaz, JA, Garza-García, JJ, León-Morales, JM, Zamudio-Ojeda, A, Arratia-Quijada, J, Velázquez-Juárez, G, et al.. Antibacterial activity of biosynthesized selenium nanoparticles using extracts of Calendula officinalis against potentially clinical bacterial strains. Molecules 2021;26:5929. https://doi.org/10.3390/molecules26195929.Search in Google Scholar PubMed PubMed Central

91. Satpathy, S, Panigrahi, LL, Samal, P, Sahoo, KK, Arakha, M. Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon 2024;10:e32499. https://doi.org/10.1016/j.heliyon.2024.e32499.Search in Google Scholar PubMed PubMed Central

92. Ao, B, Lv, J, Yang, H, He, F, Hu, Y, Hu, B, et al.. Moringa oleifera extract mediated the synthesis of bio-SeNPs with antibacterial activity against Listeria monocytogenes and Corynebacterium diphtheriae. Lebensm Wiss Technol 2022;165:113751. https://doi.org/10.1016/j.lwt.2022.113751.Search in Google Scholar

93. Mikhailova, EO. Selenium nanoparticles: green synthesis and biomedical application. Molecules 2023;28:8125. https://doi.org/10.3390/molecules28248125.Search in Google Scholar PubMed PubMed Central

94. Sentkowska, A, Pyrzyńska, K. Antioxidant properties of selenium nanoparticles synthesized using tea and herb water extracts. Appl Sci 2023;13:1071. https://doi.org/10.3390/app13021071.Search in Google Scholar

95. Behera, A, Dharmalingam Jothinathan, MK, Ryntathiang, I, Saravanan, S, Murugan, R. Comparative antioxidant efficacy of green-synthesised selenium nanoparticles from Pongamia pinnata, Citrus sinensis, and Acacia auriculiformis: an in vitro analysis. Cureus 2024;16:e58439. https://doi.org/10.7759/cureus.58439.Search in Google Scholar PubMed PubMed Central

96. Adimulam, T, Arumugam, T, Foolchand, A, Ghazi, T, Chuturgoon, AA. The effect of organoselenium compounds on histone deacetylase inhibition and their potential for cancer therapy. Int J Mol Sci 2021;22:12952. https://doi.org/10.3390/ijms222312952.Search in Google Scholar PubMed PubMed Central

97. Garvita, S, Piyoosh, KB, Shailesh, KS, Rajeshwar, PS, Madhu, BT, Kumar, A. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J Microbiol Biotechnol 2014;24:1354–67. https://doi.org/10.4014/jmb.1405.05003.Search in Google Scholar PubMed

98. Lim, Z-ZJ, Li, J-EJ, Ng, C-T, Yung, L-YL, Bay, B-H. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin 2011;32:983–90. https://doi.org/10.1038/aps.2011.82.Search in Google Scholar PubMed PubMed Central

99. Li, K, Li, J, Zhang, S, Zhang, J, Xu, Q, Xu, Z, et al.. Amorphous structure and crystal stability determine the bioavailability of selenium nanoparticles. J Hazard Mater 2024;465:133287. https://doi.org/10.1016/j.jhazmat.2023.133287.Search in Google Scholar PubMed

100. Skalickova, S, Milosavljevic, V, Cihalova, K, Horky, P, Richtera, L, Adam, V. Selenium nanoparticles as a nutritional supplement. Nutrition 2017;33:83–90. https://doi.org/10.1016/j.nut.2016.05.001.Search in Google Scholar PubMed

101. Shahabadi, N, Zendehcheshm, S, Khademi, F. Selenium nanoparticles: synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol Rep 2021;30:e00615. https://doi.org/10.1016/j.btre.2021.e00615.Search in Google Scholar PubMed PubMed Central

102. Wilkinson, K, Grant, WP, Green, LE, Hunter, S, Jeger, MJ, Lowe, P, et al.. Infectious diseases of animals and plants: an interdisciplinary approach. Phil Trans Biol Sci 2011;366:1933–42. https://doi.org/10.1098/rstb.2010.0415.Search in Google Scholar PubMed PubMed Central

103. Razonable, RR. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 2011;86:1009–26. https://doi.org/10.4065/mcp.2011.0309.Search in Google Scholar PubMed PubMed Central

104. Barchielli, G, Capperucci, A, Tanini, D. The role of selenium in pathologies: an updated review. Antioxidants 2022;11:251. https://doi.org/10.3390/antiox11020251.Search in Google Scholar PubMed PubMed Central

105. Liu, X, Chen, D, Su, J, Zheng, R, Ning, Z, Zhao, M, et al.. Selenium nanoparticles inhibited H1N1 influenza virus-induced apoptosis by ROS-mediated signaling pathways. RSC Adv 2022;12:3862–70. https://doi.org/10.1039/D1RA08658H.Search in Google Scholar

106. Lin, Z, Li, Y, Gong, G, Xia, Y, Wang, C, Chen, Y, et al.. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. Int J Nanomed 2018:5787–97. https://doi.org/10.2147/ijn.s177658.Search in Google Scholar

107. Yehia, N, AbdelSabour, MA, Erfan, AM, Mohammed Ali, Z, Soliman, RA, Samy, A, et al.. Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J Biol Sci 2022;29:2095–111. https://doi.org/10.1016/j.sjbs.2021.11.051.Search in Google Scholar PubMed PubMed Central

108. Singh, S, Chidrawar, VR, Hermawan, D, Nwabor, OF, Olatunde, OO, Jayeoye, TJ, et al.. Solvent-assisted dechlorophyllization of Psidium guajava leaf extract: effects on the polyphenol content, cytocompatibility, antibacterial, anti-inflammatory, and anticancer activities. South Afr J Bot 2023;158:166–79. https://doi.org/10.1016/j.sajb.2023.04.029.Search in Google Scholar

109. Nwabor, OF, Singh, S, Syukri, DM, Voravuthikunchai, SP. Bioactive fractions of Eucalyptus camaldulensis inhibit important foodborne pathogens, reduce listeriolysin O-induced haemolysis, and ameliorate hydrogen peroxide-induced oxidative stress on human embryonic colon cells. Food Chem 2021;344:128571. https://doi.org/10.1016/j.foodchem.2020.128571.Search in Google Scholar PubMed

110. Chittasupho, C, Chaobankrang, K, Sarawungkad, A, Samee, W, Singh, S, Hemsuwimon, K, et al.. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. Virginia leaf extract phytosomes and shape memory gel formulation. Gels 2023;9:78. https://doi.org/10.3390/gels9020078.Search in Google Scholar PubMed PubMed Central

111. Singh, S, Chidrawar, VR, Hermawan, D, Dodiya, R, Samee, W, Ontong, JC, et al.. Hypromellose highly swellable composite fortified with Psidium guajava leaf phenolic-rich extract for antioxidative, antibacterial, anti-inflammatory, anti-melanogenesis, and hemostasis applications. J Polym Environ 2023;31:3197–214. https://doi.org/10.1007/s10924-023-02819-9.Search in Google Scholar

112. Singh, S, Nwabor, OF, Sukri, DM, Wunnoo, S, Dumjun, K, Lethongkam, S, et al.. Poly(vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol 2022;216:235–50. https://doi.org/10.1016/j.ijbiomac.2022.06.172.Search in Google Scholar PubMed

113. Singh, S, Chunglok, W, Nwabor, OF, Chulrik, W, Jansakun, C, Bhoopong, P. Porous biodegradable sodium alginate composite fortified with Hibiscus sabdariffa L. calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life. J Polym Environ 2023;31:922–38. https://doi.org/10.1007/s10924-022-02596-x.Search in Google Scholar

114. Singh, S, Dodiya, T, Singh, S, Dodiya, R. Topical wound healing, antimicrobial and antioxidant potential of Mimosa pudica Linn root extracted using n-hexane followed by methanol, fortified in ointment base. Int J Pharmaceut Sci Nanotechnol 2021;14:5472–80. https://doi.org/10.37285/ijpsn.2021.14.3.4.Search in Google Scholar

115. Anderson, K, Hamm, RL. Factors that impair wound healing. J Am Coll Clin Wound Spec 2012;4:84–91. https://doi.org/10.1016/j.jccw.2014.03.001.Search in Google Scholar PubMed PubMed Central

116. Ovais, M, Zia, N, Ahmad, I, Khalil, AT, Raza, A, Ayaz, M, et al.. Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front Aging Neurosci 2018;10. https://doi.org/10.3389/fnagi.2018.00284.Search in Google Scholar PubMed PubMed Central

117. Pandiyan, I, Sri, SD, Indiran, MA, Rathinavelu, PK, Prabakar, J, Rajeshkumar, S. Antioxidant, anti-inflammatory activity of Thymus vulgaris-mediated selenium nanoparticles: an: in vitro: study. J Conserv Dent Endod 2022;25:241–5. https://doi.org/10.4103/jcd.Jcd_369_21.Search in Google Scholar PubMed PubMed Central

118. Au, A, Mojadadi, A, Shao, J-Y, Ahmad, G, Witting, PK. Physiological benefits of novel selenium delivery via nanoparticles. Int J Mol Sci 2023;24:6068. https://doi.org/10.3390/ijms24076068.Search in Google Scholar PubMed PubMed Central

119. Liu, J, Shi, L, Ma, X, Jiang, S, Hou, X, Li, P, et al.. Characterization and anti-inflammatory effect of selenium-enriched probiotic Bacillus amyloliquefaciens C-1, a potential postbiotics. Sci Rep 2023;13:14302. https://doi.org/10.1038/s41598-023-40988-8.Search in Google Scholar PubMed PubMed Central

120. Georgia, B, Rajesh, K, Pratibha, R, Karthikeyan, R. Anti-inflammatory activity of Euphorbia tirucalli mediated selenium nanoparticles: an in vitro study. J Popul Therapeut Clin Pharmacol 2023;30:275–81. https://doi.org/10.47750/jptcp.2023.30.16.037.Search in Google Scholar

121. Chidrawar, VR, Singh, S, Jayeoye, TJ, Dodiya, R, Samee, W, Chittasupho, C. Porous swellable hypromellose composite fortified with Eucalyptus camaldulensis leaf hydrophobic/hydrophilic phenolic-rich extract to mitigate dermal wound infections. J Polym Environ 2023;31:3841–56. https://doi.org/10.1007/s10924-023-02860-8.Search in Google Scholar

122. Ahmed, MK, Moydeen, AM, Ismail, AM, El-Naggar, ME, Menazea, AA, El-Newehy, MH. Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J Mol Struct 2021;1225:129138. https://doi.org/10.1016/j.molstruc.2020.129138.Search in Google Scholar

123. El-Sayed, H, Morad, MY, Sonbol, H, Hammam, OA, Abd El-Hameed, RM, Ellethy, RA, et al.. Myco-synthesized selenium nanoparticles as wound healing and antibacterial agent: an in vitro and in vivo investigation. Microorganisms 2023;11:2341. https://doi.org/10.3390/microorganisms11092341.Search in Google Scholar PubMed PubMed Central

124. Mi, X-j, Le, H-M, Lee, S, Park, H-R, Kim, Y-J. Silymarin-functionalized selenium nanoparticles prevent LPS-induced inflammatory response in RAW264.7 cells through downregulation of the PI3K/Akt/NF-κB pathway. ACS Omega 2022;7:42723–32. https://doi.org/10.1021/acsomega.2c04140.Search in Google Scholar PubMed PubMed Central

125. Liu, Y, Zeng, S, Liu, Y, Wu, W, Shen, Y, Zhang, L, et al.. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol 2018;114:632–9. https://doi.org/10.1016/j.ijbiomac.2018.03.161.Search in Google Scholar PubMed

126. Hasanuzzaman, M, Bhuyan, MHMB, Zulfiqar, F, Raza, A, Mohsin, SM, Mahmud, JA, et al.. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 2020;9:681. https://doi.org/10.3390/antiox9080681.Search in Google Scholar PubMed PubMed Central

127. Zhang, Y, Ma, KL, Gong, YX, Wang, GH, Hu, ZB, Liu, L, et al.. Platelet microparticles mediate glomerular endothelial injury in early diabetic nephropathy. J Am Soc Nephrol 2018;29:2671–95. https://doi.org/10.1681/asn.2018040368.Search in Google Scholar PubMed PubMed Central

128. Karas, RA, Alexeree, S, Elsayed, H, Attia, YA. Assessment of wound healing activity in diabetic mice treated with a novel therapeutic combination of selenium nanoparticles and platelets rich plasma. Sci Rep 2024;14:5346. https://doi.org/10.1038/s41598-024-54064-2.Search in Google Scholar PubMed PubMed Central

129. Bano, I, Skalickova, S, Arbab, S, Urbankova, L, Horky, P. Toxicological effects of nanoselenium in animals. J Anim Sci Biotechnol 2022;13:72. https://doi.org/10.1186/s40104-022-00722-2.Search in Google Scholar PubMed PubMed Central

130. Gupta, M, Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 2017;7. https://doi.org/10.3389/fpls.2016.02074.Search in Google Scholar PubMed PubMed Central

131. Anu, K, Singaravelu, G, Murugan, K, Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on Vero cells. J Cluster Sci 2017;28:551–63. https://doi.org/10.1007/s10876-016-1123-7.Search in Google Scholar

132. Wang, R, Ha, K-y, Dhandapani, S, Kim, Y-J. Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnol 2022;20:441. https://doi.org/10.1186/s12951-022-01576-6.Search in Google Scholar PubMed PubMed Central

133. Prasad, KS, Selvaraj, K. Biogenic synthesis of selenium nanoparticles and their effect on AS(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res 2014;157:275–83. https://doi.org/10.1007/s12011-014-9891-0.Search in Google Scholar PubMed

134. Naemi, S, Meshkini, A. Phytosynthesis of graphene oxide encapsulated selenium nanoparticles using Crocus sativus petals’ extract and evaluation of their bioactivity. J Drug Deliv Sci Technol 2023;81:104286. https://doi.org/10.1016/j.jddst.2023.104286.Search in Google Scholar

135. Diko, CS, Zhang, H, Lian, S, Fan, S, Li, Z, Qu, Y. Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth. Mater Chem Phys 2020;246:122583. https://doi.org/10.1016/j.matchemphys.2019.122583.Search in Google Scholar

136. Touliabah, HE, El-Sheekh, MM, Makhlof, MEM. Evaluation of Polycladia myrica mediated selenium nanoparticles (PoSeNPS) cytotoxicity against PC-3 cells and antiviral activity against HAV HM175 (Hepatitis A), HSV-2 (Herpes simplex II), and Adenovirus strain 2. Front Mar Sci 2022;9. https://doi.org/10.3389/fmars.2022.1092343.Search in Google Scholar

137. Rauf, MA, Jolly, J, Ahmad, Z. Synthesis and characterization of nano-selenium using plant biomolecules and their potential applications. In: Hossain, MA, Ahammed, GJ, Kolbert, Z, El-Ramady, H, Islam, T, Schiavon, M, editors. Selenium and nano-selenium in environmental stress management and crop quality improvement. Cham: Springer International Publishing; 2022:25–40 pp.10.1007/978-3-031-07063-1_2Search in Google Scholar

138. Gamal, AALR, Hussein, MAM, Sayed, HAE, El-Sayed, E-SM, Youssef, AM, El-Sherbiny, IM. Hybrid nanoparticles combining nanoselenium-mediated Carica papaya extract and trimethyl chitosan for combating clinical multidrug-resistant bacteria. Int J Biol Macromol 2024;277:134359. https://doi.org/10.1016/j.ijbiomac.2024.134359.Search in Google Scholar PubMed

139. Elsaied, BE, Diab, AM, Tayel, AA, Alghuthaymi, MA, Moussa, SH. Potent antibacterial action of phycosynthesized selenium nanoparticles using Spirulina platensis extract. Green Process Synth 2021;10:49–60. https://doi.org/10.1515/gps-2021-0005.Search in Google Scholar

140. Urbankova, L, Skalickova, S, Pribilova, M, Ridoskova, A, Pelcova, P, Skladanka, J, et al.. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats. Toxics 2021;9:28. https://doi.org/10.3390/toxics9020028.Search in Google Scholar PubMed PubMed Central

141. Tilwani, YM, Lakra, AK, Domdi, L, Jha, N, Arul, V. Preparation, physicochemical characterization, and in vitro biological properties of selenium nanoparticle synthesized from exopolysaccharide of Enterococcus faecium MC-5. BioNanoScience 2023;13:413–25. https://doi.org/10.1007/s12668-023-01077-2.Search in Google Scholar

142. Khiralla, GM, El-Deeb, BA. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT – Food Sci Technol (Lebensmittel-Wissenschaft -Technol) 2015;63:1001–7. https://doi.org/10.1016/j.lwt.2015.03.086.Search in Google Scholar

143. Kalishwaralal, K, Jeyabharathi, S, Sundar, K, Muthukumaran, A. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif Cell Nanomed Biotechnol 2016;44:471–7. https://doi.org/10.3109/21691401.2014.962744.Search in Google Scholar PubMed

144. Vundela, SR, Kalagatur, NK, Nagaraj, A, Kadirvelu, K, Chandranayaka, S, Kondapalli, K, et al.. Multi-biofunctional properties of phytofabricated selenium nanoparticles from Carica papaya fruit extract: antioxidant, antimicrobial, antimycotoxin, anticancer, and biocompatibility. Front Microbiol 2022;12. https://doi.org/10.3389/fmicb.2021.769891.Search in Google Scholar PubMed PubMed Central

145. Rayman, MP. The importance of selenium to human health. Lancet 2000;356:233–41. https://doi.org/10.1016/S0140-6736(00)02490-9.Search in Google Scholar PubMed

146. Siddiqi, KS, Husen, A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 2017;12:92. https://doi.org/10.1186/s11671-017-1861-y.Search in Google Scholar PubMed PubMed Central

147. Guo, X, Lie, Q, Liu, Y, Jia, Z, Gong, Y, Yuan, X, et al.. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces 2021;13:30261–73. https://doi.org/10.1021/acsami.1c00690.Search in Google Scholar PubMed

148. Ferro, C, Florindo, HF, Santos, HA. Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv Healthcare Mater 2021;10:2100598. https://doi.org/10.1002/adhm.202100598.Search in Google Scholar PubMed

149. Liu, W, Li, X, Wong, Y-S, Zheng, W, Zhang, Y, Cao, W, et al.. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 2012;6:6578–91. https://doi.org/10.1021/nn202452c.Search in Google Scholar PubMed

150. Gao, F, Yuan, Q, Gao, L, Cai, P, Zhu, H, Liu, R, et al.. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 2014;35:8854–66. https://doi.org/10.1016/j.biomaterials.2014.07.004.Search in Google Scholar PubMed

151. Vahdati, M, Tohidi Moghadam, T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 2020;10:510. https://doi.org/10.1038/s41598-019-57333-7.Search in Google Scholar PubMed PubMed Central

152. Zhang, Y, Chen, Y, Wang, B, Cai, Y, Zhang, M, Guo, X, et al.. A novel selenium nanocomposite modified by AANL inhibits tumor growth by upregulating CLK2 in lung cancer. Bioorg Chem 2024;148:107459. https://doi.org/10.1016/j.bioorg.2024.107459.Search in Google Scholar PubMed

153. Tan, L, Jia, X, Jiang, X, Zhang, Y, Tang, H, Yao, S, et al.. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron 2009;24:2268–72. https://doi.org/10.1016/j.bios.2008.10.030.Search in Google Scholar PubMed

154. Maiyo, F, Singh, M. Folate-targeted mRNA delivery using chitosan-functionalized selenium nanoparticles: potential in cancer immunotherapy. Pharmaceuticals 2019;12:164. https://doi.org/10.3390/ph12040164.Search in Google Scholar PubMed PubMed Central

155. Kalčec, N, Peranić, N, Mamić, I, Beus, M, Hall, CR, Smith, TA, et al.. Selenium nanoparticles as potential drug-delivery systems for the treatment of Parkinson’s disease. ACS Appl Nano Mater 2023;6:17581–92. https://doi.org/10.1021/acsanm.3c02749.Search in Google Scholar

156. Muhammad Kifayatullah, H, Abid, M, Tahir, H, Raza Shah, M, Ahmed, S, Abid Ali, S. Synthesis and dual sensing of vanadium and copper ions using protein capped selenium nanoparticles. J Mol Liq 2024;405:125130. https://doi.org/10.1016/j.molliq.2024.125130.Search in Google Scholar

157. Song, X, Tian, D, Qiu, Y, Sun, X, Jiang, B, Zhao, C, et al.. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. Energy Storage Mater 2021;41:248–54. https://doi.org/10.1016/j.ensm.2021.05.028.Search in Google Scholar

158. Wang, Z, Zhou, Q, Guo, Y, Hu, H, Zheng, Z, Li, S, et al.. Rapid detection of ractopamine and salbutamol in swine urine by immunochromatography based on selenium nanoparticles. Int J Nanomed 2021;16:2059–70. https://doi.org/10.2147/ijn.S292648.Search in Google Scholar PubMed PubMed Central

159. Mamgain, R, Singh, FV. Selenium-based fluorescence probes for the detection of bioactive molecules. ACS Org Inorg Au 2022;2:262–88. https://doi.org/10.1021/acsorginorgau.1c00047.Search in Google Scholar PubMed PubMed Central

160. Pundir, CS, Deswal, R, Narwal, V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioproc Biosyst Eng 2018;41:313–29. https://doi.org/10.1007/s00449-017-1878-8.Search in Google Scholar PubMed

161. Prasad, KS, Vaghasiya, JV, Soni, SS, Patel, J, Patel, R, Kumari, M, et al.. Microbial selenium nanoparticles (SeNPs) and their application as a sensitive hydrogen peroxide biosensor. Appl Biochem Biotechnol 2015;177:1386–93. https://doi.org/10.1007/s12010-015-1814-9.Search in Google Scholar PubMed

162. Dumore, NS, Mukhopadhyay, M. Development of novel electrochemical sensor based on PtNPs-SeNPs-FTO nanocomposites via electrochemical deposition for detection of hydrogen peroxide. J Environ Chem Eng 2022;10:107058. https://doi.org/10.1016/j.jece.2021.107058.Search in Google Scholar

163. Gochfeld, M, Burger, J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. Environ Sci Pollut Control Ser 2021;28:18407–20. https://doi.org/10.1007/s11356-021-12361-7.Search in Google Scholar PubMed PubMed Central

164. Czumbel, LM, Kerémi, B, Gede, N, Mikó, A, Tóth, B, Csupor, D, et al.. Sandblasting reduces dental implant failure rate but not marginal bone level loss: a systematic review and meta-analysis. PLoS One 2019;14:e0216428. https://doi.org/10.1371/journal.pone.0216428.Search in Google Scholar PubMed PubMed Central

165. Mohseni, R, ArabSadeghabadi, Z, Ziamajidi, N, Abbasalipourkabir, R, RezaeiFarimani, A. Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res Lett 2019;14:227. https://doi.org/10.1186/s11671-019-3042-7.Search in Google Scholar PubMed PubMed Central

166. Mostafavi, E, Medina-Cruz, D, Truong, LB, Kaushik, A, Iravani, S. Selenium-based nanomaterials for biosensing applications. Mater Adv 2022;3:7742–56. https://doi.org/10.1039/D2MA00756H.Search in Google Scholar

167. Chen, L, Hwang, E, Zhang, J. Fluorescent nanobiosensors for sensing glucose. Sensors 2018;18:1440. https://doi.org/10.3390/s18051440.Search in Google Scholar PubMed PubMed Central

168. Rahman, M, Aznan, M, Yusof, A, Ansary, R, Siddiqi, M, Yusan, S. Synthesis and characterization of functionalized Se-MCM-41 a new drug carrier mesopore composite. Orient J Chem 2017;33:611. https://doi.org/10.13005/ojc/330208.Search in Google Scholar

169. Gokoglan, TC, Soylemez, S, Kesik, M, Toksabay, S, Toppare, L. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chem 2015;172:219–24. https://doi.org/10.1016/j.foodchem.2014.09.065.Search in Google Scholar PubMed

170. Anupama, K, Paul, T, Ann Mary, KA. Solid-state fluorescent selenium quantum dots by a solvothermal-assisted sol–gel route for curcumin sensing. ACS Omega 2021;6:21525–33. https://doi.org/10.1021/acsomega.1c02441.Search in Google Scholar PubMed PubMed Central

171. Cao, H, Xiao, J, Liu, H. Enhanced oxidase-like activity of selenium nanoparticles stabilized by chitosan and application in a facile colorimetric assay for mercury (II). Biochem Eng J 2019;152:107384. https://doi.org/10.1016/j.bej.2019.107384.Search in Google Scholar

172. Ghosh, BK, Hazra, S, Naik, B, Ghosh, NN. Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol 2015;269:371–8. https://doi.org/10.1016/j.powtec.2014.09.027.Search in Google Scholar

173. Li, Y, Zhang, W, Jiang, X, Kou, Y, Lu, J, Tan, L. Investigation of photo-induced electron transfer between amino-functionalized graphene quantum dots and selenium nanoparticle and it’s application for sensitive fluorescent detection of copper ions. Talanta 2019;197:341–7. https://doi.org/10.1016/j.talanta.2019.01.036.Search in Google Scholar PubMed

174. Chen, X, Gao, Z, Long, T, Xie, J, Li, X, Huang, Z. Development of two immunochromatographic test strips based on signal amplification and selenium nanoparticles for the rapid detection of T-2 mycotoxin. Food Chem 2023;424:136419. https://doi.org/10.1016/j.foodchem.2023.136419.Search in Google Scholar PubMed

175. Barani, A, Alizadeh, SR, Ebrahimzadeh, MA. A comprehensive review on catalytic activities of green-synthesized selenium nanoparticles on dye removal for wastewater treatment. Water 2023;15:3295. https://doi.org/10.3390/w15183295.Search in Google Scholar

176. Kazemi, M, Akbari, A, Sabouri, Z, Soleimanpour, S, Zarrinfar, H, Khatami, M, et al.. Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioproc Biosyst Eng 2021;44:1215–25. https://doi.org/10.1007/s00449-021-02515-9.Search in Google Scholar PubMed

177. Kumar, CMV, Karthick, V, Inbakandan, D, Kumar, VG, Rene, ER, Dhas, TS, et al.. Effect of selenium nanoparticles induced toxicity on the marine diatom Chaetoceros gracilis. Process Saf Environ Protect 2022;163:200–9. https://doi.org/10.1016/j.psep.2022.05.021.Search in Google Scholar

178. Al Jahdaly, BA, Al-Radadi, NS, Eldin, GMG, Almahri, A, Ahmed, MK, Shoueir, K, et al.. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J Mater Res Technol 2021;11:85–97. https://doi.org/10.1016/j.jmrt.2020.12.098.Search in Google Scholar

179. Velayati, M, Hassani, H, Sabouri, Z, Mostafapour, A, Darroudi, M. Biosynthesis of Se-nanorods using gum arabic (GA) and investigation of their photocatalytic and cytotoxicity effects. Inorg Chem Commun 2021;128:108589. https://doi.org/10.1016/j.inoche.2021.108589.Search in Google Scholar

180. Hao, X, Jia, J, Chang, Y, Jia, M, Wen, Z. Monodisperse copper selenide nanoparticles for ultrasensitive and selective non-enzymatic glucose biosensor. Electrochim Acta 2019;327:135020. https://doi.org/10.1016/j.electacta.2019.135020.Search in Google Scholar

181. Peng, X, Wang, L, Zhang, X, Gao, B, Fu, J, Xiao, S, et al.. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium–selenium battery cathode. J Power Sources 2015;288:214–20. https://doi.org/10.1016/j.jpowsour.2015.04.124.Search in Google Scholar

182. Ghouri, ZK, Motlak, M, Afaq, S, Barakat, NAM, Abdala, AA. Template-free synthesis of Se-nanorods-rGO nanocomposite for application in supercapacitors. Nanotechnol Rev 2019;8:661–70. https://doi.org/10.1515/ntrev-2019-0057.Search in Google Scholar

183. Nagime, PV, Shaikh, NM, Shaikh, SB, Lokhande, CD, Patil, VV, Shafi, S, et al.. Facile synthesis of silver nanoparticles using Calotropis procera leaves: unraveling biological and electrochemical potentials. Discover Nano 2024;19:139. https://doi.org/10.1186/s11671-024-04090-w.Search in Google Scholar PubMed PubMed Central

184. Barik, R, Yadav, AK, Jha, SN, Bhattacharyya, D, Ingole, PP. Two-dimensional tungsten oxide/selenium nanocomposite fabricated for flexible supercapacitors with higher operational voltage and their charge storage mechanism. ACS Appl Mater Interfaces 2021;13:8102–19. https://doi.org/10.1021/acsami.0c15818.Search in Google Scholar PubMed

185. Jiang, B, Liu, Y, Zhang, J, Wang, Y, Zhang, X, Zhang, R, et al.. Synthesis of bimetallic nickel cobalt selenide particles for high-performance hybrid supercapacitors. RSC Adv 2022;12:1471–8. https://doi.org/10.1039/D1RA08678B.Search in Google Scholar

186. Zhou, P, Liu, D, Wen, Z, Chen, M, Liu, Q, Ke, Y, et al.. Quaternary-metal phosphide as electrocatalyst for efficient hydrogen evolution reaction in alkaline solution. Int J Hydrogen Energy 2021;46:18878–86. https://doi.org/10.1016/j.ijhydene.2021.03.040.Search in Google Scholar

187. Bandehagh, A, Dehghanian, Z, Gougerdchi, V, Hossain, MA. Selenium: a game changer in plant development, growth, and stress tolerance, via the modulation in gene expression and secondary metabolite biosynthesis. Phyton-Int J Exp Bot 2023;92:2301–24. https://doi.org/10.32604/phyton.2023.028586.Search in Google Scholar

188. Wang, C, Yue, L, Cheng, B, Chen, F, Zhao, X, Wang, Z, et al.. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano 2022;9:302–12. https://doi.org/10.1039/D1EN00740H.Search in Google Scholar

189. Samynathan, R, Venkidasamy, B, Ramya, K, Muthuramalingam, P, Shin, H, Kumari, PS, et al.. A recent update on the impact of nano-selenium on plant growth, metabolism, and stress tolerance. Plants 2023;12:853. https://doi.org/10.3390/plants12040853.Search in Google Scholar PubMed PubMed Central

190. Hussein, H-AA, Darwesh, OM, Mekki, BB. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal Agric Biotechnol 2019;18:101080. https://doi.org/10.1016/j.bcab.2019.101080.Search in Google Scholar

191. Zhang, T, Qi, M, Wu, Q, Xiang, P, Tang, D, Li, Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr 2023;10. https://doi.org/10.3389/fnut.2023.1183487.Search in Google Scholar PubMed PubMed Central

192. Garza-García, JJO, Hernández-Díaz, JA, Zamudio-Ojeda, A, León-Morales, JM, Guerrero-Guzmán, A, Sánchez-Chiprés, DR, et al.. The role of selenium nanoparticles in agriculture and food technology. Biol Trace Elem Res 2022;200:2528–48. https://doi.org/10.1007/s12011-021-02847-3.Search in Google Scholar PubMed

193. Ullah, H, Liu, G, Yousaf, B, Ali, MU, Irshad, S, Abbas, Q, et al.. A comprehensive review on environmental transformation of selenium: recent advances and research perspectives. Environ Geochem Health 2019;41:1003–35. https://doi.org/10.1007/s10653-018-0195-8.Search in Google Scholar PubMed

194. Zhou, D, Cai, Z, Bi, Y, Tian, W, Luo, M, Zhang, Q, et al.. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res 2018;11:1358–68. https://doi.org/10.1007/s12274-017-1750-9.Search in Google Scholar

195. de Sousa, GF, Silva, MA, de Morais, EG, Van Opbergen, GAZ, Van Opbergen, GGAZ, de Oliveira, RR, et al.. Selenium enhances chilling stress tolerance in coffee species by modulating nutrient, carbohydrates, and amino acids content. Front Plant Sci 2022;13. https://doi.org/10.3389/fpls.2022.1000430.Search in Google Scholar PubMed PubMed Central

196. Gudkov, SV, Shafeev, GA, Glinushkin, AP, Shkirin, AV, Barmina, EV, Rakov, II, et al.. Production and use of selenium nanoparticles as fertilizers. ACS Omega 2020;5:17767–74. https://doi.org/10.1021/acsomega.0c02448.Search in Google Scholar PubMed PubMed Central

197. Bano, I, Skalickova, S, Sajjad, H, Skladanka, J, Horky, P. Uses of selenium nanoparticles in the plant production. Agronomy 2021;11:2229. https://doi.org/10.3390/agronomy11112229.Search in Google Scholar

198. Huang, Y, Tan, J, Wang, G, Zhou, L. Selenium nanoparticles for antioxidant activity and selenium enrichment in plants. ACS Appl Nano Mater 2024;7:12881–90. https://doi.org/10.1021/acsanm.4c01446.Search in Google Scholar

199. El-Badri, AM, Batool, M, Mohamed, IAA, Wang, Z, Wang, C, Tabl, KM, et al.. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ Pollut 2022;310:119815. https://doi.org/10.1016/j.envpol.2022.119815.Search in Google Scholar PubMed

200. Setty, J, Samant, SB, Yadav, MK, Manjubala, M, Pandurangam, V. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Sci Rep 2023;13:22349. https://doi.org/10.1038/s41598-023-49621-0.Search in Google Scholar PubMed PubMed Central

201. Huong, NT, Tung, DK, Ky, VH, Nam, PH, Ngoc Anh, NT. Synthesis of nano-selenium and its effects on germination and early seedling growth of four crop plants. AIP Adv 2024;14:025046. https://doi.org/10.1063/5.0188848.Search in Google Scholar

202. Sachdev, S, Ansari, SA, Ansari, MI, Fujita, M, Hasanuzzaman, M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 2021;10:277. https://doi.org/10.3390/antiox10020277.Search in Google Scholar PubMed PubMed Central

203. Wang, M, Mu, C, Li, Y, Wang, Y, Ma, W, Ge, C, et al.. Foliar application of selenium nanoparticles alleviates cadmium toxicity in maize (Zea mays L.) seedlings: evidence on antioxidant, gene expression, and metabolomics analysis. Sci Total Environ 2023;899:165521. https://doi.org/10.1016/j.scitotenv.2023.165521.Search in Google Scholar PubMed

204. Gao, H, Ji, Y, Chen, W. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Microbiol Res 2024;280:127568. https://doi.org/10.1016/j.micres.2023.127568.Search in Google Scholar PubMed

205. Xiao, Y, Zhang, X, Huang, Q. Protective effects of Cordyceps sinensis exopolysaccharide-selenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. Int J Biol Macromol 2022;213:339–51. https://doi.org/10.1016/j.ijbiomac.2022.05.173.Search in Google Scholar PubMed

206. Sardar, R, Ahmed, S, Shah, AA, Yasin, NA. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere 2022;287:132332. https://doi.org/10.1016/j.chemosphere.2021.132332.Search in Google Scholar PubMed

207. Moulick, D, Mukherjee, A, Das, A, Roy, A, Majumdar, A, Dhar, A, et al.. Selenium – an environmentally friendly micronutrient in agroecosystem in the modern era: an overview of 50-year findings. Ecotoxicol Environ Saf 2024;270:115832. https://doi.org/10.1016/j.ecoenv.2023.115832.Search in Google Scholar PubMed

208. Ao, B, Du, Q, Liu, D, Shi, X, Tu, J, Xia, X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023;14. https://doi.org/10.3389/fmicb.2023.1229838.Search in Google Scholar PubMed PubMed Central

209. Vijayaram, S, Ghafarifarsani, H, Vuppala, S, Nedaei, S, Mahendran, K, Murugappan, R, et al.. Selenium nanoparticles: revolutionizing nutrient enhancement in aquaculture – a review. Biol Trace Elem Res 2024. https://doi.org/10.1007/s12011-024-04172-x.Search in Google Scholar PubMed

210. dos Santos, CA, Ingle, AP, Rai, M. The emerging role of metallic nanoparticles in food. Appl Microbiol Biotechnol 2020;104:2373–83. https://doi.org/10.1007/s00253-020-10372-x.Search in Google Scholar PubMed

211. Sarkar, B, Bhattacharjee, S, Daware, A, Tribedi, P, Krishnani, KK, Minhas, PS. Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res Lett 2015;10:371. https://doi.org/10.1186/s11671-015-1073-2.Search in Google Scholar PubMed PubMed Central

212. Khalil, HS, Maulu, S, Verdegem, M, Abdel-Tawwab, M. Embracing nanotechnology for selenium application in aquafeeds. Rev Aquacult 2023;15:112–29. https://doi.org/10.1111/raq.12705.Search in Google Scholar

213. Hussain, A, Lakhan, MN, Hanan, A, Soomro, IA, Ahmed, M, Bibi, F, et al.. Recent progress on green synthesis of selenium nanoparticles – a review. Mater Today Sustain 2023;23:100420. https://doi.org/10.1016/j.mtsust.2023.100420.Search in Google Scholar

214. Ghosh, S, Bhagwat, T, Chopade, BA, Webster, TJ. Chapter 20 – Patents, technology transfer, and commercialization aspects of biogenic nanoparticles. In: Ghosh, S, Webster, TJ, editors. Nanobiotechnology. Amsterdam: Elsevier; 2021:323–39 pp.10.1016/B978-0-12-822878-4.00020-1Search in Google Scholar

215. Puri, A, Mohite, P, Ansari, Y, Mukerjee, N, Alharbi, HM, Upaganlawar, A, et al.. Plant-derived selenium nanoparticles: investigating unique morphologies, enhancing therapeutic uses, and leading the way in tailored medical treatments. Mater Adv 2024;5:3602–28. https://doi.org/10.1039/D3MA01126G.Search in Google Scholar

Received: 2024-08-17
Accepted: 2025-01-18
Published Online: 2025-02-10

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2024-0176/html
Scroll to top button