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Abstract: Cytochrome P450 monooxygenases (P450s) are 
ubiquitous enzymes with a broad substrate spectrum. 
Insect P450s are known to catalyze reactions such as the 
detoxification of insecticides and the synthesis of hydro-
carbons, which makes them useful for many industrial 
processes. Unfortunately, it is difficult to utilize P450s 
effectively because they must be paired with cytochrome 
P450 reductases (CPRs) to facilitate electron transfer from 
reduced nicotinamide adenine dinucleotide phosphate 
(NADPH). Furthermore, eukaryotic P450s and CPRs are 
membrane-anchored proteins, which means they are 
insoluble and therefore difficult to purify when expressed 
in their native state. Both challenges can be addressed by 
creating fusion proteins that combine the P450 and CPR 
functions while eliminating membrane anchors, allowing 
the production and purification of soluble multifunctional 
polypeptides suitable for industrial applications. Here we 
discuss several strategies for the construction of fusion 
enzymes combining insect P450 with CPRs.

Keywords: biotechnology; cytochrome P450; fusion pro-
teins; insects; protein expression.

1  �Introduction
The cytochrome P450  monooxygenases (P450s) are a 
ubiquitous superfamily of heme-thiolated monooxyge-
nases that have been strongly conserved during evolution 
[1]. P450s fulfil diverse functions, including the meta-
bolism of xenobiotics and drugs [2], steroid biosynthesis 
[3] and the assimilation of carbon sources for growth [4]. 
They were first discovered in 1958 and were isolated from 
mammalian liver microsomes in 1964 [5–7]. More than 

1000 P450 families have been described and ~21,000 dif-
ferent P450s are known, with the number still growing [8]. 
A P450 nomenclature was introduced in 1987 comprising 
the prefix CYP followed by a family number, a subfam-
ily letter and finally a number representing the specific 
enzyme, e.g. CYP6A1 [9]. All P450s form similar second-
ary and tertiary structures [10–12] which combine with 
a heme cofactor that forms the catalytic reaction center. 
Heme comprises a central iron atom bound to a proto-
porphyrin ring by four nitrogen ligands forming a planar 
structure. The iron atom is additionally coordinated by an 
evolutionarily conserved axial cysteine ligand (FXXGXXX-
CXG) located near the C-terminus of the P450 [1]. The iron 
atom is often associated with water as a sixth ligand. The 
heme cofactor is responsible for Soret band absorbance at 
420 nm when it is coordinated with water. The absorbance 
signal shows a typical shift to 450 nm when carbon mon-
oxide is bound at the opposite axial position, which is the 
basis of the superfamily name: pigment 450 [6].

1.1  �Reactions catalyzed by cytochrome 
P450 monooxygenases

P450s cannot catalyze reactions on their own because they 
need to accept electrons from a cytochrome P450 reduc-
tase (CPR) redox partner, as shown in Figure 1. The reac-
tion requires two electrons, derived from a nicotinamide 
cofactor [13]. Prosthetic groups, such as flavin adenine 
dinucleotide (FAD) and flavin mononucleotide (FMN) 
derived from riboflavin, serve as electron transfer centers. 
P450s activate molecular oxygen and catalyze unique one-
step C–H bond oxidations by the insertion of one oxygen 
atom into the substrate while the other forms water [14, 
15]. They can catalyze diverse reactions (Figure 2) and the 
nature of these reactions and the corresponding substrates 
does not appear to depend on the sequence of the P450 or 
its evolutionary proximity to other P450s [1]. Insects and 
mammals produce approximately 80 different P450s but 
in plants there is much greater diversity, e.g. there are 286 
P450s in Arabidopsis thaliana. Plant P450s are designated 
as A-type or non-A-type. The former are specific to plants 
and fulfil functions such as herbicide metabolism and the 
synthesis of volatiles involved in plant–insect interac-
tions, whereas the latter are more like the P450s in other 
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phyla and fulfil similar roles, e.g. sterol and fatty acid 
metabolism [17]. The most common reaction is monooxy-
genation, resulting in the hydroxylation or epoxidation of 
a carbon center (Figure 2A). Others include oxidation and 
dealkylation at a heteroatom, and complex reactions such 
as single electron reductions, desaturations and ring modi
fications alongside typical oxidations [18] (Figure 2B). 
These reactions are often regiospecific and stereospecific, 
and thus difficult to replicate by total chemical synthesis. 
The selectivity of P450s is one reason they are valued in 
the context of industrial processes.

1.2  �Insect P450s and their potential 
applications

Insect P450s are structurally and functionally similar 
to their better-characterized mammalian counterparts. 
More than 100 enzymes have been identified from diverse 
insect species, and many are components of important 
metabolic pathways [19]. They facilitate growth, devel-
opment, feeding [1] and the degradation of endogenous 
compounds and xenobiotics [20]. An important example 
of the role of insect P450s in development is provided 
by the so-called Halloween genes: phantom (CYP306A1), 
disembodied (CYP302A1), shadow (CYP315A1), and shade 
(CYP314A1). These are responsible for the four last hydroxy
lation steps that convert steroid precursors into ecdy
steroids, with CYP314A1 catalyzing the final conversion of  
ecdysterone to its more active derivative 20-hydroxy
ecdystone [21]. The importance of insect P450s in xeno
biotic degradation is exemplified by their role in resistance 
to plant toxins and pesticides, which is often achieved 
by the overexpression of P450 genes targeting these 
compounds [1, 22]. Insect P450s can be microsomal or 
mitochondrial. Microsomal P450s depend on a CPR or 

cytochrome b5 (or both) as an electron donor, whereas 
mitochondrial P450s depend on an adrenodoxin-like 
ferredoxin coupled to adrenodoxin reductase. Six P450 
families are known in insects, five of which are not found 
in other organisms (CYP6, CYP9, CYP12, CYP18 and 
CYP28). The expression levels of P450s in insects can vary 
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Figure 2: (A) Common and (B) uncommon reactions catalyzed by 
cytochrome P450 monooxygenases [16].
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Figure 1: Schematic representation of the P450-redox partner inter-
action. P450, cytochrome P450 monooxygenase; CPR, cytochrome 
P450 reductase; FAD, flavin adenine dinucleotide; FMN, flavin 
mononucleotide; NADPH, reduced nicotinamide adenine dinucleo-
tide phosphate.
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across different life stages [23] and they are expressed in 
several tissues, such as the Malpighian tubules, fat body 
and midgut [24]. There is no clear phylogenetic distinction 
between the P450s involved in physiological homeosta-
sis and those required for detoxification, suggesting that 
the function of P450s can change over evolutionary time-
scales [24].

The first purified insect CPR was prepared from the 
common housefly (Musca domestica) and was shown to be 
similar to mammalian CPRs [25]. The first purified insect 
P450 was the xenobiotic-degrading enzyme CYP6A1 also 
from the housefly, which was reconstituted in an Escheri-
chia coli system allowing the identification of aldrin and 
heptachlor as substrates [26]. CYP6A1  has a spacious 
heme active site which is compatible with several sub-
strate geometries and orientations [27]. Similarly, CYP6G1 
from the fruit fly (Drosophila melanogaster) can be classed 
as a multi-pesticide degrading enzyme because it confers 
resistance towards several structurally unrelated com-
pounds [28]. Insects are known to produce hydrocarbons 
that prevent desiccation and that also function as contact 
pheromones [29]. The underlying biosynthesis pathway 
involves the decarbonylation of aldehydes to form alkanes 
by CO2 cleavage. The first P450  shown to catalyze this 
unusual reaction was D. melanogaster CYP4G1 [30].

The large number of different P450s produced by 
insect species combined with the diversity of insects offers 
a vast library of enzymes with a broad range of catalytic 
activities. These could be used to investigate the origin 
of pesticide resistance and to facilitate the development 
of new insecticides that inhibit P450s [24]. Furthermore, 
insect P450s could also be deployed as industrial enzymes 
for the production of fine chemicals and pharmaceuticals 
that cannot be produced economically by total chemical 
synthesis [31] or for the development of new processes 
based on bioelectrocatalysis [32]. Finally, they could be 
used for remediation purposes, such as the removal of 
pesticide residues and other xenobiotics from wastewater 
and the environment [33].

1.3  �Challenges hindering the production 
of recombinant P450s

The functional analysis and exploitation of insect P450s is 
challenging because they are membrane-bound enzymes 
that require various electron donors [1]. The standard 
approach to determine the catalytic activity of P450s is 
heterologous expression and reconstitution [22], but the 
enzymes must be reconstituted in a system containing 
detergents and phospholipids for solubilization, and the 

correct CPR components and cofactors must be supplied 
[34, 35]. P450s do not tolerate solvents well, so many 
efforts to solubilize the enzymes render them inactive [31]. 
Because P450s have diverse substrates, the activity of a 
recombinant enzyme can only be established by screen-
ing a library of substrates, some of which are also only 
sparing soluble [31]. Finally, the industrial application of 
P450s is also hampered by the need for the expensive elec-
tron donor nicotinamide adenine dinucleotide phosphate 
(NADPH) [31, 36, 37]. Catalytically active insect P450s have 
been expressed in E. coli [38] and insect cell lines [30] 
but in all cases the yields were insufficient for industrial 
application.

1.4  �Addressing the challenges by 
constructing P450 fusion enzymes

The challenges described above can potentially be over-
come by constructing P450 fusion enzymes that incor-
porate the necessary CPR components and eliminate 
sections of the polypeptide that hinder expression and 
reconstitution, such as the membrane anchor. Nature has 
provided promising evidence to support this approach 
because several natural P450 fusion enzymes have 
already been discovered [39] as listed in Table 1. CYP102A1 
and CYP11B2 have been studied in detail to develop strate-
gies for the design of artificial fusion proteins and protein 
evolution methods, and these are discussed below.

1.4.1  �CYP102A1 (BM3)

Bacillus megaterium CYP102A1 (also known as BM3) is a 
fatty acid hydroxylase which catalyzes reactions without 
the assistance of additional proteins. It is a natural fusion 
protein, in which the N-terminal catalytic P450 domain is 
covalently attached via a linker to the C-terminal redox 
domain, constituting an entire class II P450  system [46] 
typical of microsomal eukaryotic P450s [47]. As shown in 
Figure 3, the 66 kDa redox domain (B. megaterium reduc-
tase, BMR) binds FAD and FMN as prosthetic groups, 
making it functionally similar to eukaryotic CPRs [46]. 
Indeed, BMR shares ~33% sequence identity with mam-
malian hepatic CPR. The 55  kDa P450 domain shares 
~25% sequence identity with fatty acid ω-hydroxylases 
of the CYP4 family [48].

Electron transfer from the BMR domain to the heme 
group influences the enzyme activity. The linker length 
is more important for enzyme activity than the amino 
acid composition because it determines the correct 
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relative positions of each domain [49]. BM3  has the 
highest known substrate turnover rate of any P450, oxi-
dizing arachidonic acid at a rate of 5000 min−1 [50]. The 
P450 and BMR domains retain their activities when they 
are separated and presented as two proteins and form 
regiospecific products as similar to those synthesized by 
the full-length enzyme, but the rate of product formation 
is lower [51]. BM3 is an important model for P450 research 
due to its self-sufficiency, high substrate turnover and 
solubility [46].

1.4.2  �CYP116B2 (RhF)

Rhodococcus CYP116B2 (RhF) is a natural fusion enzyme 
comprising an N-terminal P450 domain fused to a 
C-terminal FMN-FeS didomain (FF) by a 22-amino-acid 
linker, as shown in Figure 4 [52]. Its physiological role is 
currently unclear because no natural substrate is known. 
It offers an ideal candidate P450 for direct protein evolu-
tion because it shows high substrate promiscuity, which is 
unusual for P450s. The enzyme catalyzes O-dealkylation, 
aromatic hydroxylation, olefin epoxidation and the asym-
metric sulfoxidation of low-molecular-weight substituted 
aromatics [53].

1.4.3  �Artificial P450 fusion proteins

The engineering of P450s has focused on the optimization 
of the heme domain to improve or expand its catalytic 
performance, to overcome the need for a separate electron 
donor, to remove the need for NADPH, and to remove the 
membrane anchor [32]. Early strategies included enzy-
matic [54] and photochemical [55] cofactor regeneration, 
or chemical [56] and electrochemical [57] cofactor sub-
stitution. However, the construction of artificial fusion 
proteins to create self-sufficient P450s with integral reduc-
tases has received attention more recently [58]. Three 
major strategies have been developed: LICRED, PUPPET 
and “Molecular Lego”.

LICRED is a high-throughput method for the develop-
ment of P450 fusion proteins in which a vector contain-
ing a ligation-independent cloning (LIC) site adjacent to 
the CYP116B2 reductase domain (RED) allows the rapid 
insertion of P450 genes [59, 60]. PUPPET is a platform 
in which three proliferating cell nuclear antigen (PCNA) 
fusion proteins are used to form a heterotrimer that 
recruits P450 into a complex with its electron donors, 
hence PUPPET refers to “proliferating cell nuclear anti-
gen-utilized protein complex of P450 and its two electron 
transfer-related proteins” [61, 62]. Finally, the “Mole-
cular Lego” method involves the combination of P450 
enzymes with the BMR domain from the natural protein 
BM3 described above, to make recombinant enzymes 
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Figure 3: Schematic representation of the natural P450-redox 
partner fusion enzyme BM3. BMR, Bacillus megaterium reductase 
domain; P450, cytochrome P450 monooxygenase domain; FAD, 
flavin adenine dinucleotide; FMN, flavin mononucleotide; NADP+ 
and NADPH, oxidized and reduced nicotinamide adenine dinucleo-
tide phosphate, respectively.
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Figure 4: Schematic representation of the natural P450-redox 
partner fusion enzyme RhF. FF, FMN-FeS didomain.

Table 1: Examples of natural P450 fusion enzymes.

Name Origin Domains (N→C) Reference

CYP102A1/BM3 Bacillus megaterium P450-FMN-FAD [40]
CYP11B2/RhF Rhodococcus sp. strain NCIMB 9784 P450-FMN-Fe/S Red [41]
CYP51fx Methylococcus capsulatus P450-Fdx [42]
Xp1A Rhodococcus rhodochrous FMN-P450 [43]
CYP221A1 Pseudomonas fluorescens Acyl CoS-DeH-P450 [44]
CYP5253A1 Mimivirus P450-? [45]
CYP55A1 Fusarium oxysporum P450 [39]

The domain structure is shown from the N-terminus. P450, cytochrome P450 monooxygenase; FMN, flavin mononucleotide; FAD, 
flavin adenine dinucleotide; FMN-Fe/S Red, FMN-containing reductase with a [2Fe2S] ferredoxin-like center; Fdx, ferredoxin 
domain; Acyl CoS-DeH, P450-acyl-CoA dehydrogenase; ?, protein of unknown function containing several putative post-translational 
modification sites.
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with novel catalytic activities [63]. Soluble, self-sufficient 
human P450-BMR fusion enzymes have been created by 
removing the hydrophobic N-terminal membrane anchor 
domain from the insoluble human enzyme before fusion 
to the BMR sequence (Figure 5). This made it possible to 
purify the enzyme without detergents while retaining cat-
alytic activities similar to wild-type P450s [64]. In addi-
tion to these three strategies, another method involves 
the exchange of shorter amino acid sequences between 
BM3 and novel insect P450s, an approach known as 
scanning chimeragenesis [65].

2  �Results

2.1  �Construction of insect P450 fusion 
enzymes using the “Molecular Lego” 
approach

2.1.1  �Cloning strategy

The “Molecular Lego” approach described above for 
human P450s is also ideal for the preparation of soluble 
and self-sufficient insect P450 fusion proteins because 
the BMR domain has a similar catalytic mechanism to the 
housefly CPR [1]. Two candidate insect P450s were there-
fore selected as shown in Table 2. In each case, codon 

usage was optimized for E. coli and the N-terminus was 
truncated by approximately 20 amino acids to remove the 
membrane anchor domain. It is important not to remove 
too many residues because this can compromise P450 
activity, e.g. residues 21–82 of human CYP2E1 are neces-
sary for heme incorporation and correct heme pocket 
folding [64]. Furthermore, the N-terminus should not 
include any hydrophobic amino acids, so the precise 
number of residues for removal was determined based on 
studies of human P450 enzymes used for the construc-
tion of fusion proteins [35]. This comparison suggested 
that residues 1–23 probably functioned as the membrane 
anchor and should be dispensable in terms of catalytic 
activity, so N-terminal trimming was carried out as shown 
in Figure 6. The linker determines the interaction between 
the P450 and BMR domains thus facilitating electron flow 
[69–71] and reducing its length by just six residues can 
abolish the activity of the fusion enzyme [49]. We there-
fore chose a linker containing 29 amino acids. The two 
P450-BMR fusion proteins were then prepared using the 
cloning strategy explained in Figure 7.
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fusion enzymes [32].

Table 2: Characteristics of the insect P450s used for the prepara-
tion of fusion proteins.

P450   Origin   Substrates   GenBank

CYP6A1   Musca domestica  Heptachlor, aldrin [66]   M25367.1
CYP6G1   Drosophila 

melanogaster
  Imidacloprid, dichloro

diphenyltrichloroethane, 
methoxychlor [67, 68]

  AAF58557.1

Figure 6: N-terminal sequence alignment of the CYP6A1 and 
CYP6G1 proteins. The slashes highlighted in green indicate the start 
of the truncated sequences after removal of the membrane anchor 
domain. Black outline represents identity between residues. Gray 
outline represents similarity between residues.
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2.1.2  �Expression and purification strategy

The constructs were introduced into E. coli for the pro-
duction of soluble recombinant protein, which was 
encouraged by inducing expression at 28 °C. Buffers 
without detergents were used throughout purification, 
and all steps were carried out on ice or using cooled 
devices. The fusion proteins were captured by immobi-
lized metal affinity chromatography (IMAC) and each 
eluted as a single peak in 250 mM imidazole buffer. The 
purity and integrity of the fusion proteins were then con-
firmed by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE). The IMAC elution profile 
and SDS-PAGE analysis of the fusion proteins are shown 
in Figure 8.

2.1.3  �Activity of the fusion proteins

The activity of the reductase domain in the IMAC-purified 
fusion proteins was investigated by measuring NADPH 
turnover, which is an indirect indicator of catalytic activ-
ity and confirms correct protein folding. Reductase activity 

was measured in the presence of aldrin, the substrate for 
CYP6A1 [26], and imidacloprid, the substrate for CYP6G1 
[68], and in controls without substrate. The assays were 
performed for 12 h with measurements taken every minute. 
Denatured proteins were used as negative controls. Figure 9 
shows that the relative activity of purified CYP6A1-BMR 
reached 100%, as determined by NADPH consumption, 
in the presence and absence of substrate. The denatured 
CYP6A1-BMR negative control only achieved a residual 
relative activity of <20%. Similar results were achieved 
with CYP6G1-BMR, although the activity was lower due 
to the lower enzyme concentration. Thus, we were able to 
confirm BMR activity for both insect P450 fusion proteins.

The activity of the P450 domain in the IMAC-purified 
fusion proteins was determined by measuring substrate 
turnover, which also provides evidence for the coopera-
tion between the P450 and BMR domains. In the case of 
CYP6G1-BMR, we measured the conversion of the substrate 
imidacloprid to 4-hydroxyimidacloprid, 5-hydroxyimi-
dacloprid, and 4,5-dihydroxyimidacloprid by ultra-high-
performance liquid chromatography/mass spectrometry 
(UPLC-MS). In the case of CYP6A1-BMR, we measured the 
conversion of the substrate aldrin to dieldrin by gas chro-
matography-mass spectrometry (GC-MS). In both cases, 
we observed the loss of substrate during incubation, but 
the specific products were not detected.

2.1.4  �Heme incorporation and substrate binding of the 
fusion proteins

To investigate the reason for the absence of P450 activ-
ity, we carried out further experiments to confirm heme 
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incorporation into the P450 domain. The absorbance 
spectrum of CYP6G1-BMR showed a peak at 420  nm 
confirming the inclusion of a heme group, whereas the 
absorbance spectrum of CYP6A1-BMR did not show a peak 
at 420 nm suggesting the loss of heme after IMAC purifica-
tion (Figure  10). Accordingly, CYP6A1-BMR was not able 
to catalyze the conversion of aldrin into dieldrin due to 
the absence of a functional catalytic center after purifica-
tion. A photometric heme substrate-binding test was then 
carried out to determine whether the substrate bound to 
the catalytic heme domain of the purified fusion enzyme. 
There was no evidence of heme-substrate interaction, 
which may indicate poor access to the substrate-binding 
site resulting in the absence of a catalytically productive 
binding mode [72].

3  �Materials and methods

3.1  �Gene synthesis

All genes were synthesized with a C-terminal His6-tag 
(GHHHHHH) and were codon optimized for expression 
in E. coli K12 (MWG Eurofins, Ebersberg, Germany). The 

genes encoding the full-length BM3 and insect P450s 
were flanked by BsaI sites for restriction digestion and 
ligation into the vector pASK-IBA33plus (IBA, Göttingen, 
Germany). XbaI and SalI sites were introduced into the 
BM3 gene to enable the removal of the endogenous P450 
domain. The XbaI site was 41 bp upstream of the start 
codon, and the SalI site was inside the linker. Using this 
approach, three plasmids were generated: pASK-IBA33_
BM3, pASK-IBA33_CYP6A1, and pASK-IBA33_CYP6G1.

3.2  �Construction of the P450 fusion enzymes

The cloned insect P450 genes described above were 
amplified by PCR using the primers (MWG Eurofins, 
Ebersberg, Germany) listed in Table 3, adding XbaI and 
SalI sites at the 5′ and 3′ ends, respectively. The PCR prod-
ucts were double digested with XbaI and SalI (restriction 
enzymes from New England Biolabs, Frankfurt am Main, 
Germany) to create ~1500 bp P450 fragments, which were 
ligated into the 5113 bp vector backbone prepared by 
digesting pASK-IBA_BM3  with the same enzymes. This 
created the constructs pASK-IBA33_CYP6A1-BMR and 
pASK-IBA33_CYP6G1-BMR.

3.3  �Expression

Terrific broth medium containing 100 μg/ml carbenicillin 
(Carl Roth, Karlsruhe, Germany), 0.5 mM 5-aminolevulinic 
acid (Sigma-Aldrich, Schnelldorf, Germany), 0.5 mM thia-
mine (Carl Roth, Karlsruhe, Germany), 0.25  μg/ml FeCl3 
(Sigma-Aldrich, Schnelldorf, Germany), 1  μM riboflavin 
(Sigma-Aldrich, Schnelldorf, Germany), and 160 mM d(+)
glucose (Carl Roth, Karlsruhe, Germany) was inoculated 
with a fresh 16  h overnight lysogeny broth culture (Carl 
Roth, Karlsruhe, Germany) of E. coli (Invitrogen, Carlsbad, 
USA) carrying the vectors described above. The expression 
of genes carried on plasmid pASK-IBA33plus was induced 
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Figure 10: Absorbance spectra of purified BM3-CYP6A1 and BM3-
CYP6G1 (300–500 nm). The peak at 420 nm indicates the presence 
of the heme group in the P450 domain of CYP6G1-BMR.

Table 3: Oligonucleotide primers used for the preparation of insect P450 fusion constructs.

Construct Primer name Sequence

pASK-IBA33_CYP6A1-BMR CY6A1d20_fwd_XbaI 5′-GGTATCTAGAATGAGCCGTTGGAACTTTGGGTATTGGAAAC
GTCGTGGTATTCCG-3′

CYP6A1_rev_linker+SalI 5′-CCGGTCGACGGACTAGGGATCCCTCCGAGGGGAATTTTCT
TGCTTTTGATTTTCTTGCGAATTGC-3′

pASK-IBA33_CYP6G1-BMR CYP6G1d20_fwd_XbaI 5′-GGTATCTAGAATGAGCCGCAATCACTCATACTGGCAGCGTA
AAGGGATTCCGTACATTCCG-3′

CYP6G1_rev_linker+SalI 5′-CCGGTCGACGGACTAGGGATCCCTCCGAGGGGAATTTTCT
TGCTTTGAAGCGACGGAGCTGATTG-3′
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with 200 μg/l anhydrotetracycline (IBA, Göttingen, 
Germany). Protein production was triggered by anhydro-
tetracycline once the OD600 reached 0.5. Cells were grown 
at 28 °C for 4  h and harvested by centrifugation before 
lysis.

3.4  �IMAC

The cell pellet was resuspended in 40–60 ml lysis buffer 
[pH 7.5, 30 mM Tris-HCl (Carl Roth, Karlsruhe, Germany), 
100 mM NaCl (Carl Roth, Karlsruhe, Germany), 20% glyc-
erol (v/v) (Carl Roth, Karlsruhe, Germany)], and the lysed 
cells were centrifuged at 75,600 × g for 1  h at 10 °C. The 
supernatant was loaded on a freshly packed and con-
ditioned 3  ml Ni-NTA (Macherey-Nagel, Weilmünster, 
Germany) column, connected to an SE04 system (ECOM, 
Prague, Czech Republic) maintained at 4 °C, at a flow 
rate of 1 ml/min. The column was washed with buffer A 
[30 mM Tris-HCl, 100 mM NaCl, 20% glycerol (v/v), 30 mM 
imidazole (Sigma-Aldrich, Schnelldorf, Germany), pH 7.5] 
at 3 ml/min until the baseline was reached. The enzyme 
was eluted with 250 mM imidazole at 3 ml/min.

3.5  �Activity assay

Each reaction mixture contained 78 μg/ml (CYP6G1-BMR) 
or 162 μg/ml (CYP6A1-BMR) purified fusion enzyme, 
0.5  mM NADPH (Sigma-Aldrich, Schnelldorf, Germany), 
0.1 mM substrate, 25 mM Tris-HCl (pH 7.5), and 20% glyc-
erol (v/v) in a total volume of 200 μl. As controls, samples 
were prepared without NADPH, without substrate and 
with heat-denatured enzyme. The oxidation of NADPH 
was monitored at 340  nm on an Eon microplate reader 
(Biotek, Bad Friedrichshall, Germany) with one measure-
ment every minute for 12 h.

3.6  �UPLC-MS

Each reaction mixture comprised 78 μg/ml purified 
CYP6G1-BMR, 100 μg/ml imidacloprid (Sigma-Aldrich, 
Schnelldorf, Germany), 0.5 mM NADPH and 25 mM Tris-
HCl (pH 7.5). After incubation at room temperature for 
25  h the samples were mixed 1:1  with acetonitrile and 
transported on ice to Chromicent (Berlin, Germany)
for UPLC-MS analysis according to [73]. A Waters (Esch-
born, Germany) UPLC instrument was equipped with an 
AQUITY HSS T3 column (100 × 2.1 mm internal diameter, 
1.8 μm particle size) coupled to a Waters Xevo TQ-S micro 

mass spectrometer. Water with 0.1% formic acid (Sigma-
Aldrich, Schnelldorf, Germany) was used as solvent A 
and acetonitrile (Sigma-Aldrich, Schnelldorf, Germany) 
as solvent B. The injection volume was 5 μl. Each sepa-
ration took 17  min at a flow rate of 0.5  ml/min, starting 
at 95% solvent A (held for 3 min) and decreasing to 40% 
solvent A in 12 min (held for 2 min). MS was operated in 
positive electrospray ionization mode. The source temper-
ature was set at 120 °C with nitrogen flow rates of 20 l/h 
for the cone gas and 1000 l/h for the desolvation gas. The 
desolvation temperature was 600 °C. Standard curves of 
imidacloprid and imidacloprid-olefin (Dr.  Ehrenstorfer, 
Augsburg, Germany) (3.125 μg/ml, 6.25 μg/ml, 12.5 μg/ml, 
25 μg/ml, 50 μg/ml and 100 μg/ml) were prepared in tripli-
cate before the samples were processed. Imidacloprid and 
imidacloprid-olefin were quantified using the correspond-
ing standard curve.

3.7  �Photometric heme substrate-binding 
test

Samples for the photometric heme substrate-binding test 
were transferred to 1 ml cuvettes for analysis in a photom-
eter (Specord 210, Analytik Jena AG, Jena, Germany). The 
baseline was determined using 400 μl of the appropriate 
buffer plus 40 μl dimethylsulfoxide (DMSO) (Carl Roth, 
Karlsruhe, Germany) as the substrate solvent. The first 
measurement from 300 to 500  nm was performed with 
400 μl of an undiluted elution sample of CYP6G1-BMR, or 
denatured CYP6G1-BMR and 40 μl DMSO. After this meas-
urement, 400 μl of the same samples were mixed with 
40  μl 1  mg/ml imidacloprid in DMSO and the measure-
ment was repeated. The results were compared to see if 
the peak shifted from 425 nm to another wavelength.

4  �Conclusions and outlook
The enormous technological potential of insect P450 can 
only be realised if sufficient quantities of high-quality 
active enzymes are made available for molecular and 
biochemical characterisation. We applied the “Molecu-
lar Lego” strategy by constructing the insect P450-BMR 
fusion enzymes for expression as soluble proteins in 
E. coli, allowing their purification without detergents, but 
in vitro P450 activity could not be detected even though 
the BMR domain was functional in both candidates.

Several strategies remain available to improve the 
activity of our insect P450-BMR fusion proteins. The 
fusion proteins could be expressed in other heterologous 
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systems such as insect cells or yeast, which may provide a 
more appropriate molecular environment. Furthermore, 
we used vector pASK-IBA33plus because it has achieved 
the soluble expression of other insect enzymes in E. coli 
[74], but switching to the pCW ori+ system may generate 
better results because the latter is the best characterized 
vector for P450 expression [75]. The linker region could 
be modified by changing its length and/or composition 
to optimize the interaction between the BMR and P450 
domains. The flexibility of the linker and the electron 
transfer rate between the BMR and P450 domains could 
also be improved by random or site-directed mutagen-
esis. In addition, the elimination of potential protease 
cleavage sites could enhance the stability of the fusion 
protein. Increasing the length of the N-terminus may 
improve enzyme activity because excessive truncation 
can inhibit heme incorporation and correct heme pocket 
folding [64]. The versatile RhF reductase domain may 
also prove useful because this has been previously suc-
cessfully combined with P450s from other sources [76, 
77]. X-ray diffraction data provide a more rational basis 
for the design of P450-CPR fusion proteins, but no crystal 
structures are yet available for the insect P450s [64]. Our 
results provide a solid foundation for future work on 
insect P450s, including their exploitation for industrial 
processes.

Funding: Hessen State Ministry of Higher Education, 
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