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Abstract: There are more than one million described insect
species. This species richness is reflected in the diversity
of insect metabolic processes. In particular, biosynthesis
of secondary metabolites, such as defensive compounds
and chemical signals, encompasses an extraordinarily
wide range of chemicals that are generally unparalleled
among natural products from other organisms. Insect
genomes, transcriptomes and proteomes thus offer a valu-
able resource for discovery of novel enzymes with poten-
tial for biotechnological applications. Here, we focus on
fatty acid (FA) metabolism-related enzymes, notably the
fatty acyl desaturases and fatty acyl reductases involved in
the biosynthesis of FA-derived pheromones. Research on
insect pheromone-biosynthetic enzymes, which exhibit
diverse enzymatic properties, has the potential to broaden
the understanding of enzyme specificity determinants and
contribute to engineering of enzymes with desired prop-
erties for biotechnological production of FA derivatives.
Additionally, the application of such pheromone-biosyn-
thetic enzymes represents an environmentally friendly and
economic alternative to the chemical synthesis of phero-
mones that are used in insect pest management strategies.

Keywords: fatty acyl desaturases; fatty acyl reductases;
lipases; pheromones.

1 Introduction

The fatty acids (FAs) and FA derivatives are a diverse
group of compounds with a range of applications. They
may be used as food supplements, cosmetics, adhesives,
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industrial lubricants, polymer plasticizers and stabiliz-
ers [1], and raw materials for further chemical processing
(reviewed by Metzger and Bornscheuer [2]). Economic
production of these compounds from affordable raw
materials, such as hydrocarbons from petroleum refin-
ing and vegetable or animal oils, is well established at an
industrial scale [3]. However, traditional procedures are
not applicable to the production of unconventional FAs
and FA derivatives, e.g. with double bonds in unusual
positions, that might be useful for specific applications
[2]. The utilization of metabolically engineered organ-
isms or heterologous production of engineered enzymatic
catalysts is promising tools for the production of such
FA derivatives. Plants and microorganisms metabolically
engineered to produce polyunsaturated FAs (PUFAs) [4-6]
and fatty alcohols [7] have been tested. Here, we focus on
the potential application of insect enzymes to the biotech-
nological production of unusual FA derivatives.

Many insect species use a diverse range of FA-modifying
enzymes to synthesize pheromones that mediate com-
munication among individuals of the same species. The
FA-derived pheromones are the most common [8], encom-
passing thousands of compounds and mixtures of com-
pounds [9]. Insect pheromone-biosynthetic enzymes
presumably evolved via a divergence of the original func-
tions of the FA-biosynthetic and FA-modifying enzymes
participating in insect primary metabolism [10]. The diversi-
fication of the pheromone-biosynthetic enzymes likely has
been driven by evolutionarily imposed requirements on sex
pheromone signal specificity [11, 12]. A broad spectrum of
insect pheromone-biosynthetic enzymes has already been
functionally characterized, and transcriptomic sequenc-
ing (RNA-seq) of pheromone glands using next-generation
sequencing has identified new candidates for characteriza-
tion [13-19]. RNA-seq of other insect glands and tissues may
open the door to the discovery of many additional enzymes
with remarkable biosynthetic capabilities [8].

Among insects, moths (Lepidoptera) have received
the greatest scientific attention focused on pheromone
biosynthesis. The moth female sex pheromones, which
attract conspecific males, are generally FA-derived alco-
hols, acetates, aldehydes, esters, hydrocarbons, or epox-
ides of various hydrocarbon chain lengths and contain
zero, one, or multiple double bonds (or triple bonds)
placed apart from each other, methylene interrupted, or
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conjugated. The number, position, and stereochemistry
of double bond(s) in the chains of the FAs influence their
biophysical properties and the properties of the resulting
lipids [20] and are critical for the biological activity of the
FA-derived pheromones.

Moths include numerous pest species that cause billions
of Euros of damage annually in forestry and agriculture. For
example, the diamondback moth (Plutella xylostella), a pest
of rapeseed (Brassica napus), is estimated to cost almost 4
billion Euros annually on combined pest management and
residual losses in crop production [21]. Pest management
strategies that employ insect pheromones to trap and kill,
monitor insect abundance, or confuse insect pheromone
communication channels are environmentally friendly
alternatives to traditional, widespread strategies of fight-
ing insect pests, such as the use of insecticides. Synthetic
pheromones have been used to fight pest moth species [22];
however, new biotechnological approaches in which phero-
mones are produced with the help of genetically modified
plants or microorganisms are currently being developed
[23-25]. Here, we not only review this application of insect
pheromone-biosynthetic enzymes but also propose as-yet
unexplored or unexploited applications that may benefit
from the catalytic potential of these enzymes.

2 Insect enzymes catalyzing
biosynthesis of FA-derived
pheromones

Efforts to understand the basis of insect pheromone bio-
synthesis have generated insights into the enzymatic spe-
cificities of several classes of FA-modifying enzymes. The
majority of information is available for one insect group
— the moths [18]. FA-modifying enzymes from other insect
orders, such as beetles (Coleoptera) [26], flies (Diptera)
[27-29], crickets (Orthoptera) [30, 31] and bees (Hyme-
noptera) [32-34], are substantially less well explored and
usually connected to primary FA metabolism rather than
pheromone biosynthesis.

Two enzyme groups that are encoded by large multi-
gene families in insects — the membrane fatty acyl desatu-
rases (mFADs) [35, 36] and the fatty acyl reductases (FARs)
[37] - have attracted the most research attention.

2.1 mFADs

The mFADs (EC 1.14.19.-) belong to a superfamily of
oxygen-dependent membrane di-iron-containing enzymes
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that share common features including a conserved tripar-
tite histidine-rich motif coordinating two iron ions in the
active center. These enzymes catalyze the highly energy-
demanding removal of hydrogen from an unactivated fatty
acyl at a precise position along the hydrocarbon chain.
The process involves a reactive oxo-intermediate formed
by the activation of molecular oxygen. The net result of
the desaturation reaction is the introduction of a double
bond into the fatty acyl chain (and reduction of molecular
oxygen to water) [38] (Figure 1). The evolutionarily unre-
lated class of apparently convergent soluble FADs [39] is
expressed exclusively in the stroma of plant plastids, and
these enzymes desaturate fatty acyls bound to an acyl
carrier protein.

The mFADs are present in the cell membranes of some
bacteria [40, 41], thylakoid and cytoplasmic membranes
of cyanobacteria [42], thylakoid and cytoplasmic mem-
branes of plants, and ubiquitously in eukaryotic endo-
plasmic reticulum (ER) membranes [35]. The ER mFADs,
on which we focus throughout this review, use an elec-
tron pair supplied by nicotinamide adenine dinucleotide
(NADH) via an electron transport system consisting of
NADH:cytochrome b, reductase and cytochrome b, [38]. A
slight modification of this electron-supply chain is seen in
some mFADs, in which a cytochrome b, domain is fused to
the N- or C-terminus of the desaturase [43, 44].

The research conducted on mFADs primarily aims to
identify the determinants of desaturase specificity, ena-
bling engineering of mFADs that produce economically
or industrially relevant FAs, such as the PUFAs that serve
as nutritional supplements or starting materials in the
chemical industry [45, 46]. Another major research goal
is to uncover the mechanistic details of FA desaturation,
which might enable rational design of specific inhibitors
targeting either the mFADs involved in human metabolic
diseases, such as diabetes or obesity [47], or the mFADs
essential for pathogenic microorganisms, such as patho-
genic yeasts [48-50] and trypanosomatids [51, 52]. Basic
research also aims to uncover the molecular basis of
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Figure 1: Schematic depiction of the reactions catalyzed by membrane
fatty acyl desaturases (mFADs) and fatty acyl reductases (FARSs).
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insect pheromone evolution by studying the pheromone-
biosynthetic mFADs [18].

2.1.1 mFAD properties

The mFADs display several enzymatic activities. They may
be (i) stereospecific, i.e. introduce a double bond into fatty
acyl chains in either an E or Z configuration, or (ii) regio-
specific, i.e. they prefer a particular position along the
fatty acyl hydrocarbon chain for double bond introduc-
tion, usually marked as AX or ZX-, EX- [53]. The mFADs
also display diverse substrate specificities; they may prefer
a particular chain length, the presence of pre-existing
double bond(s) at particular position(s), stereochemical
configuration and a head group of fatty acyl substrate (e.g.
acyl-CoA or acyl-lipid substrates) [54]. Moreover, hydroxy-
lated (and less commonly acetylenated, i.e. bearing a triple
bond) products may accompany the desaturated products
as a result of the mechanistic similarity between the reac-
tion mechanisms [55, 56]. Several mFADs exhibit a fatty
acyl conjugase activity — the ability to produce a system of
conjugated double bonds by a reaction mechanism involv-
ing a shift in the position of a pre-existing double bond
[57, 58]. The knowledge gained from mFAD characteriza-
tion indicates that although numerous mFADs are highly
specific and produce only a limited set of unsaturated
products, they can follow more than one specificity mode
under particular conditions, such as the presence of dif-
ferent substrates or during sequential biosynthesis of FAs
with multiple double bonds [59, 60]. Most likely, the insect
mFADs evolved an excessively wide range of specificities in
connection with pheromone biosynthesis [35].

The mFADs producing Z9-monounsaturated FAs are
the most widespread eukaryotic desaturases, followed by
mFADs with Z5-, Z6-, Z12- and Z15-specificities. The major-
ity of animal and insect mFADs desaturate fatty acyl-CoA
groups, except some animal mFADs involved in PUFA bio-
synthesis that prefer fatty acyl lipids [61, 62]. The experi-
mental evidence on the identity of the mFAD substrate
head group is, however, scarce [54].

The first functionally characterized insect mFAD was
isolated from the cabbage looper moth (Trichoplusia ni)
and exhibited Z11-desaturase specificity. An FA-derived
pheromone component containing a double bond at
position A1l is present in many moth species [63]. Subse-
quently, more than 50 distinct insect FAD genes have been
identified, cloned and functionally characterized [18, 36]
(Table 1).

The moth mFADs reflect the diverse desaturase spe-
cificities in insects. In addition to the ability to introduce

Tupec et al.: Insect desaturases, reductases and biotechnology —— 389

Z-double bonds, moth mFADs can catalyze the introduc-
tion of rather uncommon E-double bond in nature [64-68]
or produce a mixture of E- and Z-unsaturated FAs [69, 70].
The preferred fatty acyl chain length may be C14 [27, 66-68,
70-73], C16 [74], or C18 [63, 75, 76], but some mFADs can
desaturate a broad range of fatty acyl chain lengths, such
as C14-C20 [67, 77]. The positions of the introduced double
bond include A9, A4 [33], A5 [72], A6 [64, 78], A8 [65], A10
[69, 78], Al1 [10, 63, 65-67, 74-76, 79, 80], A13 [81], and Al4
[70, 82]. A12 mFADs have also been identified, but they are
involved in primary metabolism during the production of
methylene-interrupted PUFAs [31] rather than pheromone
biosynthesis. The moth mFADs can also introduce a double
bond at the terminal position between the penultimate and
ultimate carbon atoms [78, 83] and can produce FAs with a
system of isolated double bonds [64] or a system of conju-
gated double bonds [10, 65, 66, 76, 79, 80, 82]. Among the
more bizarre desaturation reactions, an mFAD identified in
the processionary moth, Thaumetopoea pityocampa, can
introduce triple bonds into the FA chains [81], resembling
in activity an mFAD described in the plant of Crepis genus
[84]. Two moth A11-mFADs have been shown to exhibit
minor All-hydroxylation activity [85]. Table 1 shows func-
tionally characterized insect mFADS.

2.2 FARs

The alcohol-forming FARs [EC 1.2.1.84, systematically
long-chain acyl-CoA: nicotinamide adenine dinucleotide
phosphate (NADPH) reductases] belong to a family of oxi-
doreductases and catalyze reduction of activated FAs to the
corresponding fatty alcohols by means of a four-electron
process employing a reduced dinucleotide (either NADPH or
NADH) as a reductant [91]. The reaction takes place on the
thioester moiety through a putative aldehyde intermediate,
which is usually not released from the enzyme-substrate
complex [92]. In addition to the alcohol-forming FARs, there
are also reductase enzymes that produce aldehydes from
fatty acyl-CoAs (aldehyde-forming reductases) and fatty
alcohols from aldehydes (aldehyde reductases) [91, 93]. The
FARs are most probably localized to ER membranes [94, 95].

The fatty alcohols, which are usually defined as
primary alcohols having more than 12 carbon atoms in
the chain, are naturally abundant FA derivatives that play
a variety of biological roles. The fatty alcohols are precur-
sors of waxes that serve as surface-protective compounds
in plant pollen [96], preventing excessive water loss in
insects [29], and are secreted as skin-, eye-, or feather-
protective compounds in mammals and birds [97, 98].
The fatty alcohols are also components of ether lipids,
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Table1 (continued)

Reference

Other unsaturated fatty acyl

product(s)

Major unsaturated fatty acyl

product(s)

mFAD name

Expression
system

Source organism

Order

[90]
(33]

79-18:1; 79-16:1

TcasD5

T. castaneum

79-18:1;79-16:1,79-14:1

A9-Bter, A9-Bluc, A9-Blap

S.c

Bombus terrestris, Bombus lucorum,

Bombus lapidarius

Hymenoptera

[33]

S.c A4-Bluc/Bter, A4-Blap E/Z4-14:1

B. terrestris, B. lucorum, B. lapidarius

In UFA nomenclature, E/ZX indicates the position of E- or Z-double bond between X and X+1 atom of fatty acyl chain; AX indicates position of double bond with unspecified configuration; X:Y

indicates a fatty acyl chain with X carbon atoms containing Y double bonds. Mixture of both double bond configuration isomers is marked as E/Z. When unsaturated FAs served as a substrate,
the double bond introduced by heterologously expressed insect FAD is highlighted in bold. 110H-16:0 and 110H-18:0 denote FA hydroxyderivatives. S. c., Saccharomyces cerevisiae; and Sf9,

Spodoptera frugiperda cell line.
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which are abundant in the cell membranes of cardiac,
nervous and lymphoid tissues [99]. In some plants such as
jojoba (Simmondsia chinensis), marine crustaceans (e.g.
Calanus finmarchius), and protists (e.g. Euglena gracilis),
fatty alcohols serve as precursors of energy-storing waxes
[100-102]. Notably, the higher volatility of fatty alcohols
and acetates, as compared to the respective FAs, may have
led to their utilization as airborne signals — pheromones
and scents. These compounds may serve as pheromone
components in reptiles [103] and some mammals, such
as deer [104], but above all, they are among the main
pheromone components in insects, including moths [105],
termites [106], bees [107-109], and wasps (reviewed by
Tillman et al. [110]).

2.2.1 FAR properties

Virtually all organisms produce one or multiple types
of fatty alcohols of various chain lengths and degrees
of unsaturation. The majority of the findings available
to date suggest that the FARs in general exhibit diverse
substrate specificities with respect to the fatty acyl chain
length and unsaturation state of the substrate. The pool
of fatty acyls available for reduction in the host organism
can also influence the apparent FAR specificity [111-113].

The first FARs studied by genetic methods were plant
FARs from jojoba and wheat [100, 114]. Heterologous
expression of plant FARs in Escherichia coli, rapeseed
(B. napus), and Saccharomyces cerevisiae led to a range
of saturated and unsaturated alcohols of C14 to C26 chain
length, depending on the host organism [100, 114, 115].
Besides plant FARs, microbial FAR genes [102, 116, 117]
and FARs from vertebrates have also been isolated and
functionally described [97, 98].

The insect reductases first received attention not
long after the enzymatic characterization of their plant
orthologs. They have been studied extensively, primarily
in moths. In silk moth (Bombyx mori), researchers discov-
ered a pheromone gland-specific FAR [118] that is able to
convert E10,Z12-16:2 FA precursor to the corresponding
alcohol bombykol, the main component of the female sex
pheromone. Since then, a range of moth pheromone-bio-
synthetic FARs have been isolated and functionally char-
acterized [89, 111, 119-123] (Table 2). Although moth FARs
usually exhibit a broad substrate preference [77, 89, 111,
120, 122, 123], some of them display specificity to unsatu-
rated substrates with a double bond in either the E or Z
configuration [119], a particular chain length and double
bond position [120], or a system of conjugated double
bonds [118]. Given the multiple FAR paralogs generally
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present in insect genomes [13, 14, 16, 17, 111, 124] and
limited knowledge of their properties, there is a demand
to perform functional characterization of these biologi-
cally and biotechnologically relevant enzymes.

FARs from insects other than moths are virtually
unexplored. A FAR presumably involved in biosynthesis
of fatty alcohol precursors of waxes has been identified
in Drosophila [29], and honeybee (Apis mellifera) FAR
capable of reducing hydroxylated fatty acyl precursors
and saturated C16-C22 fatty acyls has been characterized
[34]. FARs from pheromone-producing glands in the but-
terfly Bicyclus anynana reduce Cl4 and C16 fatty acyls
[86]. At least 13 FAR genes have been identified in the
labial gland of Bombus terrestris by RNA sequencing [14],
and these are currently being functionally characterized
in our laboratory. Such a spectrum of FARs from various
organisms with distinct substrate specificities presents a
potential enzymatic toolbox for tailored biotechnological
production of fatty alcohols. Additionally, comparative
analysis of these FARs might help uncover the determi-
nants of FAR specificity.

2.3 Other enzymes

In addition to mFADs and FARs, other FA-modifying and
FA-biosynthetic enzymes have been studied both in vivo
and in vitro. These include (i) acyltransferase involved
in synthesis of FA-storing triacylglycerols [125, 126]; (ii)
lipases and esterases involved in hydrolytic release of
FA pheromone precursors from storage triacylglycerols
[127-129], formation of FA ethyl esters [130], or primary
metabolism [131-133]; and (iii) cytochrome P450, involved
in the oxidative decarbonylation of FAs to hydrocarbons
[134]. However, for the majority of insect pheromone bio-
synthetic steps, the genes and enzymes involved have
yet to be identified and characterized. Among these are
enzymes catalyzing (i) FA elongation [135, 136] and FA
chain shortening [137-140]; (ii) epoxide group formation
[141, 142]; (iii) acetate ester formation [143, 144]; (iv) oxida-
tion of fatty alcohols to aldehydes [19, 145-147]; and (v) FA
biosynthesis, e.g. acetyl-CoA carboxylase [148] and fatty
acid synthase [149].

3 Enzyme engineering

The specificity of insect pheromone-biosynthetic enzymes
can evolve abruptly, presumably as a consequence of their
role in reproductive isolation and speciation [11, 12]. The
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process of functional divergence of pheromone-biosyn-
thetic enzymes, which can be observed in insect subpopu-
lations or closely related species, generates biocatalysts
that are highly similar in protein sequence yet distinct in
their enzymatic properties. These enzymes are conveni-
ent model systems to study the mechanisms of enzyme
specificity determinants [82, 119, 150]. Importantly, the
amassed knowledge about the function of the FA-modify-
ing enzymes could be used to design novel enzymes with
desired enzymatic properties.

3.1 Structural determinants of mFAD function

Substantial research effort has been put into the identi-
fication of specificity determinants of mFADs by either
random mutagenesis or rational mutagenesis guided by
topology predictions and sequence comparisons of mFADs
with distinct specificities. The mFADs and their mutants
are typically functionally characterized in the yeast
S. cerevisiae [151] or in baculovirus-insect cell expression
systems [79]. These experiments led to the identification
of sequence determinants of both acyl-CoA and acyl-lipid
mFAD specificities in diverse organisms, such as trans-
membrane helices or conserved histidine-rich motifs [55,
59, 152-162]. Bucek et al. [82] identified a critical amino
acid residue in the transmembrane domain of an mFAD
from Manduca sexta (MsexD3) that determines the speci-
ficity and ability of this desaturase to catalyze biosynthe-
sis of FAs containing three conjugated double bonds via
E/Z14 desaturation from diunsaturated FAs.

Recently, the crystal structures of two closely related
mammalian mFADs with bound fatty acyl-CoA substrate
provided the first direct structural insights into the mFADs
[163, 164]. In agreement with previous topology predic-
tions [151] and topology-mapping experiments [165], the
crystal structures revealed four transmembrane o-helices
and a large extramembrane portion of the enzyme includ-
ing the active center localized on the cytosolic side of the
ER membrane. The di-iron active center is coordinated
by an ordered water molecule and nine conserved his-
tidine residues. Eight of the coordinating histidines are
organized in a tripartite histidine-rich motif, which was
previously shown to be essential for mFAD activity [166].
The crystal structures provided direct experimental evi-
dence for a kinked narrow hydrophobic substrate-bind-
ing tunnel, which extends approximately 24 A into the
enzyme interior and binds the fatty acyl tail of the fatty
acyl-CoA substrate [164]. The kink in the binding tunnel
is hypothesized to play a role in correct positioning of the
fatty acyl chain toward the active center.
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The availability of an mFAD crystal structure enables
homology modeling of other related mFADs and can
help increase understanding of experimentally obtained
biochemical data. Indeed, the homology model of
MsexD3 highlighted the prominent position of the criti-
cal residue Ile224 in the kink of the fatty acyl substrate
binding tunnel, which presumably plays a critical role in
positioning the substrate fatty acyl chain with respect to
the di-iron active center [82]. Ding et al. found that recip-
rocal exchange of a single amino acid residue in moth
A11 mFADs can switch between their E and Z desaturase
specificities. The critical residue 258Glu/Asp is predicted
to form a secondary coordination sphere of the active
center iron ions, based on homology models [150].

3.2 Structural determinants of FAR function

The information about FAR structures is very limited. The
N-terminal motif (IVF)X(ILV)TGXTGFL(GA) belonging
to the Rossmann fold NAD(P)* binding domain and the
C-terminal FAR_C domain is conserved among the FARs
[89, 96, 98, 100]. The common dehydrogenase/reductase
active site motif YXXXK was experimentally confirmed
to be indispensable for FAR enzymatic activity [167]. Few
studies have addressed the sequence determinants of FAR
specificity. A study on FAR5 and FAR8 from Arabidopsis,
which prefer C18 and C16 acyls, respectively, showed that
reciprocal domain swaps and single amino acid muta-
tions (355Ala/Leu and 377Val/Met) in the C-terminal part
of the sequence resulted in a transition between C16 and
C18 substrate preference [167].

Mutagenesis experiments performed with insect FARs
also indicate that a limited number of amino acid sub-
stitutions can profoundly change the enzyme specificity
[119, 120].

Currently, there is no publicly available protein struc-
ture of a FAR, which presents a challenge for performing
further mutagenesis studies to infer the mechanisms of
FAR specificity determination and to engineer FARs with
novel or desired enzymatic properties.

4 Applications of FA-modifying
enzymes

The potential biotechnological applications arising from
the diverse enzymatic capabilities of insect FA-modifying
enzymes are centered mainly on the synthesis of insect
pheromones for pest management. However, there are
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also other, mostly unexplored potential applications for
these insect enzymes (Figure 2).

Synthetic insect pheromones are used in a variety of
pest management strategies in agricultural fields, forests,
and urban areas to replace or complement traditional
insecticides. The pheromones have several inherent advan-
tages over insecticides: they are active in extremely small
amounts (nanogram and sub-nanogram quantities), and
they are specific toward the target species and generally
non-toxic to other animals or humans (reviewed by Witzgall
et al. [168]). Currently, synthetically prepared insect phero-
mones are used either as attractants for monitoring or mass
trapping of insect pests, monitoring of other relevant insect
species such as endangered species ([169], reviewed in
[170]), or mating disruption of pest species via the release of
synthetic sex pheromones that compromise olfactory com-
munication and mate finding in insect pests [168].

The estimated total area of land treated with syn-
thetic insect pheromones is approximately 10,000,000 ha
worldwide and, for example, the global production of
codlemone, the codling moth (Cydia pomonella) sex pher-
omone, reached 25,000 tons in 2010 [168]; it is primarily
used in apple orchards. The pheromones have also been
used widely in vineyards for mating disruption of the
grapevine moth Lobesia botrana in Germany, Italy and
California [168].

The establishment of economically viable synthesis
of pheromones remains a major obstacle to scaling up
the use of pheromone chemicals in pest control. In par-
ticular, FA-derived pheromone biosynthesis faces several
challenging issues, such as the requirement for precisely
positioning one or multiple double bonds into the synthe-
sized FA-chain in a particular double bond configuration
[171]. In this respect, employment of insect FA-modifying
pheromone-biosynthetic enzymes or organisms heterolo-
gously expressing these enzymes may be a more economic
and environmentally friendly option than traditional
chemical synthesis.

The concept of producing pheromone chemicals in
genetically modified plants (“pheromone farming”) or
yeasts (“pheromone brewing”) has been tested [23, 25].
In these projects, the researchers semi-synthetically pre-
pared moth pheromones by chemical reduction and con-
secutive acetylation of Z1l-unsaturated FAs produced in
genetically modified plants expressing moth Z11-mFAD.
Ding et al. reconstructed a complete pheromone biosyn-
thetic pathway by transforming the tobacco plant with a
combination of two insect pheromone biosynthetic genes
(mFAD and FAR) and two non-insect genes (thioesterase,
which modified the length of de novo biosynthesized
FAs, and acetyltransferase, which catalyzed the final
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Figure 2: FA-modifying reactions that can be engineered in plant and microbial cells with the help of insect pheromone-biosynthetic
enzymes. mFAD, fatty acyl desaturase; LIP, lipase; FAR, fatty acyl reductase; and FA, fatty acid.

pheromone biosynthetic step yielding the fatty alkyl
acetates) [24]. The approach of combining insect and non-
insect genes in the host organism is particularly useful
in situations when suitable genes have not yet been iso-
lated from insects. Plant “pheromone factories” possess
another attractive feature: if proven non-harmful to the
environment, they could be planted directly in fields, thus

circumventing the necessity of isolating and dispersing
pheromones from specialized dispensers for mating dis-
ruption [24].

The yeast S. cerevisiae is a frequently used host for
metabolic pathway engineering [172] and represents
a promising host organism for heterologous expres-
sion of FARs capable of producing biologically active
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pheromone chemicals [118]. The yeasts co-expressing
FAR and Z11-mFAD have been used to produce alcohol
pheromone precursors that can be subsequently isolated
and chemically oxidized to the biologically active alde-
hyde pheromones [23].

Mufioz et al. [173] tested another approach to small-
scale pheromone synthesis, using immobilized bacterial
acetyl transferase to catalyze the terminal step of the
biosynthesis of a di-unsaturated conjugated fatty alkyl
acetate, a cotton leafworm (Spodoptera littoralis) sex
pheromone.

In a semi-synthetic approach, insect enzymes would
be used to produce the precursors of compounds that are
difficult to access solely by traditional organic synthesis
tools, and these would be further chemically modified
[23-25]. Such an approach could yield FAs with multiple
double bonds in uncommon positions and geometric
configurations or possibly molecules bearing more than
one functional group. The insect FARs, with their strict
substrate specificity toward uncommon substrates,
could serve to efficiently and specifically convert non-
conventional FAs into their respective alcohols.

In many cases, handling isolated enzymes is diffi-
cult due to their transmembrane character (e.g. mFADs)
or requirement for additional protein partners and
coenzymes. The only known exception among the FA-
modifying enzymes is the lipases, which do not require a
coenzyme, are usually soluble, and have been shown to
be stable and active in a variety of different environments
(including organic and ionic solvents) [174, 175]. The use of
lipases from microorganisms and animals has been widely
established on an industrial scale [176]; for example, more
than 10,000 tons of pure 1-phenylethylamine enantiomer
are produced annually using lipase as a catalyst [177].
Lipases are abundant in insect genomes. The majority
of them evolved after divergence of insect orders [178],
and thus, they potentially possess properties not present
among lipases from other organisms. Insect lipase specifi-
cities and enzymatic properties, however, remain poorly
studied in general. The isolated lipases from non-insects
have been used for enantioselective synthesis of phero-
mones from bark beetles [179], corn rootworms [180], rice
moths [181], and many other insect species [182].

To the best of our knowledge, there is currently no
commercial application of insect enzymes in the synthesis
of oleochemicals, although the implementation of some
insect enzymes could substantially expand the toolbox of
FA modifications available to both organic chemistry and
mass industrial production. One recent example from the
research field is the use of honeybee FAR1 for the synthesis
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of wax esters in engineered S. cerevisiae co-expressing FA
elongase and wax synthase [183].

5 Challenges and future perspective

One of the main drawbacks to the use of genetically
modified organisms for production of pheromones and
other FA-derivatives is the cost of developing such trans-
genic organisms. Additionally, substantial optimiza-
tion and scale-up of production capacity are required
to convert the heterologous expression systems used
in research into feasible production organisms. So far,
efforts to produce insect pheromones in host organisms
have led to (i) 2 mg/L of fatty alcohols in S. cerevisiae
liquid culture [23]; (ii) 44 mg of unsaturated FA-derived
methyl ester per kg of plant material [25]; and (iii) hun-
dreds of mg of unsaturated FAs, tens of mg of the respec-
tive fatty alcohols, and several mg of the final acetates
per kg of fresh leaf tissue from a Nicotiana benthamiana
expression system [24]. In host systems transformed with
non-insect enzyme sequences, the production of fatty
alcohols and wax esters in bacteria (E. coli or Cyanobac-
teria) or yeasts (S. cerevisiae, Rhodosporidium toruloides,
or Yarrowia lipolytica) can reach hundreds to thousands
of mg/L cultivation medium after lab-scale optimiza-
tion [7, 184-187]. In particular, oleaginous yeasts such
as R. toruloides [188] and Y. lipolytica [6, 189-191], which
accumulate large amounts of lipids and have estab-
lished genetic engineering procedures, might be promis-
ing host organism candidates. As a future prospect, the
production of desired pheromone chemicals might also
be achieved through expression of enzymes with engi-
neered functions.

There are multiple avenues potentially leading to
enhanced vields of FA biosynthetic enzymes: (i) genetic
modification of the ER retention signal [24], (ii) optimi-
zation of the expressed gene codon usage for the host
organism [192], (iii) promoter strength and introduction of
regulatory sequences such as the eukaryotic Kozak con-
sensus sequence [193], (iv) moving from transient plant
transformation and yeast expression plasmids toward
stable plant transformants [24] and genome-integrated
sequences in yeast [172], and (v) extensive metabolic engi-
neering of the host organisms [7]. In addition to increasing
the yield of specific FA derivatives, attention must also be
paid to biosynthesis of side products such as undesired
FA isomers, which could act as a repellent or inhibitor and
thus compromise the pest management strategy.
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This review has focused on a relatively minor part of

insect biosynthetic capabilities. In a broader context, we
envision that insect bioprospecting, the search among
insect organisms for commercially valuable resources
[194], eventually will exploit their genetic and biosyn-
thetic diversity.
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