Thorben Grau, Andreas Vilcinskas and Gerrit Joop*

Sustainable farming of the mealworm *Tenebrio* molitor for the production of food and feed

DOI 10.1515/znc-2017-0033

Received March 3, 2017; revised March 27, 2017; accepted April 11, 2017

Abstract: The farming of edible insects is an alternative strategy for the production of protein-rich food and feed with a low ecological footprint. The industrial production of insect-derived protein is more cost-effective and energy-efficient than livestock farming or aquaculture. The mealworm Tenebrio molitor is economically among the most important species used for the large-scale conversion of plant biomass into protein. Here, we review the mass rearing of this species and its conversion into food and feed, focusing on challenges such as the contamination of food/feed products with bacteria from the insect gut and the risk of rapidly spreading pathogens and parasites. We propose solutions to prevent the outbreak of infections among farmed insects without reliance on antibiotics. Transgenerational immune priming and probiotic bacteria may provide alternative strategies for sustainable insect farming.

Keywords: edible insects; immune priming; insect mass rearing; probiotics; *Tenebrio molitor*.

1 Introduction

Alternative food and feed sources are needed for the continually growing world population, particularly the increasing demand for protein-rich food and livestock feed [1–3]. Reducing meat-based diets will be beneficial for environmental, health and economic factors [4]. Current feed protein sources such as soybean and fishmeal are imported into the European Union (EU) and the

*Corresponding author: Gerrit Joop, Justus-Liebig University Giessen, 35392 Giessen, Heinrich Buff Ring 29-32, Germany, E-mail: Gerrit. Joop@agrar.uni-giessen.de

Thorben Grau: Justus-Liebig-University of Giessen,

Giessen, Germany

Andreas Vilcinskas: Justus-Liebig-University of Giessen, Giessen, Germany; and Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany

cost is expected to increase [5]. Alternatives are therefore required to reduce the EU's economic dependence on imports [6]. Furthermore, large amounts of food and nonprofitable side streams from industrial processes are currently wasted [7], but this could be used as feed for insects, which can convert diverse waste streams into protein. Edible insects are therefore gaining attention among the research community: in 2007, the search term "edible insects" recovered 12 publications listed in PubMed, but this had increased to more than 40 publications in 2016. More than 2000 edible insect species are known worldwide, but only a few are produced commercially [8, 9]. These species show diverse nutritional profiles but insects are generally considered as good alternative protein sources for humans, livestock and aquaculture, which can be produced in an environmentally sustainable manner, although several potential safety issues have been raised [3, 10–14].

In this review, we focus on the vellow mealworm beetle Tenebrio molitor. The larvae of this species (known as mealworms) are often used as pet food, and they offer a promising alternative protein-rich animal feed [3, 15]. Mealworms are not only suitable as animal feed but they are also considered ideal for human nutrition and have even been recommended as a bioregenerative life support system for space missions [16, 17]. Industrial companies such as Ynsect (Paris, France) produce tons of mealworm biomass per week and have become leaders in the large-scale farming of this insect. Tenebrio molitor is also well known as a model organism for studies of innate immunity, and a complete mitochondrial genome sequence has been published [18–21]. Tenebrio molitor is closely related to the flour beetles Tribolium castaneum and Tribolium confusum, which are widely used as model organisms to study insect development and immunity, with a complete genome sequence published for T. castaneum. Much more background knowledge is therefore available for T. molitor than other edible insects, allowing the utilization of this knowledge to develop state-of-the-art mass rearing management systems. This article will first consider the potential benefits and risks of mealworms as food and feed, followed by the proposition of measures to exploit the benefits and overcome the risks.

2 The benefits of mealworms as food and feed

2.1 Excellent nutritional value

The nutritional components of mealworms can be classified as "high in" and "source of" according to the thresholds for World Health Organization and Food and Agriculture Organization of the United Nations food labels [13, 22] (Figure 1A–D). Mealworms have a high content of protein (13.68–22.32 g/100 g edible portion) and fat (8.90– 19.94 g/100 g edible portion) and also provide considerable amounts of polyunsaturated fatty acids [13]. Mealworms are also categorized as a source of zinc and are high in magnesium, but they contain only low levels of calcium [13]. Furthermore, mealworms can be labeled as a source of niacin and as high in pyridoxine, riboflavin, folate and vitamin B₁₂ [13]. The nutritional profile of mealworms has been compared with conventional meats, revealing that mealworms have a significantly higher nutritional value than beef and chicken and are not significantly less nutritionally balanced [23]. They also provide a good source of all essential amino acids [11].

2.2 Good alternative to fish meal and soybean meal as feed for livestock and aquaculture

The nutrient profile of mealworms is similar to that of fish and soybean meal, and so is the essential amino acid

profile (Figure 1H), so mealworms provide a good alternative livestock feed [28]. Several poultry diet studies have shown that the replacement or partial replacement of fish or soybean meal with mealworms resulted in similar or even slightly better growth performance and digestibility [29–31]. Similar to soybean meal, the limiting essential amino acid in mealworms is methionine [32]. The low calcium levels in mealworms can be avoided by feeding the larvae on calcium-enriched diets [33, 34]. Furthermore, mealworms have been tested in various aquaculture settings and up to 25% of the traditional feed can be replaced without compromising the yields achieved on the standard diet, whereas higher proportions of mealworm had a negative effect [27, 35–37]. For shrimp farming, the complete replacement of fish meal with mealworms resulted in an increase in body weight and lipid content [38]. Furthermore, the supplementation of weaning pig diets with up to 6% pulverized mealworm improved growth performance and nutrient digestibility [39]. Further research is required to optimize the dietary proportion of mealworms to achieve the best yields. Nevertheless, current results suggest that mealworms could often replace or partially replace fish and soybean meal as livestock feed, which would reduce the EU's dependence on imported feed because the insects can be reared locally.

2.3 Environmentally sustainable production for human food

The mass rearing of animals has a negative environmental impact by producing large amounts of greenhouse gas

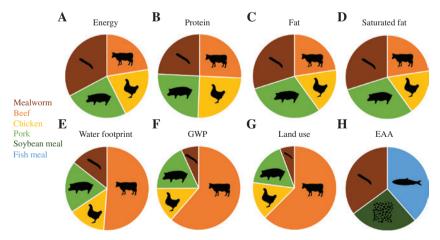


Figure 1: Nutritional values and sustainability of mealworms and conventional food/feed. (A-D) The nutritional value of a 100-g edible portion of mealworms compared with various livestock meats. (E-G) The comparative effect of mealworms and livestock on the environment, presented as water footprint per edible ton, global warming potential (GWP) for each 1 kg edible portion, and land use for each 1 kg edible portion. (H) Essential amino acid (EAA) comparison of mealworms and classic feeds such as soybean and fish meal. Values adapted from Payne et al. [23], de Vries and de Boer [24], Miglietta et al. [25], Oonincx and de Boer [26], and Sánchez-Muros et al. [27].

and ammonia, and using large amounts of water, energy and land. The water footprint per edible ton of mealworms is 4341 m³/t, which is comparable to that of chicken meat and 3.5 times lower than that of beef (Figure 1E) [25]. The energy used to produce 1 kg of fresh mealworms is similar to that used in the production of beef and pork, but the land area required was much less compared with beef, chicken and pork [26]. The production of ammonia and greenhouse gasses (CO₂, N₂O and CH₄) was significantly lower for mealworms compared with livestock (Figure 1F) [40]. Mealworms also require less land for the production of 1 kg of edible protein compared with livestock (Figure 1G) [13].

Another parameter to consider when rearing animals is the feed conversion efficiency. When provided with an optimal diet, mealworms convert feed as efficiently as poultry, and the nitrogen use efficiency is higher than traditional livestock [41]. Furthermore, high-protein diets improve larval survival and reduce the duration of development [41]. Mealworms can therefore be reared in a more environmentally sustainable manner than livestock in addition to achieving similar nutritional values, supporting their use as a protein source for human food.

3 The risks of edible insects as food and feed

3.1 Microbial contamination

Microbial safety and shelf life are influenced by the microbial load of the original product [42]. Mealworms are used as food and feed without removing the gut, so any microbes therein (including pathogens) are transmitted to livestock and human consumers. The microbial profile of commercially reared mealworms has been investigated using both culture-dependent and culture-independent methods. Several culture-based studies that measured the number of microbial colony forming units (CFUs) revealed that freeze-dried or fresh mealworms contain large numbers of aerobic bacteria (up to 8 log CFU/g) when the larvae are pulverized. This is higher than the recommended values for minced meat, which is considered comparable (EC 1441/2007) [43-47]. The pulverized larvae also contained 7.2 log CFU/g enterobacteria, 3.6 log CFU/g endospores, and up to 5.3 log CFU/g yeast and fungi [43, 45, 46]. The log CFU/g values decreased to less than two when the larvae were not completely pulverized before measuring the microbial load [48], but this could reflect the trapping of microbes in the gut, which would prevent their cultivation, although they would still be found in the final product.

Even so, the high microbial load in the mealworms did not include typical food-borne pathogens such as Salmonella spp. or Listeria monocytogenes [43–47]. A short heating or blanching step significantly reduced the total bacterial load as well as the enterobacteria count [43, 49]. The mealworm cuticle is also covered with microbes due to the larvae eating and defecating in the same environment (Mitschke, personal communication), but the effects of surface sterilization have not been investigated. Culture-independent next-generation sequencing has been used to analyze the mealworm microbiota and define the operational taxonomic units (OTUs). In one study, the mealworms were dominated by three bacterial phyla that are common in insects: Proteobacteria (35.9%), Firmicutes (31.1%) and Actinobacteria (26.9%) [50]. Overall, the genus Propionibacterium was the most abundant OTU (22.2%). These are Gram-positive rod-shaped bacteria with probiotic properties in humans, although some species are opportunistic pathogens [51, 52]. Another study found that the three dominant bacterial phyla were Tenericutes (44.2%), Proteobacteria (39.22%) and Firmicutes (13.09%), and the genus Spiroplasma was the most abundant OTU (44.1%) [48]. A third study confirmed the dominance of Tenericutes (36.6%), Proteobacteria (34.1%), and Firmicutes (26.2%), and at the genus level also Spiroplasma (38.7%) [53]. Members of the genus Spiroplasma are small, helical, motile and wall-less bacteria [54]. These species promote male-killing to yield extreme female-biased sex ratios in insects and can also cause diseases in mammals, including humans [55-58]. However, Spiroplasma spp. can also increase the fitness of insect hosts by acting as mutualists and protecting the host against pathogens [59].

Reproductive manipulators such as Spiroplasma, Wolbachia and Rickettsia, which are known to infect a wide variety of insects, could disrupt breeding programs during the mass rearing of insects and could act as pathogens in livestock or human consumers. However, these bacteria cannot be eliminated entirely due to their potential protective effects. More research is therefore needed to understand the relationship between the insect host and its symbionts and pathogens, with the aim of fine-tuning this balance according to human needs.

3.2 Parasites and prions

The cestode *Hymenolepis diminuta*, commonly known as the rat tapeworm, uses a variety of insects as intermediate hosts, including the mealworm beetle. The parasite develops in the host's hemocoel and inhibits its reproductive success [60, 61]. Infected mealworms consumed by the definitive host (usually rodents, but also livestock and humans) thus transmit the parasite, resulting in enteritis, anorexia and gut irritation [62, 63]. The single-cell parasite Gregarina niphandrodes primarily infects arthropods, and although the infection of mealworms does not influence the population dynamics, it does reduce the lifespan of the adult beetle [64, 65].

Prion diseases (transmissible spongiform encephalopathies) are fatal neurodegenerative diseases affecting both humans and livestock [66, 67]. Insect-specific prions have not yet been described, but the uptake of prions when insects consume prion-containing food of animal origin cannot be ruled out [68].

To the best of our knowledge, there is no documented evidence thus far of infections during the mass rearing of mealworms. However, the risk cannot be completely excluded because analogous situations have arisen in other insects, such as densovirus infectious during the commercial rearing of the house cricket Acheta domesticus [69]. Invertebrate pathogens are encountered more frequently in mass rearing systems, often due to overcrowding and stress, such as microsporidian infections in mites reared commercially for pest control [70].

3.3 Antibiotic use

The mass rearing of livestock often involves the confinement of animals in crowded conditions where they are bred and managed for maximum yield, with a negative effect on their health and immune system [71]. Antibiotics are therefore used as growth promoters and prophylactics, which has led to an explosive increase in the prevalence of antibiotic-resistant bacteria, threatening livestock and human health [71, 72]. Although the use of antibiotics to promote growth is restricted in the EU [73], even the therapeutic use of antibiotics has resulted in the spread of antibiotic-resistant bacteria among livestock [74, 75].

The microbiota of the mealworm beetle is vulnerable to antibiotics, which reduce the bacterial diversity as well as the bacterial load, but it is stable against environmental factors [53]. Furthermore, sterile mealworms perform poorly, suggesting that the microbiota is required for the efficient digestion and detoxification of plant secondary products [76]. In other insects, antibiotic use can shorten the development time as well as reduce the number of eggs [77–79]. Although the treatment of edible insects with antibiotics could solve some of the problems discussed

previously, the benefits are outweighed by the negative side effects in addition to the known problem of increasing the spread of antibiotic-resistant pathogens.

3.4 Pesticides and toxins

The mass rearing of insects for feed and food could result in the accumulation of hazardous chemicals, such as heavy metals, dioxins and flame-retardants originating in contaminated insect diets. Commercial mealworms have been tested for a range of chemical contaminants and the levels were similar to or lower than those found in livestock meat [80]. However, contaminated waste streams as feed could promote the accumulation of pesticides, as shown in an experiment in which mealworms were fed on pesticide-contaminated diets for 48 h [81]. A 24-h starvation phase after exposure and before sampling reduced the concentration of pesticides with lower $log(K_{out})$ values (representing their solubility in water and lipids [82]) but pesticides with high $log(K_{ow})$ values were excreted less efficiently [81].

Food contaminated with cadmium, lead, or arsenic did not influence the development time, dry matter content, or survival time of mealworms, and may therefore remain undetected if the insects are not tested at regular intervals [83]. The larvae accumulated high levels of arsenic, intermediate levels of cadmium, and low levels of lead but were able to excrete arsenic slowly when transferred to a noncontaminated diet [83].

These data suggest that feed quality should be checked carefully when using industrial side streams to rear mealworms to avoid the accumulation of toxins, and that insect stocks should also be checked regularly because the effect of accumulating toxins may not be apparent immediately in the breeding facility. Furthermore, a starvation step before harvesting the larvae may achieve partial detoxification, albeit potentially at the expense of slightly lower nutritional quality.

3.5 Allergens

Food allergy is defined as an adverse immunological response to a dietary protein [84]. There are only a few studies reporting the potential allergy risk posed by mealworms or insects in general. However, mealworm proteins cross-reacted in vitro with IgE produced by patients allergic to house dust mites and crustaceans, in response to tropomyosin, a well-known allergen in arthropods [85, 86]. A recent double-blind placebo study in humans

showed that mealworm allergy is most likely in patients allergic to shrimp, with a potentially severe outcome [87].

Therefore, mealworms and additives derived from them must carry an allergy warning. Heat processing and in vitro digestion reduces the allergic reaction but does not eliminate it completely [85]. The feeding of freezedried mealworm powder to rats in a safety assessment study did not show any adverse effects, toxicity, or allergy [88]. Furthermore, insects may carry specific molds that cause allergic reactions [14]. This would not only affect mealworm consumers but also workers in the production facilities, as described in the animal feed industry [89].

3.6 Consumer acceptance

The acceptance of entomophagy (the consumption of insect-based food by humans) is influenced by price, taste, availability, and established cultural preferences [90-92]. Humans tend to avoid unfamiliar food and it is advisable to address perceptions that insect-based foods are unpalatable [93]. Processing mealworms into conventional foods, such as burgers and tortillas, increased consumer acceptance [46, 94]. Further strategies to increase consumer acceptance include the provision of more information about the benefits of insect foods while dealing openly with the potential risks [12].

The acceptance of insect-based livestock feed is much higher than the acceptance of insect-based food because insects are already part of the natural food chain in poultry and freshwater fish [95]. Consumers will also be influenced by the cost of feed. Currently, feed based on the lesser mealworm (*Alphitobius diaperinus*) is 15 €/kg [96], which is far higher than soybean meal (0.33 €/kg) and fish meal (1.22 €/kg) (indexmundi.com/, accessed December 2016). However, the cost of fish and soybean meal will

increase in the future, whereas the cost of insect meal will decline [95], thus encouraging the production and consumption of insects.

4 Solutions and recommendations

To market edible insects successfully, selling the promises laid out previously must go hand in hand with openly addressing the risks. Consumers are becoming increasingly aware of organic farming and animal welfare issues, and they will only accept high-quality products that they consider "clean". It is therefore advisable to apply the same food standards to insects as apply to livestock, and to follow similar hygiene regulations (Box 1). Furthermore, breeders should not repeat the mistakes made in livestock management by using antibiotics and other pharmaceutical products without specific necessity. Nevertheless, breeders must deal responsibly with the risk of spreading infections, and we recommend alternative preventive approaches such as probiotics or transgenerational immune priming (as discussed in later sections). Other aspects of mass rearing for edible insects can be imported from the rearing of sterile insects for pest control. Mass rearing can lead to changes in a number of phenotypic traits due to artificial diets, strong laboratory adaptation, and/or inbreeding depression [97].

4.1 Carrying capacity and population density

Mealworm larvae are naturally attracted to each other and will form dense clusters [98, 99]. As discussed previously, rearing mealworms under suboptimal conditions increases the risk of infections [100, 101]. The optimal growth temperature is 25 °C-27.5 °C, resulting in a

Box 1: EU regulations governing edible insects.

- 2001 EU legislation prohibits the use of dead insects or processed insects in feed but feeding with live insects is allowed (EC 999/2001)
- 2002 There are no specific regulations covering edible insects for human consumption, so the production of edible insects should follow the requirements of general food laws (EC 178/2002)
- 2003 EU legislation bans the use of antibiotics as growth promoters (EC 1831/2003)
- 2004 The production of edible insects should follow general good hygiene and production requirements (EC 852-854/2004)
- 2007 The production of edible insects should follow general good hygiene and production requirements (EC 852-854/2004)
- 2013 The use of insect meal in aquaculture diets will be allowed in the EU starting from January 2018 (EC 56/2013)
- 2014 Some countries in the EU tolerate the marketing of whole insects for human consumption. The Belgian Federal Agency for the Safety of the Food Chain (FASFC) advised producers in April 2014 (SHC 9160) to refer to hygiene criteria for comparable products (EC 1441/2007)
- 2015 Insects and their parts will be considered as Novel Food in the EU from 1 January 2018 (EC 2015/2283) thus introducing a more efficient authorization process for insect products

development period lasting 80.0-83.7 days involving 15-17 larval instars [102, 103]. Individual food consumption and larval weight depend on the larval density, i.e. increasing the larval density from 12 to 96 larvae per square decimeter reduced the biomass produced per gram of feed by approximately 22% [104] (see Figure 2 for similar findings in T. confusum). Reproductive output per female declined as the adult density and age increased, and the highest reproductive output was with 2-3 weeks after eclosion [106]. High larval density increases the metabolic heat and thus the rearing temperature, which has sublethal effects on the population [104, 107].

It is important to find the optimal density that balances space, food conversation, and productivity during mass rearing, aiming to produce mealworms with a high nutritional value reared in as little time and space as possible using low-cost feed. Adjusting the population density to match the environmental space is a relatively easy measure, which can be applied in all facilities, and this should be the first method used to address the risks of overcrowding.

4.2 Probiotics

Probiotic bacteria increase the fitness of the host [108, 109]. They are widely used to improve the growth, survival, and health of livestock and farmed fish [110–115],

as well as for the prevention and treatment of gastrointestinal tract infections in humans [116, 117]. Probiotic bacteria produce antimicrobial compounds, inhibit virulence genes in pathogens, modulate epithelial barrier functions, and stimulate the host immune system [118]. EU restrictions on the prophylactic use of antibiotics have encouraged the development of alternative strategies to prevent infections during the mass rearing of insects, and the addition of probiotic bacteria to the diet is one such approach [73]. Further research in this field is needed to see how mealworms respond to probiotic bacteria in terms of resistance to infection and growth performance. Bacteria that are probiotic in one species can act as pathogens in another, so the prescreening of bacteria before largescale application is advisable. For example, *Pseudomonas* aeruginosa is probiotic in the tropical freshwater fish rohu (Labeo rohita) and in western king prawns (Penaeus latisulcatus) but is a pathogen in humans [119, 120].

The inclusion of probiotic bacteria in mealworm diets is also beneficial because the larvae are processed without removing the gut so the residual microbiota is carried over to the final consumer. The microbiota accounts for up to 10% of the total insect biomass [121]. Probiotic bacteria increase the nutritional value of mealworms because they are known to produce health-promoting metabolites such as B vitamins [122, 123]. The manipulation of the mealworm microbiota could therefore be exploited to benefit the insect host (e.g. by allowing the degradation

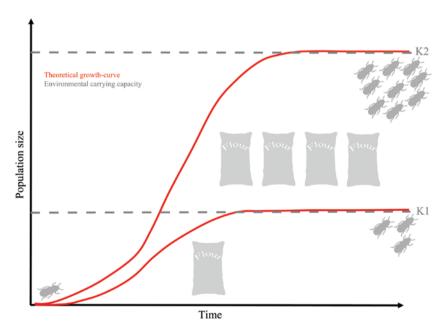


Figure 2: The population growth, measured as population density, does not scale linearly with an increasing environment (flour sacks). If the environment becomes four times larger, population size only becomes three times larger due to intraspecific competition for resources and the spreading of infections. Adapted and modified from Park [105].

of nondigestible feed components such as keratin) and the consumer (e.g. by allowing the production of specific nutrients).

Probiotic effects have already been observed in some studies. For example, chickens fed on a diet supplemented with mealworms contained lower numbers of Escherichia coli and Salmonella spp. after an infection due to a more effective immune system [124]. This may reflect the consumption of the larval microbiota as well as chitin, which can act as a prebiotic in aquacultures [125, 126]. Whereas probiotics are microbes that confer health benefits on the host, prebiotics are substances that induce the growth or activity of probiotic microbes [127]. The addition of probiotic bacteria to mealworm diets would therefore generate an insect-based feed that contained both prebiotics and probiotics for livestock and human consumers, as well as increasing the performance of the insects during rearing (Figure 3).

4.3 Immune priming and transgenerational immune priming

Tenebrio molitor has a typical arthropod innate immune system, although phenotypic evidence also indicates adaptive and memory-like functions [100, 128]. Whereas immune priming increases host resistance to pathogens during second and subsequent encounters, transgenerational immune priming allows the offspring of the host to

benefit from the same resistance even on their first encounter with the pathogen (Figure 3) [129–133]. However, individual immune priming by systemic injection would prove difficult in mass-reared insects due to their relatively small size and great number. In this context, the broad database available for other tenebrionid beetles is valuable because T. castaneum is considered as a model organism for the investigation of immune priming [134-136]. One advantage of *T. castaneum* is that oral priming is possible by adding pathogens or a corresponding supernatant directly to the diet [137]. The gut microbiota in *T. castaneum* plays an important role in immune priming, but a cold shock applied to the parents is required for transgenerational immune priming [138, 139]. A similar cold shock approach could be used in mass-reared mealworms, i.e. the parental beetles could be primed by reducing the rearing temperature and the more resistant offspring generation could then be used as food or feed, and for the production of proteins. In shrimp farming, vaccine-like approaches to combat the white spot syndrome virus (WSSV) have been reported as being very successful [140, 141]. Vaccination with inactivated viruses or recombinant virus proteins lead to an improved survival rate upon WSSV infection [142–144]. The application of transgenerational immune priming to reduce disease outbreaks has also been considered in the aquaculture industry [145].

The specific mechanism of (transgenerational) immune priming in insects is not fully understood [132]. One assumption is that antimicrobial peptides (AMPs) are

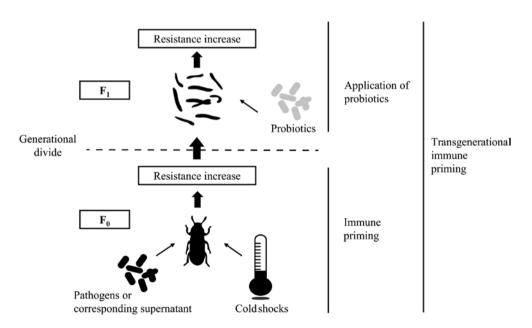


Figure 3: Improving the resistance to pathogens of mass-reared mealworms by (transgenerational) immune priming and the administration of probiotic bacteria.

involved in this seemingly more specific immune response in insects [146]. Tenebrio molitor produces a wide range of AMPs constitutively at local sites or in response to infection [19]. AMPs, as a general class of molecules, show a broad spectrum of antimicrobial activity, but specific AMPs range from broadly active to highly specific against particular pathogens [147, 148]. Therefore, selective (transgenerational) immune priming would provide a good alternative to antibiotics in addition to avoiding their unwanted effects. Furthermore, because the entire mealworm is utilized for food and feed, any AMPs triggered by (transgenerational) immune priming would probably remain active, with a beneficial effect in the livestock or human consumers.

4.4 The role of the cuticle in immunity

The first line of defense against pathogens in mealworm beetles is the cuticle [149]. Melanin is involved in the melanization and sclerotization of the cuticle, and is an indicator of the investment in the immune system [93, 150]. Cuticle darkness in the adult beetle correlates with pathogen resistance [93, 151]. Darker beetles have a thicker cuticle and stronger melanin staining than tan beetles [152]. Furthermore, melanin offers protection against UV damage and is involved in wound repair [153]. In an experimental evolution experiment, darker beetles had denser hemocytes and produced more phenoloxidase, characteristics that correlate with resistance [154]. Beetles reared at a higher density showed more resistance towards entomopathogenic fungi and a higher degree of melanization [93]. Density-dependent prophylaxis is not unique to mealworm beetles but can also be observed in other insects reared at high densities, potentially addressing the higher risk of spreading pathogens in dense colonies [155, 156]. One way to take advantage of the darkening of the cuticle is the selection of darker beetles for reproduction, which would enhance pathogen resistance at the population level.

5 Conclusion

Mealworms are economically among the most important farmed insects produced for food and feed. They have excellent nutritional characteristics and they can be reared in an environmentally sustainable manner. As an alternative human food, mealworms address the potential risks associated with edible insects because the relatively high microbial load can be reduced during processing by applying a heat treatment step, offering an excellent alternative to the application of antibiotics. More elegantly, the gut microbiota can be manipulated by the administration of probiotic bacteria, to benefit the insect during rearing and to achieve beneficial carry-over effects for the consumer. The fitness of T. molitor can also be increased by transgenerational immune priming induced by cold shock, and direct immune priming induced by the inclusion of specific pathogens or supernatants in the diet. Finally, the selection of darker beetles increases the general level of innate resistance in the population.

In conclusion, the measures recommended for the sustainable mass rearing of mealworms, especially the administration of probiotics and the application of (transgenerational) immune priming, help prevent infections in the mass culture in addition to simultaneously achieving beneficial carry-over effects for the consumer. Experimental evidence for these direct effects is already available, but the potential carry-over effects require further investigation.

Acknowledgements: The authors acknowledge generous funding from the Hessen State Ministry of Higher Education, Research and the Arts (HMWK) via the LOEWE Center for Insect Biotechnology and Bioresources. We thank Dr Richard M. Twyman for professional manuscript editing.

References

- 1. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO, 2012.
- 2. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature 2014:515:518-22.
- 3. van Huis A (Ed.). Edible insects: future prospects for food and feed security, Food and Agriculture Organization of the United Nations, Rome, 2013.
- 4. Springmann M, Godfray HC, Rayner M, Scarborough P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc Natl Acad Sci 2016;113:4146-51.
- 5. Rana KJ, Siriwardena S, Hasan MR. Impact of rising feed ingredient prices on aquafeeds and aquaculture production, Food and Agriculture Organization of the United Nations, Rome, 2009.
- 6. de Visser CL, Schreuder R, Stoddard F. The EU's dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014;21:D407.
- 7. Gustavsson J, Cederberg C, Sonesson U. Global food losses and food waste: extent, causes and prevention; study conducted for the International Congress Save Food! at Interpack 2011, [16-17 May], Düsseldorf, Germany, Food and Agriculture Organization of the United Nations, Rome, 2011.

- 8. Dossey AT, Morales-Ramos JA, Rojas MG. Insects as sustainable food ingredients: production, processing and food applications. Academic Press, London, UK, 2016.
- 9. Jongema Y. List of edible insect species of the world. The Netherlands: Laboratory of Entomology, Wageningen University; available at http://wwwentwurnl/UK/Edible+insects/ Worldwide+species+list/ 2015.
- 10. Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A. Edible insects in a food safety and nutritional perspective: a critical review. Compr Rev Food Sci Food Saf 2013;12:296-313.
- 11. Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 2013;57:802-23.
- 12. van Huis A. Edible insects are the future? Proc Nutr Soc 2016:75:294-305.
- 13. Nowak V, Persijn D, Rittenschober D, Charrondiere UR. Review of food composition data for edible insects. Food Chem 2016;193:39-46.
- 14. Schlüter O, Rumpold B, Holzhauser T, Roth A, Vogel RF, Quasigroch W, et al. Safety aspects of the production of foods and food ingredients from insects. Mol Nutr Food Res 2016:1-14.
- 15. Finke MD. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 2002;21:269-85.
- 16. Li L, Zhao Z, Liu H. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut 2013;92:103-9.
- 17. Li L, Xie B, Dong C, Hu D, Wang M, Liu G, et al. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the "Lunar Palace 1" during a 105-day multi-crew closed integrative BLSS experiment. Life Sci Space Res 2015;7:9-14.
- 18. Chae J-H, Kurokawa K, So Y-I, Hwang HO, Kim M-S, Park J-W, et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor Dev Comp Immunol 2012;36:540-6.
- 19. Johnston PR, Makarova O, Rolff J. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor. G3 Genes Genomes Genet 2014;4:947-55.
- 20. Zhu J-Y, Wu G-X, Zhang Z. Upregulation of coleoptericin transcription in Tenebrio molitor parasitized by Scleroderma guani. J Asia-Pac Entomol 2014;17:339-42.
- 21. Liu L-N, Wang C-Y. Complete mitochondrial genome of yellow mealworm (Tenebrio molitor). Zool Res 2014;35:
- 22. Codex Alimentarius Commission (Ed.). Food Labelling 5th ed. World Health Organization [u.a.], Rome, 2007.
- 23. Payne CL, Scarborough P, Rayner M, Nonaka K. Are edible insects more or less "healthy" than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur J Clin Nutr 2016;70:285-91.
- 24. de Vries M, de Boer IJ. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 2010;128:1-11.
- 25. Miglietta PP, De Leo F, Ruberti M, Massari S. Mealworms for food: a water footprint perspective. Water 2015;7:6190-203.
- 26. Oonincx DG, de Boer IJ. Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS One 2012;7:e51145.

- 27. Sánchez-Muros M, de Haro C, Sanz A, Trenzado CE, Villareces S, Barroso FG. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac Nutr 2016;22:943-55.
- 28. Makkar HP, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 2014;197:1-33.
- 29. Ramos-Elorduy J, González EA, Hernández AR, Pino JM. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 2002;95:214-20.
- 30. De Marco M, Martínez S, Hernandez F, Madrid J, Gai F, Rotolo L, et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 2015;209:211-8.
- 31. Bovera S, Loponte R, Marono S, Piccolo G, Parisi G, Iaconisi V, et al. Use of larvae meal as protein source in broiler diet: effect on growth performance, nutrient digestibility, and carcass and meat traits. J Anim Sci 2016;94:639-47.
- 32. Veldkamp T, Bosch G. Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front 2015;5:45-50.
- 33. Anderson SJ. Increasing calcium levels in cultured insects. Zoo Biol 2000;19:1-9.
- 34. Klasing KC. Thacker KC, Lopez MA, Calvert CC. Increasing the calcium content of mealworms (Tenebrio molitor) to improve their nutritional value for bone mineralization of growing chicks. J Zoo Wildl Med Off Publ Am Assoc Zoo Vet 2000;31:512-7.
- 35. Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci 2015;14:4170.
- 36. Roncarati A, Gasco L, Parisi G, Terova G. Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. | Insects Food Feed 2015;1:233-40.
- 37. Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, et al. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol 2016;220:34-45.
- 38. Panini RL, Freitas LE, Guimarães AM, Rios C, da Silva MF, Vieira FN, et al. Potential use of mealworms as an alternative protein source for Pacific white shrimp: digestibility and performance. Aquaculture 2017;473:115-20.
- 39. Jin XH, Heo PS, Hong JS, Kim NJ, Kim YY. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas J Anim Sci 2016;29:979-86.
- 40. Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 2010;5:e14445.
- 41. Oonincx DG, van Broekhoven S, van Huis A, van Loon JJ. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS One 2015;10: e0144601.
- 42. Bell C. Development and use of microbiological criteria for foods, IFST, London, 1999.
- 43. Klunder HC, Wolkers-Rooijackers J, Korpela JM, Nout MJ. Microbiological aspects of processing and storage of edible insects. Food Control 2012;26:628-31.

- 44. Milanović V, Osimani A, Pasquini M, Aquilanti L, Garofalo C, Taccari M, et al. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects. Int J Food Microbiol 2016;227:22-8.
- 45. Stoops J, Crauwels S, Waud M, Claes J, Lievens B, van Campenhout L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol 2016:53(Pt B):122-7.
- 46. Caparros Megido R, Gierts C, Blecker C, Brostaux Y, Haubruge É, Alabi T, et al. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual Prefer 2016;52:237-43.
- 47. Vandeweyer D, Crauwels S, Lievens B, van Campenhout L. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches. Int J Food Microbiol 2017;242:13-8.
- 48. Garofalo C, Osimani A, Milanović V, Taccari M, Cardinali F, Aguilanti L, et al. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol 2017;62:15-22.
- 49. Caparros Megido R, Desmedt S, Blecker C, Béra F, Haubruge E, Alabi T, et al. Microbiological load of edible insects found in Belgium. Insects 2017;8:12.
- 50. Engel P, Moran NA. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 2013;4:60-5.
- 51. Perry A, Lambert P. Propionibacterium acnes: infection beyond the skin. Expert Rev Anti Infect Ther 2011;9:1149-56.
- 52. Campaniello D, Bevilacqua A, Sinigaglia M, Altieri C. Screening of *Propionibacterium* spp. for potential probiotic properties. Anaerobe 2015;34:169-73.
- 53. Jung J, Heo A, Park YW, Kim YJ, Koh H, Park W. Gut microbiota of Tenebrio molitor and their response to environmental change. J Microbiol Biotechnol 2014;24:888-97.
- 54. Anbutsu H, Fukatsu T. Spiroplasma as a model insect endosymbiont. Environ Microbiol Rep 2011;3:144-53.
- 55. Bastian FO. Spiroplasma as a candidate agent for the transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 2005;64:833-8.
- 56. Montenegro H, Solferini VN, Klaczko LB, Hurst GD. Male-killing Spiroplasma naturally infecting Drosophila melanogaster. Insect Mol Biol 2005;14:281-7.
- 57. Tsushima Y, Nakamura K, Tagami Y, Miura K. Mating rates and the prevalence of male-killing Spiroplasma in Harmonia axyridis (Coleoptera: Coccinellidae). Entomol Sci 2015;18:217-20.
- 58. Aquilino A, Masiá M, López P, Galiana AJ, Tovar J, Andrés M, et al. First human systemic infection caused by Spiroplasma. J Clin Microbiol 2015;53:719-21.
- 59. Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 2014;28:341-55.
- 60. Hurd H. Chapter 4 Evolutionary drivers of parasite-induced changes in insect life-history traits: from theory to underlying mechanisms. In: Parasitology B-A, editor. Academic Press, London, UK, 2009:85-110.
- 61. Shostak AW. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between

- helminth parasites and terrestrial intermediate hosts: a review and meta-analysis. J Parasitol 2014;100:46-58.
- 62. Andreasse J, Bennet-Jenkins EM, Bryant C. Immunology and biochemistry of Hymenolepis diminuta. Adv Parasitol 1999;42:223-75.
- 63. Marangi M, Zechini B, Fileti A, Quaranta G, Aceti A. Hymenolepis diminuta infection in a child living in the urban area of Rome, Italy. J Clin Microbiol 2003;41:3994-5.
- 64. Schawang JE, Janovy J. The response of Gregarina niphandrodes (Apicomplexa: Eugregarinida: Septatina) to host starvation in Tenebrio molitor (Coleoptera: Tenebrionidae) Adults J Parasitol 2001;87:600-5.
- 65. Rodriguez Y, Omoto CK, Gomulkiewicz R. Individual and population effects of eugregarine, Gregarina niphandrodes (Eugregarinida: Gregarinidae), on Tenebrio molitor (Coleoptera: Tenebrionidae). Environ Entomol 2007;36:689-93.
- 66. Prusiner SB. The prion diseases. Brain Pathol Zurich Switz 1998;8:499-513.
- 67. Hamanaka T, Nishizawa K, Sakasegawa Y, Kurahashi H, Oguma A, Teruya K, et al. Anti-prion activity found in beetle grub hemolymph of Trypoxylus dichotomus septentrionalis. Biochem Biophys Rep 2015;3:32-7.
- 68. EFSA Scientific Committee, Risk profile related to production and consumption of insects as food and feed: risk profile of insects as food and feed. EFSA J 2015;13:4257.
- 69. Szelei J, Woodring J, Goettel MS, Duke G, Jousset F-X, Liu KY, et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J Invertebr Pathol 2011;106:394-9.
- 70. Bjørnson S. Natural enemies of mass-reared predatory mites (family Phytoseiidae) used for biological pest control. Exp Appl Acarol 2008;46:299-306.
- 71. D'Silva J. The meat crisis: the ethical dimensions of animal welfare, climate change, and future sustainability. In: Sustainable food security in the era of local and global environmental change. Springer, Netherlands, 2013:19-32.
- 72. Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep 2012;127:4-22.
- 73. Cogliani C, Goossens H, Greko C. Restricting antimicrobial use in food animals: lessons from Europe. Microbe 2011;6:274.
- 74. Cabello FC, Godfrey HP. Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environ Microbiol 2016;18:311-3.
- 75. Liu J, Zhao Z, Orfe L, Subbiah M, Call DR. Soil-borne reservoirs of antibiotic-resistant bacteria are established following therapeutic treatment of dairy calves. Environ Microbiol 2016;18:557-64.
- 76. Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 2006;52:593-601.
- 77. Sikorowski PP, Kent AD, Lindig OH, Wiygul G, Roberson G. Laboratory and insectary studies on the use of antibiotics and antimicrobial agents in mass-rearing of boll weevils. J Econ Entomol 1980;73:106-10.
- 78. Dickel F, Freitak D, Mappes J. Long-term prophylactic antibiotic treatment: effects on survival, immunocompetence and reproduction success of Parasemia plantaginis (Lepidoptera: Erebidae). J Insect Sci 2016;16:46.

- 79. Thakur G, Dhammi G, Saini HS, Kaur S. Effect of antibiotic on survival and development of Spodoptera litura (Lepidoptera: Noctuidae) and its gut microbial diversity. Bull Entomol Res 2016;106:387-94.
- 80. Poma G, Cuykx M, Amato E, Calaprice C, Focant JF, Covaci A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem Toxicol 2017;100:70-9.
- 81. Houbraken M, Spranghers T, De Clercq P, Cooreman-Algoed M, Couchement T, De Clercq G, et al. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chem 2016;201:264-9.
- 82. Borgå K, Fisk AT, Hoekstra PF, Muir DC. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in arctic marine food webs. Environ Toxicol Chem 2004;23:2367-85.
- 83. van der Fels-Klerx HJ, Camenzuli L, van der Lee MK, Oonincx DG. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLoS One 2016;11:e0166186.
- 84. Waserman S, Watson W. Food allergy. Allergy Asthma Clin Immunol 2011;7:S7.
- 85. van Broekhoven S, Bastiaan-Net S, de Jong DG, Wichers HJ. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem 2016;196:1075-83.
- 86. Verhoeckx KC, van Broekhoven S, den Hartog-Jager CF, Gaspari M, de Jong GA, Wichers HJ, et al. House dust mite (Der p 10) and crustacean allergic patients may react to food containing yellow mealworm proteins. Food Chem Toxicol 2014;65:364-73.
- 87. Broekman H, Verhoeckx KC, den Hartog Jager CF, Kruizinga AG, Pronk-Kleinjan M, Remington BC, et al. Majority of shrimpallergic patients are allergic to mealworm. J Allergy Clin Immunol 2016-137-1261-3
- 88. Han S-R, Lee B-S, Jung K-J, Yu H-J, Yun E-Y, Hwang JS, et al. Safety assessment of freeze-dried powdered Tenebrio molitor larvae (yellow mealworm) as novel food source: evaluation of 90-day toxicity in Sprague-Dawley rats. Regul Toxicol Pharmacol 2016;77:206-12.
- 89. Smid T, Heederik D, Mensink G, Houba R, Boleij JS. Exposure to dust, endotoxins, and fungi in the animal feed industry. Am Ind Hyg Assoc J 1992;53:362-8.
- 90. Lensvelt EJ, Steenbekkers LP. Exploring consumer acceptance of entomophagy: a survey and experiment in Australia and the Netherlands. Ecol Food Nutr 2014;53:543-61.
- 91. Verbeke W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual Prefer 2015:39:147-55.
- 92. House J. Consumer acceptance of insect-based foods in the Netherlands: academic and commercial implications. Appetite
- 93. Barnes Al, Siva-Jothy MT. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc R Soc Lond B Biol Sci 2000;267:177-82.
- 94. Aguilar-Miranda ED, López MG, Escamilla-Santana C, Barba de la Rosa AP. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J Agric Food Chem 2002;50:192-5.

- 95. Verbeke W, Spranghers T, De Clercq P, De Smet S, Sas B, Eeckhout M. Insects in animal feed: acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim Feed Sci Technol 2015;204:72-87.
- 96. AllAboutFeed, Insect Meal Allowance Expected in 2020, http://www.allaboutfeed.net/New-Proteins/ Articles/2016/12/Insect-meal-allowance-expected-in-2020-68992E/, February 21, 2017.
- 97. Sørensen JG, Addison MF, Terblanche JS. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot 2012; 38:87-94.
- 98. Weaver DK, McFarlane JE, Alli I. Aggregation in yellow mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae: I. Individual and group attraction to frass and isolation of an aggregant. J Chem Ecol 1989;15:1605-15.
- 99. Weaver DK, McFarlane JE. Aggregation in yellow mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae: II. Observations and analyses of behavioral parameters in aggregation. J Chem Ecol 1989;15:1617-27.
- 100. Schmid-Hempel P. Evolutionary ecology of insect immune defenses. Annu Rev Entomol 2005;50:529-51.
- 101. Schmid-Hempel P. Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford, New York: Oxford University Press, 2011.
- 102. Park Y-K, Choi Y-C, Lee Y-B, Lee S-H, Lee J-S, Kang S-H. Fecundity, life span, developmental periods and pupal weight of Tenebrio molitor L. (Coleoptera: Tenebrionidae). Korean J Sericultural Sci 2012;50:126-32.
- 103. Park JB, Choi WH, Kim SH, Jin HJ, Han YS, Lee YS, et al. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int J Ind Entomol 2014;28:5-9.
- 104. Morales-Ramos JA, Rojas MG. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J Econ Entomol 2015;108:2259-67.
- 105. Park T. Studies in population physiology. II. Factors regulating initial growth of Tribolium confusum populations. J Exp Zool Part Ecol Genet Physiol 1933;65:17-42.
- 106. Morales-Ramos JA, Rojas MG, Kay S, Shapiro-Ilan DI, Tedders WL. Impact of adult weight, density, and age on reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J Entomol Sci 2012;47:208-20.
- 107. Tanaka N, Hart RA, Okamoto RY, Steiner LF. Control of the excessive metabolic heat produced in diet by a high density of larvae of the Mediterranean fruit fly. J Econ Entomol 1972;65:866-7.
- 108. Havenaar R, Veld JH. Probiotics: a general view. In: Wood BJ, editor. The lactic acid bacteria, volume 1. US: Springer, 1992:151-70.
- 109. Wan LY, Chen ZJ, Shah NP, El-Nezami H. Modulation of intestinal epithelial defense responses by probiotic bacteria. Crit Rev Food Sci Nutr 2016;56:2628-41.
- 110. Sissons JW. Potential of probiotic organisms to prevent diarrhoea and promote digestion in farm animals—a review. J Sci Food Agric 1989;49:1-13.
- 111. Chaucheyras-Durand F, Durand H. Probiotics in animal nutrition and health. Benef Microbes 2009;1:3-9.
- 112. Gatesoupe FJ. The use of probiotics in aquaculture. Aquaculture 1999;180:147-65.
- 113. Ghadban GS. Probiotics in broiler production—a review. Arch Geflugelkunde 2002;66:49-58.

- 114. Pandiyan P, Balaraman D, Thirunavukkarasu R, George EG, Subaramaniyan K, Manikkam S, et al. Probiotics in aquaculture. Drug Invent Today 2013;5:55-9.
- 115. Hai NV. The use of probiotics in aquaculture. J Appl Microbiol 2015;119:917-35.
- 116. Deshpande G, Rao S, Patole S, Bulsara M. Updated metaanalysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 2010;125:921-30.
- 117. Kotzampassi K. Giamarellos-Bourboulis El. Probiotics for infectious diseases: more drugs, less dietary supplementation. Int J Antimicrob Agents 2012;40:288-96.
- 118. Oelschlaeger TA. Mechanisms of probiotic actions—a review. Int J Med Microbiol 2010;300:57-62.
- 119. Hai NV, Buller N, Fotedar R. Effects of probiotics (Pseudomonas synxantha and Pseudomonas aeruginosa) on the growth, survival and immune parameters of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquac Res 2009;40:590-602.
- 120. Giri SS, Sen SS, Sukumaran V. Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 2012;32:1135-40.
- 121. Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 2015;60:17-34.
- 122. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24:160-8.
- 123. Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients 2011;3:118-34.
- 124. Islam MM, Yang C-J. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poult Sci 2017;96:27-34.
- 125. Ringø E, Zhou Z, Olsen RE, Song SK. Use of chitin and krill in aquaculture - the effect on gut microbiota and the immune system: a review. Aquac Nutr 2012;18:117-31.
- 126. Song SK, Beck BR, Kim D, Park J, Kim J, Kim HD, et al. Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol 2014;40:40-8.
- 127. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Goh YJ, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol
- 128. Moret Y. Trans-generational immune priming: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc R Soc Lond B Biol Sci 2006;273:1399-405.
- 129. Zanchi C, Troussard J-P, Martinaud G, Moreau J, Moret Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect: male vs. female immune priming for offspring. J Anim Ecol 2011;80:1174-83.
- 130. Dubuffet A, Zanchi C, Boutet G, Moreau J, Teixeira M, Moret Y. Trans-generational immune priming protects the eggs only against Gram-positive bacteria in the mealworm beetle. PLoS Pathog 2015;11:e1005178.
- 131. Milutinović B, Peuß R, Ferro K, Kurtz J. Immune priming in arthropods: an update focusing on the red flour beetle. Zoology 2016;119:254-61.

- 132. Contreras-Garduño J, Lanz-Mendoza H, Franco B, Nava A, Pedraza-Reyes M, Canales-Lazcano J. Insect immune priming: ecology and experimental evidences. Ecol Entomol 2016;41:351-66.
- 133. Jacobs CG, Gallagher JD, Evison SE, Heckel DG, Vilcinskas A, Vogel H. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor). Dev Comp Immunol 2017;70:1-8.
- 134. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc R Soc B Biol Sci 2009;276:145-51.
- 135. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, et al. Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. J Anim Ecol 2010:79:403-13.
- 136. Behrens S, Peuß R, Milutinovi B, Eggert H, Esser D, Rosenstiel P, et al. Infection routes matter in populationspecific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics 2014:15:445.
- 137. Milutinović B, Stolpe C, Peuß R, Armitage SA, Kurtz J. The red flour beetle as a model for bacterial oral infections. PLoS One 2013;8:e64638.
- 138. Eggert H, Diddens-de Buhr MF, Kurtz J. A temperature shock can lead to trans-generational immune priming in the red flour beetle, Tribolium castaneum. Ecol Evol 2015;5:1318-26.
- 139. Futo M, Armitage SA, Kurtz J. Microbiota plays a role in oral immune priming in Tribolium castaneum. Front Microbiol 2015:6:1383.
- 140. Chang Y-H, Kumar R, Ng TH, Wang H-C. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish. Dev Comp Immunol 2017 (In press).
- 141. Shekhar MS, Ponniah AG. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp. J Fish Dis 2015;38:599-612.
- 142. Syed Musthaq SK, Kwang J. Evolution of specific immunity in shrimp—a vaccination perspective against white spot syndrome virus. Dev Comp Immunol 2014;46:279-90.
- 143. Chen L-H, Lin S-W, Liu K-F, Chang C-I, Hseu J-R, Tsai J-M. Comparative proteomic analysis of Litopenaeus vannamei gills after vaccination with two WSSV structural proteins. Fish Shellfish Immunol 2016;49:306-14.
- 144. Verbruggen B, Bickley LK, van Aerle R, Bateman KS, Stentiford GD, Santos EM, et al. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses 2016:8:23.
- 145. Menon P, Kumar MS. Trans generational immune priming in aquaculture-disease combating potential. Int J Fish Aquat Stud 2016;4:126-30.
- 146. Vilcinskas A. Evolutionary plasticity of insect immunity. J Insect Physiol 2013;59:123-9.
- 147. Yi H-Y, Chowdhury M, Huang Y-D, Yu X-Q. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014;98:5807-22.
- 148. Tonk M, Vilcinskas A. The medical potential of antimicrobial peptides from insects. Curr Top Med Chem 2017;17:554-75.
- 149. Moret Y, Moreau Y. The immune role of the arthropod exoskeleton. Invertebr Surviv J 2012;9:200-6.

- 150. Armitage SA, Thompson JJ, Rolff J, Siva-Jothy MT. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J Evol Biol 2003;16: 1038-44.
- 151. Evison SE, Gallagher JD, Thompson JJ, Siva-Jothy MT, Armitage SA. Cuticular colour reflects underlying architecture and is affected by a limiting resource. J Insect Physiol 2017;98:7-13.
- 152. Silva FW, Araujo LS, Azevedo DO, Serrão JE, Elliot SL. Physical and chemical properties of primary defences in Tenebrio molitor. Physiol Entomol 2016;41:121-6.
- 153. Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 2002;15:2-9.
- 154. Armitage SA, Siva-Jothy MT. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 2005;94:650-6.
- 155. Wilson K, Reeson AF. Density-dependent prophylaxis: evidence from Lepidoptera-Baculovirus interactions? Ecol Entomol 1998;23:100-1.
- 156. Wilson K, Cotter SC, Reeson AF, Pell JK. Melanism and disease resistance in insects. Ecol Lett 2001;4:637-49.