Guillermo H. Jimenez-Aleman*, Selina Seçinti and Wilhelm Boland*

A succinct access to ω-hydroxylated jasmonates via olefin metathesis

DOI 10.1515/znc-2017-0104 Received June 7, 2017; revised June 7, 2017; accepted June 8, 2017

Abstract: In higher plants, jasmonates are lipid-derived signaling molecules that control many physiological processes, including responses to abiotic stress, defenses against insects and pathogens, and development. Among jasmonates, ω -oxidized compounds form an important subfamily. The biological roles of these ω -modified derivatives are not fully understood, largely due to their limited availability. Herein, a brief (two-step), simple and efficient (>80% yield), versatile, gram-scalable, and environmentally friendly synthetic route to ω -oxidized jasmonates is described. The approach utilizes olefin cross-metathesis as the key step employing inexpensive, commercially available substrates and catalysts.

Keywords: cross-metathesis; gram scale synthesis; jasmonate; phytohormone; ω -hydroxylated jasmonate.

Dedication: This article is dedicated to the memory of Prof. Dr. Lothar Jaenicke.

1 Introduction

Jasmonates are signaling molecules that are ubiquitous in higher plants. They are key regulators of plant growth and development, as well as of responses to both biotic and abiotic stresses [1, 2]. Jasmonates are biosynthesized from α -linolenic acid, which, after several enzymatic steps, yields jasmonic acid [JA (1)] as the (3*R*,7*S*)-isomer (Scheme 1). However, some degree of epimerization at C7 may occur, and, moreover, the 7*R* epimer can be found within the cell [3]. Like JA (1), JA-derivatives exist *in planta* as a mixture of the 7*S* and 7*R* epimers. For instance, compound JKL (7) has been described as the 7*R* epimer [4, 5]. In response to environmental and developmental cues, JA (1) is activated by its

Selina Seçinti: Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

conjugation to L-isoleucine (Ile) [6]. This reaction produces the most active jasmonate (3R,7S)-N-jasmonoyl-L-isoleucine (JA-Ile, 4). The ω -oxidation of active JA-Ile (4) is carried out by members of the CYP94 family. This reaction produces the ω-hydroxylated acid 12-OH-JA-Ile (8) that is further converted into other ω-modified (12-modified) jasmonates (Scheme 1). Many 12-modified jasmonates (e.g. compounds 5-10, Scheme 1) exist in relatively high abundance (compared to other jasmonates) in various plant species [7]; however, little is known about their physiological roles. These chemical species may be stored in cell compartments such as vacuoles and may contribute to maintaining the homeostasis of jasmonates within plant tissues, which is of crucial importance for plant fitness and defense [8]. On the one hand, naturally occurring 12-modified jasmonates are believed to be partially or completely inactive with regard to the canonical jasmonate pathway [9, 10]. However, 12-OGlc-JA (5) was found to activate leafclosing movement in Samaneasaman [11]. The action mechanism of 12-OGlc-JA (5) is independent of the COI1-JAZ complex, the canonical jasmonate receptor. This suggests that endogenous 12-modified jasmonates may have biological roles beyond the classical jasmonate functions known to date. On the other hand, some synthetic 12-modified jasmonate derivatives have been described as inducers of plant defenses similarly to bioactive endogenous jasmonates [12]. Furthermore, these derivatives were recently employed to uncouple growth and defense in Nicotiana attenuata plants, opening a whole new field of research with potential application in agriculture [13]. Nonetheless, the production costs of 12-modified jasmonates (and jasmonates in general) must be sufficiently low if these compounds are to be employed in agricultural systems. The above-mentioned observations highlight the need to develop new synthetic strategies to prepare 12-modified jasmonates from a commercial product, such as methyljasmonate, in order to evaluate their mode of action and eventually to employ these compounds in agriculture.

The jasmonates' biological relevance made them the target of several synthetic approaches aiming to obtain not only naturally occurring compounds but also synthetic analogs; all of these contributed greatly to our understanding of how these phytohormones act [14–16]. A few studies have reported on the synthesis of 12-modified

^{*}Corresponding authors: Guillermo H. Jimenez-Aleman and Wilhelm Boland, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany, E-mail: gjimenez-aleman@ice.mpg.de (G.H. Jimenez-Aleman); boland@ice.mpg.de (W. Boland)

Scheme 1: Simplified scheme of jasmonate biosynthesis.

LOX, Lipoxygenase; AOS, allene oxide synthase; AOC, allene oxide cyclase; OPR3, 12-oxophytodienoate reductase 3; JMT, JA carboxyl methyltransferase; MJE, methyljasmonate esterase; JAR1, JA-amino synthetase; ILL6/IAR3, JA-Ile amidohydrolases; CYP94B1/B3/C1, cytochromes P450; LFE, lactone forming enzyme. Red squares depict ω modifications. A dashed arrow represents a proposed transformation. Nomenclature and numbering commonly used for jasmonates is employed for clarity. Epimerization at C7 may occur, lactone JKL (7) exists in nature. For comprehensive reviews on jasmonate biosynthesis, signaling and activity, please see reference [1].

jasmonates [17, 18]. However, because the procedures for synthesis are lengthy and provide low overall yield, access to these compounds for both bioassays and agricultural applications may be limited [19]. To circumvent these limitations, a synthetic route to ω -modified jasmonates based on the cross-metathesis (CM) of alkenes was explored (Scheme 2). The preferential formation of the more stable E over the Z isomer and the generation of complex mixtures disadvantaged CM for years. Nowadays, at least the stereoselectivity in favor of the Z isomer is no longer an issue, thanks to the recent development of molybdenum-[20, 21], tungsten-[20], and ruthenium-based (commercially available, inexpensive, and versatile) Z-selective catalysts [22, 23].

Jasmonates (commercially available or synthetic) are commonly employed in bioassays as mixtures of all possible diastereoisomers – in particular, with respect to the stereocenters at the cyclopentanone ring [16, 24, 25]. This is not at all disadvantageous, as cross-inhibition by the non-natural isomers or by the natural but less

active (3R,7R) form does not occur. Therefore, inexpensive, commercially available MeJA (2) [a mixture of the (3R,7R), (3S,7S), (3S,7R), and (3R,7S) isomers in a ratio of approximately 45:45:5:5, respectively] was employed

Scheme 2: Alternative routes to 12-modified jasmonates via CM metathesis.

(ia, iib) CM of 2 with different terminal alkenes; (ib, iia) saponification/conjugation to selected amino acids (aa).

Scheme 3: CM reactions explored in this study and catalysts used. (i) Screening of catalysts 11, 12 and 13; catalyst loadings; solvents (THF, CH, Cl, and C, H,); ratio of reactants; temperatures (27, 40, 60 and 80 °C).

throughout this study in order to develop and optimize the CM method. And hence, all ω -modified jasmonates were prepared as a diastereomeric mixture unless otherwise stated.

2 Results and discussion

2.1 Optimization of the reaction conditions for CM

First, the CM reaction of MeJA (2) with 14a was investigated employing the Grubbs second-generation catalyst 11 (Scheme 3). Despite the broad functional group tolerance of 11 [26], the alcohol 14a barely reacted with 2, which meant that 2 could be recovered almost completely from the reaction mixture. This result may be explained by the reported low reactivity of homoallylic free alcohols in metathesis reactions [27]. Therefore, the protected alcohol **14b** was evaluated in the CM with **2** (Scheme 3). Catalyst 11 was active at loadings as low as 0.5 mol% (relative to 2) in the CM. Product 15b was obtained in 61% yield after 1 h using 1 mol% of 11 (Table 1, entry 2). To further optimize the reaction, solvents commonly employed in metathesis were screened (Table 1, entries 2, 4, and 5). All tested solvents performed similarly, but THF gave higher yields of 15b (Table 1, entry 2). Conveniently, the reaction slowly proceeded under solvent-free conditions, so the process was environmentally friendly (Table 1, entry 6). The performance of catalysts 12 (Hoveyda-Grubbs second generation) and 13 (Grubbs Z-selective) was also evaluated. Reactions were run in THF at 27 °C with substrates at a concentration of approximately 0.2 M and 1 mol% catalyst loading in order to better assess differences between catalysts [23]. Catalysts 11 and 12 produced similar yield towards 15b after 1 h of reaction (Table 1, entries 2 and

Table 1: CM of 2 and 14b: screening of catalysts, catalyst loading and solvents.

Entry	Catalyst	Catalyst loading (mol%)	Solvent	15b (%)ª
1	11	0.5	THF	21
2	11	1	THF	61
3	11	2	THF	60
4	11	1	Benzene	44
5	11	1	CH,Cl,	24
6	11	1	No solvent	4
7	12	1	THF	50
8	13	1	THF	n.d.b

^aYield determined by GC-MS. ^bn.d., not detected.

7). However, the *Z*-selective catalyst **13** needed a longer induction time (compared to 11 and 12), and for up to 1 h, no CM product was detected. This was unexpected, as 13 has been reported active in the homodimerization of monosubstituted alkenes at catalyst loadings as low as 0.1 mol% [23]. The low reactivity of 13 may be explained by the nature of both substrate 2 and catalyst 13. MeJA (2) is a 1,2-disubstituted olefin with a bulky cyclopentanone ring that could favor the homodimerization of 14b over the CM product due to steric hindrance with the bulky adamantyl group of 13. Following this reasoning, both catalyst loadings of 13 and different ratios of the starting substrates 2 and 14b were screened (Table 2). It must be noted that under solvent-free conditions and at room temperature, 13 was active from a catalyst loading of 5 mol%, giving an excellent 95% of Z-selectivity (Table 2, entry 2). On the other hand, a six-molar excess of the terminal alkene **14b** improved the yield toward **15b** significantly, while the amount of 16 (homodimerization product of 2) did not exceed 5% (Table 2, entry 6). While increasing the temperature may speed up a CM reaction, it may also negatively influence the yield and/or the Z-selectivity of the

Table 2: CM of 2 and 14b using catalyst 13: screening of catalyst loading, ratio of substrates and temperature.

Entry	Catalyst loading (mol%)	14b:2 (mol/mol)	t (h)	T (°C)	15b (%) ^a	Z-15b (%) ^b	16 (%) ^{a,c}
1	1	1:1	24	27	~1	_	_
2	5	1:1	24	27	25	95	3
3	10	1:1	24	27	34	95	7
4	5	1:2	24	27	25	94	5
5	5	2:1	24	27	24	94	3
6	5	6:1	24	27	64	93	5
7	5	6:1	1	27	n.d.d	_	_
8	5	6:1	1	40	15	97	n.d.
9	5	6:1	1	60	14	97	n.d.
10	5	6:1	1	80	21	96	n.d.

^aYield determined by GC-MS. ^bPercentage of the Z-isomer of **15b**. ^cResponse factor assumed as for**15b**. ^dn.d., not detected.

Table 3: CM of 2 and 14b-d using catalyst 11 or 12.

Entry	Substrate	Catalyst	Z-15 (%) ^{a,b}
1	14b	11	17
2	14c	11	20
3	14d	11	29
4	14b	12	18
5	14c	12	19
6	14d	12	24

^aPercentage of *Z*-CM product **15** determined by GC-MS. ^bAverage of two separate runs.

desired CM product [23]. Strikingly, increasing the temperature in the CM of **2** with **14b** shortened reaction times from 24 h to 1 h and slightly improved the *Z*-selectivity for **15b** (Table 2, entries 8–10). It is worth mentioning that at short reaction times, the self-metathesis product **16** was not observed.

2.2 Influence of the -R group of 14

The reaction of **2** with substrates **14b-d** was studied with complexes **11** and **12** in order to generalize the method for these unselective but widely employed catalysts. As expected, **11** and **12** preferentially afforded the E-**15b-d** alkene (Table 3). Interestingly, the Z/E ratio of the CM product **15** was influenced by the nature of the protecting group. The amount of Z-**15** increased about two-fold with **14d** as the substrate (THP as the protecting group; Table 3, entry 3) compared to **14b** (Table 3, entry 1). Therefore, the E/Z ratio of the CM-product **15** can be fine-tuned by choosing the best protective group in substrate **14**. This observation may be useful in other CM reactions when the protection of alcohol groups is needed. Envisioning the possibility of directly installing more complex substituents at C12 (e.g. a sugar moiety as in jasmonate **5**,

Scheme 4: Gram-scale preparation of 15b employing catalyst 13.

Scheme 1), the CM of **2** and the more challenging substrate **14e** (sterically hindered and more likely to chelate Ru) was explored. Under the employed conditions [**13** (20 mol%), not optimized], the CM product **15e** was obtained in 40% yield after purification and 60% of *Z*-selectivity. This result suggests that it is possible to install complex moieties at C12, such as a glycoside, by employing CM. Nonetheless, the preparation of a glycoside such as 12-OGlc-JA (**5**) might be made more efficient by the glycosylation of *Z*-**3**, which can be readily obtained from *Z*-**15b** (more than 90% *Z*-selectivity). Furthermore, it is reasonable to speculate that the CM of **2** and terminal alkenes bearing a protected sulfonic acid, aldehyde, or carboxylic acid group may offer an efficient way to prepare compounds **6**, **9**, or **10**, respectively.

2.3 Gram scale preparation of Z-15b

Previous reports have shown that CM reactions perform better under a static vacuum, which helps to remove undesired volatile olefins from the reaction mixture [28]. Following this idea, the CM of **2** and **14b** was carried out under a dynamic vacuum in order to remove both 1-butene and ethylene formed during the CM (Scheme 4). The versatile jasmonate **15b** (1.05 g, >80% after column purification) was obtained with more than 90% *Z*-selectivity. It is worth mentioning that **17b** (a valuable 1,2-disubstituted,

structurally symmetric alkene, as no ethylene is produced in self-metathesis [29]) was recovered and may be employed in further reactions. This CM allows for the gram-scale preparation of the valuable scaffold 15b, a scaffold which could be used as the substrate to prepare many other 12-modified jasmonates.

2.4 Preparation of 12-modified derivatives of IA-Ile (4)

Several 12-modified jasmonates exist in nature as conjugates with amino acids [30, 31], for example, compound **8** (Scheme 1). Therefore, it was briefly explored whether the preparation of such derivatives would be more efficient with the CM reaction preceding the conjugation to the amino acid (Scheme 2, ia-iia) or vice versa (Scheme 2, ib-iib). The Z-selective catalyst 13 (catalyst loading up to 7 mol%) failed to promote the CM reaction of JA-Ile (4) [mixture of diastereoisomers] and 14b. This result is consistent with the low activity reported for 13 catalyzing the CM of substrates bearing aldehyde or carboxylic acid groups [29]. However, catalyst 11 promoted CM at a catalyst loading of 3 mol% (Figure S1). These results indicate that the CM reaction should precede the conjugation to amino acids when aiming the synthesis of Z-enriched 12-modified JA-amino acid conjugates.

3 Conclusions

The CM reaction described here can be conducted on the lab bench employing inexpensive, commercially available catalysts 11, 12, or 13, and the substrates MeJA (2) and 14b. The *Z*-selective catalyst **13** should be used to prepare the (Z)-jasmonates resembling the natural signals. In addition, (E)-enriched 12-modified derivatives can be prepared by employing catalyst 11 or 12. This feature may be of interest when conducting structure activity relationship (SAR) studies. The MeJA (2) employed in this study was a mixture of all possible diastereoisomers containing the (3R,7R)- and (3S,7S)-diastereoisomers (both trans- relative to the cyclopentanone ring) in a roughly 1:1 ratio. A similar 1:1 ratio of (3R,7R)- and (3S,7S)-diastereoisomers was found for two diastereomeric macrolactones prepared by using the CM method presented here as a key step [13]. This result indicates that the CM reaction of substrates 2 and 14b is not stereocontrolled by the preexisting stereocenters on MeJA (2). Epimerization at C7 may occur both in vivo and when handling solutions of synthetic jasmonates

[3]; therefore, our synthetic approach starting with inexpensive MeJA (2) is extremely useful.

In conclusion, an efficient synthetic approach which allows for the preparation of many 12-modified jasmonates has been developed based on olefin CM. Due to its efficiency and versatility, this method will likely be widely employed to prepare both naturally occurring and rationally designed 12-modified jasmonates of biological interest. The availability of such compounds (grams if needed) makes it possible to study their biological properties and, eventually, to apply them in agriculture. Additionally, the described method allows for the preparation of molecular probes in order to better understand a major signaling pathway in plants.

4 Experimental section

4.1 General experimental methods and materials

Reactions were carried out in oven-dried glassware. Flashcolumn chromatography was performed on silica gel 60 (230-400 mesh). Plates of silica gel 60 F²⁵⁴ were used for thin-layer chromatography. Compounds were visualized by soaking the plates in a potassium permanganate staining agent. All solvents, catalysts, and substrates 2, 14a, and 14b were commercially available and were used as received. Compounds 1 [25], 4 [25], 14c [32], 14d [33], and 14e [34] were prepared according to procedures described in the literature. Spectroscopic data from 15c and 15d matched those previously described [17, 35]. Nuclear magnetic resonance (NMR) spectra were acquired at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts were assigned relative to the residual solvent peak, which served as an internal standard. Gas chromatography-mass spectrometry (GC-MS) spectra were measured using electron impact (70 eV) as the ionization method in positive mode (EI+). High-resolution mass spectrometry (HRMS) electrospray ionization in positive mode (ESI+) was performed on high-resolution time-of-flight (TOF) equipment.

4.2 General procedure for CM reactions

CM reactions were carried out following the methodology described in [36]. Briefly, the desired amount of catalyst was added to a 4 mL vial. The vial was sealed with a screw cap to which a rubber septum was attached and purged with argon for 5 min. A syringe was used to add first the solvent, then a mixture of the substrates. The reaction was allowed to stir in a heating block at the desired temperature. Aliquots of the reaction mixture were taken at the specified time periods. Samples for GC-MS analysis were obtained by adding 20 µL of the reaction to 0.5 mL of a solution of ethyl vinyl ether (3 mol L⁻¹ in CH₂Cl₂); reactions under solvent-free conditions were stopped in a similar manner, but 1 µL aliquots were taken unless otherwise stated. The sample was shaken for 5 min and then analyzed via GC-MS. All reactions were performed in duplicate. Conditions for each particular experiment were as follows:

- Screening catalyst loadings of 11, Table 1: 11 (0.9, 1.8, 3.7, or 9.0 mg; 1.1, 2.2, 4.4, or 11 µmol, respectively); THF (1 mL); 2 (50.6 mg; 0.22 mmol); 14b (24.9 mg; 0.22 mmol); 27 °C.
- Screening solvents, Table 1: 11 (1.8 mg; 2.2 µmol, 1 mol%); benzene, THF, toluene, or dichloromethane (1 mL); 2 (50.6 mg; 0.22 mmol); 14b (24.9 mg; 0.22 mmol); 27 °C. For solvent free; 2 (101.2 mg; 0.44 mmol); **14b** (49.8 mg; 0.44 mmol).
- Screening catalysts 11, 12, and 13 at 1 mol%, Table 1: 11, 12, or 13 (2.2 µmol; 1 mol%; 1.8, 1.4, or 1.4 mg, respectively); THF (1 mL); 2 (50.6 mg; 0.22 mmol); 14b (24.9 mg; 0.22 mmol); 27 °C.
- Screening catalyst loadings of 13, Table 2: 13 (2.8, 13.9, or 27.8 mg; 4.4, 22, or 44 µmol, respectively); 2 (101.2 mg; 0.44 mmol); **14b** (49.8 mg; 0.44 mmol); Neat; 27 °C.
- Screening substrate ratios, Table 2: 13 (6.0 mg, 9.5 μmol, 5 mol%); **14b/2** (0.1/0.2, 0.2/0.2, 0.4/0.2, or 1.2/0.2, mmol/mmol); Neat; 27 °C. Experiments were conducted in 1.5 mL vials.
- Screening temperatures, Table 2: 13 (6 mg, 9.5 μmol, 5 mol%); **2** (46.0 mg; 0.2 mmol); **14b** (135.6 mg; 1.2 mmol); Neat; 27, 40, 60, or 80 °C. Experiments were conducted in 1.5 mL vials.
- Screening protecting groups, Table 3: 11 (2.0 mg, 2.4 μmol, 1 mol%); **2** (55.2 mg; 0.24 mmol); **14b**, **14c**, or 14d (27.1, 44.0, or 37.5 mg, respectively; 0.24 mmol). **12** (2.0 mg, 3.2 μmol); **2** (73.6 mg; 0.32 mmol); **14b**, **14c**, or **14d** (36.2, 59.6, or 50.5 mg, respectively; 0.32 mmol). Reactions were carried out under solvent-free conditions in 1.5 mL vials. Aliquots of 2 µL were taken after 1 h for GC-MS analysis.
- CM of JA-Ile (4) and **14b**, Figure S1: **11** (6.0 mg, 7 µmol, 3 mol% relative to **4**) or **13** (17 mg, 27 μmol, 7 mol% relative to 4); 4 (74.4 mg, 0.23 mmol); 14b (259.0 mg, 2.3 mmol); Neat; 60 °C. The reaction was followed by thin-layer chromatography. Samples for GC-MS analysis were obtained by adding 2 µL of the reaction mixture to 500 μL of ethyl vinyl ether (3 mol L⁻¹

in CH₂Cl₂), shaking for 5 min and derivatizing with trimethylsilyldiazomethane.

4.3 Synthetic procedures

4.3.1 Methyl (Z)-2-(2-(5-acetoxypent-2-en-1-yl)-3oxocyclopentyl)acetate (Z-15b); gram-scale

A 10 mL Schlenk flask was charged with 2 (1.02 g, 4.5 mmol), **14b** (3.05 g, 27 mmol, 6.0 equiv.) and catalyst 13 (0.14 g, 0.23 mmol, 5 mol%). The flask was connected to a vacuum line (400 mbar, dynamic vacuum), and gentle warming (45 °C) was applied while the contents were being stirred. After 3 h, the reaction was quenched by the addition of 5 mL of a solution of ethyl vinyl ether (3 mol L⁻¹ in CH₂Cl₂). Stirring continued for 30 min, at which time Pb(AcO), (1.5 equivalents relative to the catalyst) was added and the mixture stirred overnight. The reaction mixture was then filtered through a short pad of silica (approximately 10 g/0.05 mmol of catalyst) and eluted with four times 55 mL of CH₂Cl₂:AcOEt (10:1, v/v). The combined organic fractions were concentrated at reduced pressure and purified by flash chromatography on SiO₃ (150 g) eluted with AcOEt:n-pentane (3:7, v/v). Product **15b** (1.05 g; 83%, Z:E=93:7) was obtained as a pale yellow oil. GC-MS (EI⁺): m/z (%): 43 (100), 67 (43), 83 (52), 130 (57), 149 (83), 193 (20), 282 (3) [M]+; HRMS (ESI+-TOF): $m/z = 305.1354 \text{ [M + Na]}^+ \text{ (calc. for } C_{15}H_{22}NaO_5 = 305.1359);$ ¹H NMR (CDCl₂, 400 MHz): δ 5.39 (m; 2H), 4.00 (td; J = 6.9, 6.9, 1.3 Hz; 2H), 3.63 (s; 3H), 2.63 (m; 1H), 2.40-2.12 (m; 8H), 2.12–1.9 (m; 1H), 1.98 (s; 3H), 1.86 (dt; J=10.3, 5.4, 5.4 Hz; 1H), 1.45 ppm (m; 1H); 13 C NMR (CDCl₂, 100 MHz): δ 218.7, 172.5, 171.1, 128.6, 127.0, 63.7, 53.9, 51.7, 38.7, 38.0, 37.7, 27.2, 26.9, 25.5, 20.9 ppm.

4.3.2 (2R,3R,4S,5R)-2-(acetoxymethyl)-6-(((Z)-5-(2-(2methoxy-2-oxoethyl)-5-oxocyclopentyl)pent-3-en-1-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (15e)

A two-neck flask fitted with a condenser was charged with 2 (59 mg, 0.26 mmol, 2 equiv.), 14e (53 mg, 0.13 mmol, α : β = 1:1), THF (1 mL) and catalyst **13** (16.6 mg, 0.03 mmol, 20 mol% relative to 14e). A gentle stream of argon was passed through the solution, and the mixture was warmed to 45 °C. The reaction was stirred overnight (approximately 18 h) and worked up as described for 15b [flash chromatography using AcOEt:n-hexane (1:1, (v/v)]. Product 15e (30 mg; 40%, Z:E=60:40) was obtained as a viscous oil. HRMS (ESI+-TOF): $m/z = 593.2181 \text{ [M + Na]}^+ \text{ (calc. for }$ $C_{27}H_{38}NaO_{13} = 593.2205$); ¹H NMR (CDCl₂, 400 MHz): δ 5.44 (m; 2H), 5.19 (m; 1H), 5.03 (m; 2H), 4.50 (d; J = 2.9 Hz; 1H), 4.26 (m; 1H), 4.05 (m; 2H), 3.87 (m; 1H), 3.70 (m; 4H), 3.46 (m; 1H), 2.66 (m; 1H), 2.32 (m; 7H), 2.07 (m; 13H), 1.91 (m; 1H), 1.66 ppm (m; 1H); 13 C NMR (CDCl₂, 100 MHz): δ 218.9, 172.6, 170.8, 170.4, 169.6, 169.5, 128.4, 127.5, 100.9, 73.0, 71.9, 71.4, 69.6, 68.6, 62.1, 54.1, 51.8, 38.6, 38.1, 37.9, 27.4, 25.7, 25.7, 20.9, 20.8, 20.8, 20.8 ppm (β-anomer).

Acknowledgments: All experimental work of this study was supported by the Max Planck Society and the DFG (ChemBioSys, CRC 1127). Special thanks go to Kerstin Ploss for HRMS measurements and to Emily Wheeler for editorial assistance.

References

- 1. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 2013;111:1021-58.
- 2. Machado RAR, McClure M, Hervé MR, Baldwin IT, Erb M. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. Elife 2016;5:e13720.
- 3. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, et al. (+)-7-iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 2009;5:344-50.
- 4. Inoue M, Nishi T, Kitahara T. Enantioselective synthesis of both the enantiomers of jasmine ketolactone and its epimer. Biosci Biotechnol Biochem 1999;63:1122-4.
- 5. Nishi T, Kitahara T. Synthesis of natural (+)-methyl tuberonate, (-)-jasmine ketolactone and its epimer. Proc Japan Acad 1995;71B:20-3.
- 6. Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 2004;16:2117-27.
- 7. Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 2008;177:114-27.
- 8. Koo AJ, Howe GA. The wound hormone jasmonate. Phytochemistry 2009;70:1571-80.
- 9. Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. J Exp Bot 2017;68:1303-21.
- 10. Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, et al. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem 2014;289:29728-38.
- 11. Nakamura Y, Mithöfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, et al. 12-hydroxyjasmonic acid glucoside is a COI1-JAZ-independent activator of leaf-closing movement in Samanea saman. Plant Physiol 2011;155:1226-36.

- 12. Jimenez-Aleman GH, Machado RA, Görls H, Baldwin IT, Boland W. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. Org Biomol Chem 2015;13:5885-93.
- 13. Jimenez-Aleman GH, Machado RAR, Baldwin IT, Boland W. JA-Ilemacrolactones uncouple growth and defense in wild tobacco. Org Biomol Chem 2017;15:3391-5.
- 14. Kiyota H, Oritani T, Kuwahara S. Synthesis and biological evaluation of abscisic acid, jasmonic acid, and its analogs. In: Clark J, Ohkawa H, editors. Discoveries in agrochemicals. ACS symposium series, Vol. 892. Washington, DC: American Chemical Society, 2004:246-54.
- 15. Lauchli R, Boland W. Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism. Chem Rec 2003;3:12-21.
- 16. Blechert S, Bockelmann C, Brümmer O, Füßlein M, Gundlach H, Haider G, et al. Structural separation of biological activities of jasmonates and related compounds. J Chem Soc Perkin Trans 1 1997:3549-59.
- 17. Heinrich CF, Widemann E, Sanz J, Lugan R, Heitz T, Pinot F, et al. A route for the total synthesis of enantiomerically enriched jasmonates 12-COOH-JA and 12-COOH-JA-Ile. Eur J Org Chem 2015;2015:1130-6.
- 18. Nakamura Y, Miyatake R, Matsubara A, Kiyota H, Ueda M. Enantio-differential approach to identify the target cell for glucosyl jasmonate-type leaf-closing factor, by using fluorescencelabeled probe compounds. Tetrahedron 2006;62:8805-13.
- 19. Wasternack C. Action of jasmonates in plant stress responses and development-applied aspects. Biotechnol Adv 2014;32:31-9.
- 20. Yu M, Schrock RR, Hoveyda AH. Catalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide. Angew Chem Int Ed 2015;54:215-20.
- 21. Meek SJ, O'Brien RV, Llaveria J, Schrock RR, Hoveyda AH. Catalytic Z-selective olefin cross-metathesis for natural product synthesis. Nature 2011;471:461-6.
- 22. Herbert MB, Grubbs RH. Z-selective cross metathesis with ruthenium catalysts: synthetic applications and mechanistic implications. Angew Chem Int Ed 2015;54:5018-24.
- 23. Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH. Improved ruthenium catalysts for Z-selective olefin metathesis. J Am Chem Soc 2012;134:693-9.
- 24. Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 2012;159:1159-75.
- 25. Vadassery J, Reichelt M, Jimenez-Aleman GH, Boland W, Mithöfer A. Neomycin inhibition of (+)-7-iso-jasmonoyl-L-isoleucine accumulation and signaling. J Chem Ecol 2014;40:676-86.
- 26. Connon SJ, Blechert S. Recent developments in olefin crossmetathesis. Angew Chem Int Ed Engl 2003;42:1900-23.
- 27. Caggiano L, Castoldi D, Beumer R, Bayón P, Telser J, Gennari C. Effects of allylic and homoallylic substituents on the ring closing metathesis reaction used to synthesise simplified eleuthesides. Tetrahedron Lett 2003;44:7913-9.
- 28. Keitz BK, Endo K, Herbert MB, Grubbs RH. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J Am Chem Soc 2011;133:9686-8.
- 29. Koh MJ, Khan RK, Torker S, Yu M, Mikus MS, Hoveyda AH. High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis. Nature 2015;517:181-6.

- 30. Widemann E, Grausem B, Renault H, Pineau E, Heinrich C, Lugan R, et al. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 2015;117:388-99.
- 31. Kitaoka N, Kawaide H, Amano N, Matsubara T, Nabeta K, Takahashi K, et al. CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-0-beta-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. Phytochemistry 2014;99:6-13.
- 32. Hartmann O, Kalesse M. The total synthesis of (-)-Aurafuron A. Org Lett 2012;14:3064-7.
- 33. Hernández D, Nielsen L, Lindsay KB, López García MA, Bjerglund K, Skrydstrup T. Stereocontrolled synthesis of 2-substituted-1,3-azasilaheterocycles. Org Lett 2010;12:3528-31.

- 34. Konstantinovic S, Predojevic J, Gojkovic S, Pavlovic V. Synthesis of (ω)-unsaturated O-protected glucosides as precursors for unsaturated neutral bolaforms. Indian J Chem 2003;42B:666-9.
- 35. Nakamura Y, Miyatake R, Inomata S, Ueda M. Synthesis and Bioactivity of Potassium β -D-Glucopyranosyl 12-Hydroxy Jasmonate and Related Compounds. Biosci Biotechnol Biochem 2008;72:2867-76.
- 36. Ritter T, Hejl A, Wenzel AG, Funk TW, Grubbs RH. A standard system of characterization for olefin metathesis catalysts. Organometallics 2006;25:5740-5.

Supplemental Material: The online version of this article (DOI: 10.1515/znc-2017-0104) offers supplementary material, available to authorized users.