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Abstract: The farming of edible insects is an alternative 
strategy for the production of protein-rich food and feed 
with a low ecological footprint. The industrial produc-
tion of insect-derived protein is more cost-effective and 
energy-efficient than livestock farming or aquaculture. 
The mealworm Tenebrio molitor is economically among 
the most important species used for the large-scale con-
version of plant biomass into protein. Here, we review the 
mass rearing of this species and its conversion into food 
and feed, focusing on challenges such as the contamina-
tion of food/feed products with bacteria from the insect 
gut and the risk of rapidly spreading pathogens and para-
sites. We propose solutions to prevent the outbreak of 
infections among farmed insects without reliance on anti-
biotics. Transgenerational immune priming and probiotic 
bacteria may provide alternative strategies for sustainable 
insect farming.

Keywords: edible insects; immune priming; insect mass 
rearing; probiotics; Tenebrio molitor.

1  Introduction
Alternative food and feed sources are needed for the 
continually growing world population, particularly the 
increasing demand for protein-rich food and livestock 
feed [1–3]. Reducing meat-based diets will be benefi-
cial for environmental, health and economic factors [4]. 
Current feed protein sources such as soybean and fish-
meal are imported into the European Union (EU) and the 

cost is expected to increase [5]. Alternatives are there-
fore required to reduce the EU’s economic dependence 
on imports [6]. Furthermore, large amounts of food and 
nonprofitable side streams from industrial processes 
are currently wasted [7], but this could be used as feed 
for insects, which can convert diverse waste streams 
into protein. Edible insects are therefore gaining atten-
tion among the research community: in 2007, the search 
term “edible insects” recovered 12 publications listed in 
PubMed, but this had increased to more than 40 publi-
cations in 2016. More than 2000 edible insect species 
are known worldwide, but only a few are produced com-
mercially [8, 9]. These species show diverse nutritional 
profiles but insects are generally considered as good 
alternative protein sources for humans, livestock and 
aquaculture, which can be produced in an environmen-
tally sustainable manner, although several potential 
safety issues have been raised [3, 10–14].

In this review, we focus on the yellow mealworm 
beetle Tenebrio molitor. The larvae of this species 
(known as mealworms) are often used as pet food, and 
they offer a promising alternative protein-rich animal 
feed [3, 15]. Mealworms are not only suitable as animal 
feed but they are also considered ideal for human nutri-
tion and have even been recommended as a bioregen-
erative life support system for space missions [16, 17]. 
Industrial companies such as Ynsect (Paris, France) 
produce tons of mealworm biomass per week and have 
become leaders in the large-scale farming of this insect. 
Tenebrio molitor is also well known as a model organ-
ism for studies of innate immunity, and a complete mito-
chondrial genome sequence has been published [18–21]. 
Tenebrio molitor is closely related to the flour beetles 
Tribolium castaneum and Tribolium confusum, which 
are widely used as model organisms to study insect 
development and immunity, with a complete genome 
sequence published for T. castaneum. Much more back-
ground knowledge is therefore available for T. molitor 
than other edible insects, allowing the utilization of 
this knowledge to develop state-of-the-art mass rearing 
management systems. This article will first consider the 
potential benefits and risks of mealworms as food and 
feed, followed by the proposition of measures to exploit 
the benefits and overcome the risks.
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2  �The benefits of mealworms as 
food and feed

2.1  �Excellent nutritional value

The nutritional components of mealworms can be clas-
sified as “high in” and “source of” according to the 
thresholds for World Health Organization and Food and 
Agriculture Organization of the United Nations food labels 
[13, 22] (Figure 1A–D). Mealworms have a high content of 
protein (13.68–22.32 g/100 g edible portion) and fat (8.90–
19.94 g/100 g edible portion) and also provide considerable 
amounts of polyunsaturated fatty acids [13]. Mealworms 
are also categorized as a source of zinc and are high in 
magnesium, but they contain only low levels of calcium 
[13]. Furthermore, mealworms can be labeled as a source 
of niacin and as high in pyridoxine, riboflavin, folate and 
vitamin B12 [13]. The nutritional profile of mealworms has 
been compared with conventional meats, revealing that 
mealworms have a significantly higher nutritional value 
than beef and chicken and are not significantly less nutri-
tionally balanced [23]. They also provide a good source of 
all essential amino acids [11].

2.2  �Good alternative to fish meal and 
soybean meal as feed for livestock and 
aquaculture

The nutrient profile of mealworms is similar to that of 
fish and soybean meal, and so is the essential amino acid 

profile (Figure 1H), so mealworms provide a good alterna-
tive livestock feed [28]. Several poultry diet studies have 
shown that the replacement or partial replacement of fish 
or soybean meal with mealworms resulted in similar or 
even slightly better growth performance and digestibility 
[29–31]. Similar to soybean meal, the limiting essential 
amino acid in mealworms is methionine [32]. The low 
calcium levels in mealworms can be avoided by feeding 
the larvae on calcium-enriched diets [33, 34]. Furthermore, 
mealworms have been tested in various aquaculture set-
tings and up to 25% of the traditional feed can be replaced 
without compromising the yields achieved on the stand-
ard diet, whereas higher proportions of mealworm had a 
negative effect [27, 35–37]. For shrimp farming, the com-
plete replacement of fish meal with mealworms resulted 
in an increase in body weight and lipid content [38]. Fur-
thermore, the supplementation of weaning pig diets with 
up to 6% pulverized mealworm improved growth perfor-
mance and nutrient digestibility [39]. Further research is 
required to optimize the dietary proportion of mealworms 
to achieve the best yields. Nevertheless, current results 
suggest that mealworms could often replace or partially 
replace fish and soybean meal as livestock feed, which 
would reduce the EU’s dependence on imported feed 
because the insects can be reared locally.

2.3  �Environmentally sustainable production 
for human food

The mass rearing of animals has a negative environmen-
tal impact by producing large amounts of greenhouse gas 
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Figure 1: Nutritional values and sustainability of mealworms and conventional food/feed. (A–D) The nutritional value of a 100-g edible 
portion of mealworms compared with various livestock meats. (E–G) The comparative effect of mealworms and livestock on the environment, 
presented as water footprint per edible ton, global warming potential (GWP) for each 1 kg edible portion, and land use for each 1 kg edible 
portion. (H) Essential amino acid (EAA) comparison of mealworms and classic feeds such as soybean and fish meal. Values adapted from 
Payne et al. [23], de Vries and de Boer [24], Miglietta et al. [25], Oonincx and de Boer [26], and Sánchez-Muros et al. [27].
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and ammonia, and using large amounts of water, energy 
and land. The water footprint per edible ton of mealworms 
is 4341 m3/t, which is comparable to that of chicken meat 
and 3.5 times lower than that of beef (Figure 1E) [25]. The 
energy used to produce 1 kg of fresh mealworms is similar 
to that used in the production of beef and pork, but the 
land area required was much less compared with beef, 
chicken and pork [26]. The production of ammonia and 
greenhouse gasses (CO2, N2O and CH4) was significantly 
lower for mealworms compared with livestock (Figure 1F) 
[40]. Mealworms also require less land for the produc-
tion of 1 kg of edible protein compared with livestock 
(Figure 1G) [13].

Another parameter to consider when rearing animals 
is the feed conversion efficiency. When provided with an 
optimal diet, mealworms convert feed as efficiently as 
poultry, and the nitrogen use efficiency is higher than 
traditional livestock [41]. Furthermore, high-protein diets 
improve larval survival and reduce the duration of devel-
opment [41]. Mealworms can therefore be reared in a more 
environmentally sustainable manner than livestock in 
addition to achieving similar nutritional values, support-
ing their use as a protein source for human food.

3  �The risks of edible insects as food 
and feed

3.1  �Microbial contamination

Microbial safety and shelf life are influenced by the micro-
bial load of the original product [42]. Mealworms are 
used as food and feed without removing the gut, so any 
microbes therein (including pathogens) are transmitted 
to livestock and human consumers. The microbial profile 
of commercially reared mealworms has been investigated 
using both culture-dependent and culture-independent 
methods. Several culture-based studies that measured 
the number of microbial colony forming units (CFUs) 
revealed that freeze-dried or fresh mealworms contain 
large numbers of aerobic bacteria (up to 8 log CFU/g) 
when the larvae are pulverized. This is higher than the rec-
ommended values for minced meat, which is considered 
comparable (EC 1441/2007) [43–47]. The pulverized larvae 
also contained 7.2 log CFU/g enterobacteria, 3.6 log CFU/g 
endospores, and up to 5.3 log CFU/g yeast and fungi [43, 
45, 46]. The log CFU/g values decreased to less than two 
when the larvae were not completely pulverized before 
measuring the microbial load [48], but this could reflect 
the trapping of microbes in the gut, which would prevent 

their cultivation, although they would still be found in the 
final product.

Even so, the high microbial load in the mealworms 
did not include typical food-borne pathogens such as 
Salmonella spp. or Listeria monocytogenes [43–47]. A short 
heating or blanching step significantly reduced the total 
bacterial load as well as the enterobacteria count [43, 49]. 
The mealworm cuticle is also covered with microbes due 
to the larvae eating and defecating in the same environ-
ment (Mitschke, personal communication), but the effects 
of surface sterilization have not been investigated. Cul-
ture-independent next-generation sequencing has been 
used to analyze the mealworm microbiota and define 
the operational taxonomic units (OTUs). In one study, 
the mealworms were dominated by three bacterial phyla 
that are common in insects: Proteobacteria (35.9%), Fir-
micutes (31.1%) and Actinobacteria (26.9%) [50]. Overall, 
the genus Propionibacterium was the most abundant 
OTU (22.2%). These are Gram-positive rod-shaped bacte-
ria with probiotic properties in humans, although some 
species are opportunistic pathogens [51, 52]. Another 
study found that the three dominant bacterial phyla 
were Tenericutes (44.2%), Proteobacteria (39.22%) and 
Firmicutes (13.09%), and the genus Spiroplasma was the 
most abundant OTU (44.1%) [48]. A third study confirmed 
the dominance of Tenericutes (36.6%), Proteobacteria 
(34.1%), and Firmicutes (26.2%), and at the genus level 
also Spiroplasma (38.7%) [53]. Members of the genus Spi-
roplasma are small, helical, motile and wall-less bacteria 
[54]. These species promote male-killing to yield extreme 
female-biased sex ratios in insects and can also cause dis-
eases in mammals, including humans [55–58]. However, 
Spiroplasma spp. can also increase the fitness of insect 
hosts by acting as mutualists and protecting the host 
against pathogens [59].

Reproductive manipulators such as Spiroplasma, 
Wolbachia and Rickettsia, which are known to infect a 
wide variety of insects, could disrupt breeding programs 
during the mass rearing of insects and could act as patho-
gens in livestock or human consumers. However, these 
bacteria cannot be eliminated entirely due to their poten-
tial protective effects. More research is therefore needed to 
understand the relationship between the insect host and 
its symbionts and pathogens, with the aim of fine-tuning 
this balance according to human needs.

3.2  �Parasites and prions

The cestode Hymenolepis diminuta, commonly known as 
the rat tapeworm, uses a variety of insects as intermediate 
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hosts, including the mealworm beetle. The parasite devel-
ops in the host’s hemocoel and inhibits its reproductive 
success [60, 61]. Infected mealworms consumed by the 
definitive host (usually rodents, but also livestock and 
humans) thus transmit the parasite, resulting in enteritis, 
anorexia and gut irritation [62, 63]. The single-cell para-
site Gregarina niphandrodes primarily infects arthropods, 
and although the infection of mealworms does not influ-
ence the population dynamics, it does reduce the lifespan 
of the adult beetle [64, 65].

Prion diseases (transmissible spongiform encepha-
lopathies) are fatal neurodegenerative diseases affecting 
both humans and livestock [66, 67]. Insect-specific prions 
have not yet been described, but the uptake of prions 
when insects consume prion-containing food of animal 
origin cannot be ruled out [68].

To the best of our knowledge, there is no documented 
evidence thus far of infections during the mass rearing 
of mealworms. However, the risk cannot be completely 
excluded because analogous situations have arisen in 
other insects, such as densovirus infectious during the 
commercial rearing of the house cricket Acheta domes-
ticus [69]. Invertebrate pathogens are encountered more 
frequently in mass rearing systems, often due to over-
crowding and stress, such as microsporidian infections in 
mites reared commercially for pest control [70].

3.3  �Antibiotic use

The mass rearing of livestock often involves the confine-
ment of animals in crowded conditions where they are 
bred and managed for maximum yield, with a negative 
effect on their health and immune system [71]. Antibiotics 
are therefore used as growth promoters and prophylactics, 
which has led to an explosive increase in the prevalence 
of antibiotic-resistant bacteria, threatening livestock and 
human health [71, 72]. Although the use of antibiotics to 
promote growth is restricted in the EU [73], even the thera-
peutic use of antibiotics has resulted in the spread of anti-
biotic-resistant bacteria among livestock [74, 75].

The microbiota of the mealworm beetle is vulnerable 
to antibiotics, which reduce the bacterial diversity as well 
as the bacterial load, but it is stable against environmen-
tal factors [53]. Furthermore, sterile mealworms perform 
poorly, suggesting that the microbiota is required for the 
efficient digestion and detoxification of plant secondary 
products [76]. In other insects, antibiotic use can shorten 
the development time as well as reduce the number of 
eggs [77–79]. Although the treatment of edible insects with 
antibiotics could solve some of the problems discussed 

previously, the benefits are outweighed by the negative 
side effects in addition to the known problem of increas-
ing the spread of antibiotic-resistant pathogens.

3.4  �Pesticides and toxins

The mass rearing of insects for feed and food could result 
in the accumulation of hazardous chemicals, such as 
heavy metals, dioxins and flame-retardants originating in 
contaminated insect diets. Commercial mealworms have 
been tested for a range of chemical contaminants and the 
levels were similar to or lower than those found in live-
stock meat [80]. However, contaminated waste streams 
as feed could promote the accumulation of pesticides, as 
shown in an experiment in which mealworms were fed on 
pesticide-contaminated diets for 48 h [81]. A 24-h starva-
tion phase after exposure and before sampling reduced 
the concentration of pesticides with lower log(Kow) values 
(representing their solubility in water and lipids [82]) but 
pesticides with high log(Kow) values were excreted less 
efficiently [81].

Food contaminated with cadmium, lead, or arsenic 
did not influence the development time, dry matter 
content, or survival time of mealworms, and may there-
fore remain undetected if the insects are not tested at 
regular intervals [83]. The larvae accumulated high levels 
of arsenic, intermediate levels of cadmium, and low levels 
of lead but were able to excrete arsenic slowly when trans-
ferred to a noncontaminated diet [83].

These data suggest that feed quality should be 
checked carefully when using industrial side streams 
to rear mealworms to avoid the accumulation of toxins, 
and that insect stocks should also be checked regularly 
because the effect of accumulating toxins may not be 
apparent immediately in the breeding facility. Further-
more, a starvation step before harvesting the larvae may 
achieve partial detoxification, albeit potentially at the 
expense of slightly lower nutritional quality.

3.5  �Allergens

Food allergy is defined as an adverse immunological 
response to a dietary protein [84]. There are only a few 
studies reporting the potential allergy risk posed by meal-
worms or insects in general. However, mealworm proteins 
cross-reacted in vitro with IgE produced by patients aller-
gic to house dust mites and crustaceans, in response to 
tropomyosin, a well-known allergen in arthropods [85, 
86]. A recent double-blind placebo study in humans 
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showed that mealworm allergy is most likely in patients 
allergic to shrimp, with a potentially severe outcome [87].

Therefore, mealworms and additives derived from 
them must carry an allergy warning. Heat processing and 
in vitro digestion reduces the allergic reaction but does 
not eliminate it completely [85]. The feeding of freeze-
dried mealworm powder to rats in a safety assessment 
study did not show any adverse effects, toxicity, or allergy 
[88]. Furthermore, insects may carry specific molds that 
cause allergic reactions [14]. This would not only affect 
mealworm consumers but also workers in the production 
facilities, as described in the animal feed industry [89].

3.6  �Consumer acceptance

The acceptance of entomophagy (the consumption of 
insect-based food by humans) is influenced by price, 
taste, availability, and established cultural preferences 
[90–92]. Humans tend to avoid unfamiliar food and it is 
advisable to address perceptions that insect-based foods 
are unpalatable [93]. Processing mealworms into conven-
tional foods, such as burgers and tortillas, increased con-
sumer acceptance [46, 94]. Further strategies to increase 
consumer acceptance include the provision of more infor-
mation about the benefits of insect foods while dealing 
openly with the potential risks [12].

The acceptance of insect-based livestock feed is much 
higher than the acceptance of insect-based food because 
insects are already part of the natural food chain in 
poultry and freshwater fish [95]. Consumers will also be 
influenced by the cost of feed. Currently, feed based on the 
lesser mealworm (Alphitobius diaperinus) is 15 €/kg [96], 
which is far higher than soybean meal (0.33 €/kg) and fish 
meal (1.22 €/kg) (indexmundi.com/, accessed December 
2016). However, the cost of fish and soybean meal will 

increase in the future, whereas the cost of insect meal will 
decline [95], thus encouraging the production and con-
sumption of insects.

4  �Solutions and recommendations
To market edible insects successfully, selling the prom-
ises laid out previously must go hand in hand with openly 
addressing the risks. Consumers are becoming increas-
ingly aware of organic farming and animal welfare issues, 
and they will only accept high-quality products that they 
consider “clean”. It is therefore advisable to apply the 
same food standards to insects as apply to livestock, and 
to follow similar hygiene regulations (Box 1). Furthermore, 
breeders should not repeat the mistakes made in livestock 
management by using antibiotics and other pharmaceu-
tical products without specific necessity. Nevertheless, 
breeders must deal responsibly with the risk of spread-
ing infections, and we recommend alternative preven-
tive approaches such as probiotics or transgenerational 
immune priming (as discussed in later sections). Other 
aspects of mass rearing for edible insects can be imported 
from the rearing of sterile insects for pest control. Mass 
rearing can lead to changes in a number of phenotypic 
traits due to artificial diets, strong laboratory adaptation, 
and/or inbreeding depression [97].

4.1  �Carrying capacity and population density

Mealworm larvae are naturally attracted to each other 
and will form dense clusters [98, 99]. As discussed pre-
viously, rearing mealworms under suboptimal condi-
tions increases the risk of infections [100, 101]. The 
optimal growth temperature is 25 °C–27.5 °C, resulting in a 

Box 1: EU regulations governing edible insects.

2001   EU legislation prohibits the use of dead insects or processed insects in feed but feeding with live insects is allowed (EC 999/2001)
2002   There are no specific regulations covering edible insects for human consumption, so the production of edible insects should 

follow the requirements of general food laws (EC 178/2002)
2003   EU legislation bans the use of antibiotics as growth promoters (EC 1831/2003)
2004   The production of edible insects should follow general good hygiene and production requirements (EC 852-854/2004)
2007   The production of edible insects should follow general good hygiene and production requirements (EC 852-854/2004)
2013   The use of insect meal in aquaculture diets will be allowed in the EU starting from January 2018 (EC 56/2013)
2014   Some countries in the EU tolerate the marketing of whole insects for human consumption. The Belgian Federal Agency for the 

Safety of the Food Chain (FASFC) advised producers in April 2014 (SHC 9160) to refer to hygiene criteria for comparable products 
(EC 1441/2007)

2015   Insects and their parts will be considered as Novel Food in the EU from 1 January 2018 (EC 2015/2283) thus introducing a more 
efficient authorization process for insect products



342      Grau et al.: Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed

development period lasting 80.0–83.7 days involving 15–17 
larval instars [102, 103]. Individual food consumption and 
larval weight depend on the larval density, i.e. increasing 
the larval density from 12 to 96 larvae per square decime-
ter reduced the biomass produced per gram of feed by 
approximately 22% [104] (see Figure 2 for similar findings 
in T. confusum). Reproductive output per female declined 
as the adult density and age increased, and the highest 
reproductive output was with 2–3  weeks after eclosion 
[106]. High larval density increases the metabolic heat 
and thus the rearing temperature, which has sublethal 
effects on the population [104, 107].

It is important to find the optimal density that bal-
ances space, food conversation, and productivity during 
mass rearing, aiming to produce mealworms with a high 
nutritional value reared in as little time and space as 
possible using low-cost feed. Adjusting the population 
density to match the environmental space is a relatively 
easy measure, which can be applied in all facilities, and 
this should be the first method used to address the risks 
of overcrowding.

4.2  �Probiotics

Probiotic bacteria increase the fitness of the host [108, 
109]. They are widely used to improve the growth, sur-
vival, and health of livestock and farmed fish [110–115], 

as well as for the prevention and treatment of gastroin-
testinal tract infections in humans [116, 117]. Probiotic 
bacteria produce antimicrobial compounds, inhibit viru-
lence genes in pathogens, modulate epithelial barrier 
functions, and stimulate the host immune system [118]. 
EU restrictions on the prophylactic use of antibiotics have 
encouraged the development of alternative strategies to 
prevent infections during the mass rearing of insects, and 
the addition of probiotic bacteria to the diet is one such 
approach [73]. Further research in this field is needed to 
see how mealworms respond to probiotic bacteria in terms 
of resistance to infection and growth performance. Bacte-
ria that are probiotic in one species can act as pathogens 
in another, so the prescreening of bacteria before large-
scale application is advisable. For example, Pseudomonas 
aeruginosa is probiotic in the tropical freshwater fish rohu 
(Labeo rohita) and in western king prawns (Penaeus lati-
sulcatus) but is a pathogen in humans [119, 120].

The inclusion of probiotic bacteria in mealworm diets 
is also beneficial because the larvae are processed without 
removing the gut so the residual microbiota is carried over 
to the final consumer. The microbiota accounts for up 
to 10% of the total insect biomass [121]. Probiotic bacte-
ria increase the nutritional value of mealworms because 
they are known to produce health-promoting metabo-
lites such as B vitamins [122, 123]. The manipulation of 
the mealworm microbiota could therefore be exploited to 
benefit the insect host (e.g. by allowing the degradation 

Figure 2: The population growth, measured as population density, does not scale linearly with an increasing environment (flour sacks). If 
the environment becomes four times larger, population size only becomes three times larger due to intraspecific competition for resources 
and the spreading of infections. Adapted and modified from Park [105].
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of nondigestible feed components such as keratin) and 
the consumer (e.g. by allowing the production of specific 
nutrients).

Probiotic effects have already been observed in some 
studies. For example, chickens fed on a diet supplemented 
with mealworms contained lower numbers of Escherichia 
coli and Salmonella spp. after an infection due to a more 
effective immune system [124]. This may reflect the con-
sumption of the larval microbiota as well as chitin, which 
can act as a prebiotic in aquacultures [125, 126]. Whereas 
probiotics are microbes that confer health benefits on the 
host, prebiotics are substances that induce the growth or 
activity of probiotic microbes [127]. The addition of probi-
otic bacteria to mealworm diets would therefore generate 
an insect-based feed that contained both prebiotics and 
probiotics for livestock and human consumers, as well as 
increasing the performance of the insects during rearing 
(Figure 3).

4.3  �Immune priming and transgenerational 
immune priming

Tenebrio molitor has a typical arthropod innate immune 
system, although phenotypic evidence also indicates 
adaptive and memory-like functions [100, 128]. Whereas 
immune priming increases host resistance to pathogens 
during second and subsequent encounters, transgenera-
tional immune priming allows the offspring of the host to 

benefit from the same resistance even on their first encoun-
ter with the pathogen (Figure 3) [129–133]. However, indi-
vidual immune priming by systemic injection would prove 
difficult in mass-reared insects due to their relatively small 
size and great number. In this context, the broad database 
available for other tenebrionid beetles is valuable because 
T. castaneum is considered as a model organism for the 
investigation of immune priming [134–136]. One advan-
tage of T. castaneum is that oral priming is possible by 
adding pathogens or a corresponding supernatant directly 
to the diet [137]. The gut microbiota in T. castaneum plays 
an important role in immune priming, but a cold shock 
applied to the parents is required for transgenerational 
immune priming [138, 139]. A similar cold shock approach 
could be used in mass-reared mealworms, i.e. the parental 
beetles could be primed by reducing the rearing tempera-
ture and the more resistant offspring generation could 
then be used as food or feed, and for the production of 
proteins. In shrimp farming, vaccine-like approaches to 
combat the white spot syndrome virus (WSSV) have been 
reported as being very successful [140, 141]. Vaccination 
with inactivated viruses or recombinant virus proteins 
lead to an improved survival rate upon WSSV infection 
[142–144]. The application of transgenerational immune 
priming to reduce disease outbreaks has also been con-
sidered in the aquaculture industry [145].

The specific mechanism of (transgenerational) 
immune priming in insects is not fully understood [132]. 
One assumption is that antimicrobial peptides (AMPs) are 

Figure 3: Improving the resistance to pathogens of mass-reared mealworms by (transgenerational) immune priming and the administration 
of probiotic bacteria.
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involved in this seemingly more specific immune response 
in insects [146]. Tenebrio molitor produces a wide range 
of AMPs constitutively at local sites or in response to 
infection [19]. AMPs, as a general class of molecules, 
show a broad spectrum of antimicrobial activity, but spe-
cific AMPs range from broadly active to highly specific 
against particular pathogens [147, 148]. Therefore, selec-
tive (transgenerational) immune priming would provide a 
good alternative to antibiotics in addition to avoiding their 
unwanted effects. Furthermore, because the entire meal-
worm is utilized for food and feed, any AMPs triggered 
by (transgenerational) immune priming would probably 
remain active, with a beneficial effect in the livestock or 
human consumers.

4.4  �The role of the cuticle in immunity

The first line of defense against pathogens in meal-
worm beetles is the cuticle [149]. Melanin is involved in 
the melanization and sclerotization of the cuticle, and 
is an indicator of the investment in the immune system 
[93, 150]. Cuticle darkness in the adult beetle correlates 
with pathogen resistance [93, 151]. Darker beetles have 
a thicker cuticle and stronger melanin staining than tan 
beetles [152]. Furthermore, melanin offers protection 
against UV damage and is involved in wound repair [153]. 
In an experimental evolution experiment, darker beetles 
had denser hemocytes and produced more phenoloxi-
dase, characteristics that correlate with resistance [154]. 
Beetles reared at a higher density showed more resistance 
towards entomopathogenic fungi and a higher degree of 
melanization [93]. Density-dependent prophylaxis is not 
unique to mealworm beetles but can also be observed in 
other insects reared at high densities, potentially address-
ing the higher risk of spreading pathogens in dense colo-
nies [155, 156]. One way to take advantage of the darkening 
of the cuticle is the selection of darker beetles for repro-
duction, which would enhance pathogen resistance at the 
population level.

5  �Conclusion
Mealworms are economically among the most impor-
tant farmed insects produced for food and feed. They 
have excellent nutritional characteristics and they can 
be reared in an environmentally sustainable manner. 
As an alternative human food, mealworms address the 
potential risks associated with edible insects because 

the relatively high microbial load can be reduced during 
processing by applying a heat treatment step, offering an 
excellent alternative to the application of antibiotics. More 
elegantly, the gut microbiota can be manipulated by the 
administration of probiotic bacteria, to benefit the insect 
during rearing and to achieve beneficial carry-over effects 
for the consumer. The fitness of T. molitor can also be 
increased by transgenerational immune priming induced 
by cold shock, and direct immune priming induced by 
the inclusion of specific pathogens or supernatants in the 
diet. Finally, the selection of darker beetles increases the 
general level of innate resistance in the population.

In conclusion, the measures recommended for the 
sustainable mass rearing of mealworms, especially 
the administration of probiotics and the application of 
(transgenerational) immune priming, help prevent infec-
tions in the mass culture in addition to simultaneously 
achieving beneficial carry-over effects for the consumer. 
Experimental evidence for these direct effects is already 
available, but the potential carry-over effects require 
further investigation.
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