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Abstract: There are more than one million described insect 
species. This species richness is reflected in the diversity 
of insect metabolic processes. In particular, biosynthesis 
of secondary metabolites, such as defensive compounds 
and chemical signals, encompasses an extraordinarily 
wide range of chemicals that are generally unparalleled 
among natural products from other organisms. Insect 
genomes, transcriptomes and proteomes thus offer a valu-
able resource for discovery of novel enzymes with poten-
tial for biotechnological applications. Here, we focus on 
fatty acid (FA) metabolism-related enzymes, notably the 
fatty acyl desaturases and fatty acyl reductases involved in 
the biosynthesis of FA-derived pheromones. Research on 
insect pheromone-biosynthetic enzymes, which exhibit 
diverse enzymatic properties, has the potential to broaden 
the understanding of enzyme specificity determinants and 
contribute to engineering of enzymes with desired prop-
erties for biotechnological production of FA derivatives. 
Additionally, the application of such pheromone-biosyn-
thetic enzymes represents an environmentally friendly and 
economic alternative to the chemical synthesis of phero-
mones that are used in insect pest management strategies.

Keywords: fatty acyl desaturases; fatty acyl reductases; 
lipases; pheromones.

1  �Introduction
The fatty acids (FAs) and FA derivatives are a diverse 
group of compounds with a range of applications. They 
may be used as food supplements, cosmetics, adhesives, 

industrial lubricants, polymer plasticizers and stabiliz-
ers [1], and raw materials for further chemical processing 
(reviewed by Metzger and Bornscheuer [2]). Economic 
production of these compounds from affordable raw 
materials, such as hydrocarbons from petroleum refin-
ing and vegetable or animal oils, is well established at an 
industrial scale [3]. However, traditional procedures are 
not applicable to the production of unconventional FAs 
and FA derivatives, e.g. with double bonds in unusual 
positions, that might be useful for specific applications 
[2]. The utilization of metabolically engineered organ-
isms or heterologous production of engineered enzymatic 
catalysts is promising tools for the production of such 
FA derivatives. Plants and microorganisms metabolically 
engineered to produce polyunsaturated FAs (PUFAs) [4–6] 
and fatty alcohols [7] have been tested. Here, we focus on 
the potential application of insect enzymes to the biotech-
nological production of unusual FA derivatives.

Many insect species use a diverse range of FA-modifying 
enzymes to synthesize pheromones that mediate com-
munication among individuals of the same species. The 
FA-derived pheromones are the most common [8], encom-
passing thousands of compounds and mixtures of com-
pounds [9]. Insect pheromone-biosynthetic enzymes 
presumably evolved via a divergence of the original func-
tions of the FA-biosynthetic and FA-modifying enzymes 
participating in insect primary metabolism [10]. The diversi-
fication of the pheromone-biosynthetic enzymes likely has 
been driven by evolutionarily imposed requirements on sex 
pheromone signal specificity [11, 12]. A broad spectrum of 
insect pheromone-biosynthetic enzymes has already been 
functionally characterized, and transcriptomic sequenc-
ing (RNA-seq) of pheromone glands using next-generation 
sequencing has identified new candidates for characteriza-
tion [13–19]. RNA-seq of other insect glands and tissues may 
open the door to the discovery of many additional enzymes 
with remarkable biosynthetic capabilities [8].

Among insects, moths (Lepidoptera) have received 
the greatest scientific attention focused on pheromone 
biosynthesis. The moth female sex pheromones, which 
attract conspecific males, are generally FA-derived alco-
hols, acetates, aldehydes, esters, hydrocarbons, or epox-
ides of various hydrocarbon chain lengths and contain 
zero, one, or multiple double bonds (or triple bonds) 
placed apart from each other, methylene interrupted, or 
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conjugated. The number, position, and stereochemistry 
of double bond(s) in the chains of the FAs influence their 
biophysical properties and the properties of the resulting 
lipids [20] and are critical for the biological activity of the 
FA-derived pheromones.

Moths include numerous pest species that cause billions 
of Euros of damage annually in forestry and agriculture. For 
example, the diamondback moth (Plutella xylostella), a pest 
of rapeseed (Brassica napus), is estimated to cost almost 4 
billion Euros annually on combined pest management and 
residual losses in crop production [21]. Pest management 
strategies that employ insect pheromones to trap and kill, 
monitor insect abundance, or confuse insect pheromone 
communication channels are environmentally friendly 
alternatives to traditional, widespread strategies of fight-
ing insect pests, such as the use of insecticides. Synthetic 
pheromones have been used to fight pest moth species [22]; 
however, new biotechnological approaches in which phero-
mones are produced with the help of genetically modified 
plants or microorganisms are currently being developed 
[23–25]. Here, we not only review this application of insect 
pheromone-biosynthetic enzymes but also propose as-yet 
unexplored or unexploited applications that may benefit 
from the catalytic potential of these enzymes.

2  �Insect enzymes catalyzing 
biosynthesis of FA-derived 
pheromones

Efforts to understand the basis of insect pheromone bio-
synthesis have generated insights into the enzymatic spe-
cificities of several classes of FA-modifying enzymes. The 
majority of information is available for one insect group 
– the moths [18]. FA-modifying enzymes from other insect 
orders, such as beetles (Coleoptera) [26], flies (Diptera) 
[27–29], crickets (Orthoptera) [30, 31] and bees (Hyme-
noptera) [32–34], are substantially less well explored and 
usually connected to primary FA metabolism rather than 
pheromone biosynthesis.

Two enzyme groups that are encoded by large multi-
gene families in insects – the membrane fatty acyl desatu-
rases (mFADs) [35, 36] and the fatty acyl reductases (FARs) 
[37] – have attracted the most research attention.

2.1  �mFADs

The mFADs (EC 1.14.19.–) belong to a superfamily of 
oxygen-dependent membrane di-iron-containing enzymes 

that share common features including a conserved tripar-
tite histidine-rich motif coordinating two iron ions in the 
active center. These enzymes catalyze the highly energy-
demanding removal of hydrogen from an unactivated fatty 
acyl at a precise position along the hydrocarbon chain. 
The process involves a reactive oxo-intermediate formed 
by the activation of molecular oxygen. The net result of 
the desaturation reaction is the introduction of a double 
bond into the fatty acyl chain (and reduction of molecular 
oxygen to water) [38] (Figure 1). The evolutionarily unre-
lated class of apparently convergent soluble FADs [39] is 
expressed exclusively in the stroma of plant plastids, and 
these enzymes desaturate fatty acyls bound to an acyl 
carrier protein.

The mFADs are present in the cell membranes of some 
bacteria [40, 41], thylakoid and cytoplasmic membranes 
of cyanobacteria [42], thylakoid and cytoplasmic mem-
branes of plants, and ubiquitously in eukaryotic endo-
plasmic reticulum (ER) membranes [35]. The ER mFADs, 
on which we focus throughout this review, use an elec-
tron pair supplied by nicotinamide adenine dinucleotide 
(NADH) via an electron transport system consisting of 
NADH:cytochrome b5 reductase and cytochrome b5 [38]. A 
slight modification of this electron-supply chain is seen in 
some mFADs, in which a cytochrome b5 domain is fused to 
the N- or C-terminus of the desaturase [43, 44].

The research conducted on mFADs primarily aims to 
identify the determinants of desaturase specificity, ena-
bling engineering of mFADs that produce economically 
or industrially relevant FAs, such as the PUFAs that serve 
as nutritional supplements or starting materials in the 
chemical industry [45, 46]. Another major research goal 
is to uncover the mechanistic details of FA desaturation, 
which might enable rational design of specific inhibitors 
targeting either the mFADs involved in human metabolic 
diseases, such as diabetes or obesity [47], or the mFADs 
essential for pathogenic microorganisms, such as patho-
genic yeasts [48–50] and trypanosomatids [51, 52]. Basic 
research also aims to uncover the molecular basis of 

Figure 1: Schematic depiction of the reactions catalyzed by membrane 
fatty acyl desaturases (mFADs) and fatty acyl reductases (FARs).
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insect pheromone evolution by studying the pheromone-
biosynthetic mFADs [18].

2.1.1  �mFAD properties

The mFADs display several enzymatic activities. They may 
be (i) stereospecific, i.e. introduce a double bond into fatty 
acyl chains in either an E or Z configuration, or (ii) regio-
specific, i.e. they prefer a particular position along the 
fatty acyl hydrocarbon chain for double bond introduc-
tion, usually marked as ΔX or ZX-, EX- [53]. The mFADs 
also display diverse substrate specificities; they may prefer 
a particular chain length, the presence of pre-existing 
double bond(s) at particular position(s), stereochemical 
configuration and a head group of fatty acyl substrate (e.g. 
acyl-CoA or acyl-lipid substrates) [54]. Moreover, hydroxy-
lated (and less commonly acetylenated, i.e. bearing a triple 
bond) products may accompany the desaturated products 
as a result of the mechanistic similarity between the reac-
tion mechanisms [55, 56]. Several mFADs exhibit a fatty 
acyl conjugase activity – the ability to produce a system of 
conjugated double bonds by a reaction mechanism involv-
ing a shift in the position of a pre-existing double bond 
[57, 58]. The knowledge gained from mFAD characteriza-
tion indicates that although numerous mFADs are highly 
specific and produce only a limited set of unsaturated 
products, they can follow more than one specificity mode 
under particular conditions, such as the presence of dif-
ferent substrates or during sequential biosynthesis of FAs 
with multiple double bonds [59, 60]. Most likely, the insect 
mFADs evolved an excessively wide range of specificities in 
connection with pheromone biosynthesis [35].

The mFADs producing Z9-monounsaturated FAs are 
the most widespread eukaryotic desaturases, followed by 
mFADs with Z5-, Z6-, Z12- and Z15-specificities. The major-
ity of animal and insect mFADs desaturate fatty acyl-CoA 
groups, except some animal mFADs involved in PUFA bio-
synthesis that prefer fatty acyl lipids [61, 62]. The experi-
mental evidence on the identity of the mFAD substrate 
head group is, however, scarce [54].

The first functionally characterized insect mFAD was 
isolated from the cabbage looper moth (Trichoplusia ni) 
and exhibited Z11-desaturase specificity. An FA-derived 
pheromone component containing a double bond at 
position Δ11 is present in many moth species [63]. Subse-
quently, more than 50 distinct insect FAD genes have been 
identified, cloned and functionally characterized [18, 36] 
(Table 1).

The moth mFADs reflect the diverse desaturase spe-
cificities in insects. In addition to the ability to introduce 

Z-double bonds, moth mFADs can catalyze the introduc-
tion of rather uncommon E-double bond in nature [64–68] 
or produce a mixture of E- and Z-unsaturated FAs [69, 70]. 
The preferred fatty acyl chain length may be C14 [27, 66–68, 
70–73], C16 [74], or C18 [63, 75, 76], but some mFADs can 
desaturate a broad range of fatty acyl chain lengths, such 
as C14-C20 [67, 77]. The positions of the introduced double 
bond include ∆9, ∆4 [33], ∆5 [72], ∆6 [64, 78], ∆8 [65], ∆10 
[69, 78], ∆11 [10, 63, 65–67, 74–76, 79, 80], ∆13 [81], and ∆14 
[70, 82]. Δ12 mFADs have also been identified, but they are 
involved in primary metabolism during the production of 
methylene-interrupted PUFAs [31] rather than pheromone 
biosynthesis. The moth mFADs can also introduce a double 
bond at the terminal position between the penultimate and 
ultimate carbon atoms [78, 83] and can produce FAs with a 
system of isolated double bonds [64] or a system of conju-
gated double bonds [10, 65, 66, 76, 79, 80, 82]. Among the 
more bizarre desaturation reactions, an mFAD identified in 
the processionary moth, Thaumetopoea pityocampa, can 
introduce triple bonds into the FA chains [81], resembling 
in activity an mFAD described in the plant of Crepis genus 
[84]. Two moth Δ11-mFADs have been shown to exhibit 
minor Δ11-hydroxylation activity [85]. Table 1 shows func-
tionally characterized insect mFADS.

2.2  �FARs

The alcohol-forming FARs [EC 1.2.1.84, systematically 
long-chain acyl-CoA: nicotinamide adenine dinucleotide 
phosphate (NADPH) reductases] belong to a family of oxi-
doreductases and catalyze reduction of activated FAs to the 
corresponding fatty alcohols by means of a four-electron 
process employing a reduced dinucleotide (either NADPH or 
NADH) as a reductant [91]. The reaction takes place on the 
thioester moiety through a putative aldehyde intermediate, 
which is usually not released from the enzyme-substrate 
complex [92]. In addition to the alcohol-forming FARs, there 
are also reductase enzymes that produce aldehydes from 
fatty acyl-CoAs (aldehyde-forming reductases) and fatty 
alcohols from aldehydes (aldehyde reductases) [91, 93]. The 
FARs are most probably localized to ER membranes [94, 95].

The fatty alcohols, which are usually defined as 
primary alcohols having more than 12 carbon atoms in 
the chain, are naturally abundant FA derivatives that play 
a variety of biological roles. The fatty alcohols are precur-
sors of waxes that serve as surface-protective compounds 
in plant pollen [96], preventing excessive water loss in 
insects [29], and are secreted as skin-, eye-, or feather-
protective compounds in mammals and birds [97, 98]. 
The fatty alcohols are also components of ether lipids, 
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which are abundant in the cell membranes of cardiac, 
nervous and lymphoid tissues [99]. In some plants such as 
jojoba (Simmondsia chinensis), marine crustaceans (e.g. 
Calanus finmarchius), and protists (e.g. Euglena gracilis), 
fatty alcohols serve as precursors of energy-storing waxes 
[100–102]. Notably, the higher volatility of fatty alcohols 
and acetates, as compared to the respective FAs, may have 
led to their utilization as airborne signals – pheromones 
and scents. These compounds may serve as pheromone 
components in reptiles [103] and some mammals, such 
as deer [104], but above all, they are among the main 
pheromone components in insects, including moths [105], 
termites [106], bees [107–109], and wasps (reviewed by 
Tillman et al. [110]).

2.2.1  �FAR properties

Virtually all organisms produce one or multiple types 
of fatty alcohols of various chain lengths and degrees 
of unsaturation. The majority of the findings available 
to date suggest that the FARs in general exhibit diverse 
substrate specificities with respect to the fatty acyl chain 
length and unsaturation state of the substrate. The pool 
of fatty acyls available for reduction in the host organism 
can also influence the apparent FAR specificity [111–113].

The first FARs studied by genetic methods were plant 
FARs from jojoba and wheat [100, 114]. Heterologous 
expression of plant FARs in Escherichia coli, rapeseed 
(B. napus), and Saccharomyces cerevisiae led to a range 
of saturated and unsaturated alcohols of C14 to C26 chain 
length, depending on the host organism [100, 114, 115]. 
Besides plant FARs, microbial FAR genes [102, 116, 117] 
and FARs from vertebrates have also been isolated and 
functionally described [97, 98].

The insect reductases first received attention not 
long after the enzymatic characterization of their plant 
orthologs. They have been studied extensively, primarily 
in moths. In silk moth (Bombyx mori), researchers discov-
ered a pheromone gland-specific FAR [118] that is able to 
convert E10,Z12-16:2 FA precursor to the corresponding 
alcohol bombykol, the main component of the female sex 
pheromone. Since then, a range of moth pheromone-bio-
synthetic FARs have been isolated and functionally char-
acterized [89, 111, 119–123] (Table 2). Although moth FARs 
usually exhibit a broad substrate preference [77, 89, 111, 
120, 122, 123], some of them display specificity to unsatu-
rated substrates with a double bond in either the E or Z 
configuration [119], a particular chain length and double 
bond position [120], or a system of conjugated double 
bonds [118]. Given the multiple FAR paralogs generally Or
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present in insect genomes [13, 14, 16, 17, 111, 124] and 
limited knowledge of their properties, there is a demand 
to perform functional characterization of these biologi-
cally and biotechnologically relevant enzymes.

FARs from insects other than moths are virtually 
unexplored. A FAR presumably involved in biosynthesis 
of fatty alcohol precursors of waxes has been identified 
in Drosophila [29], and honeybee (Apis mellifera) FAR 
capable of reducing hydroxylated fatty acyl precursors 
and saturated C16-C22 fatty acyls has been characterized 
[34]. FARs from pheromone-producing glands in the but-
terfly Bicyclus anynana reduce C14 and C16 fatty acyls 
[86]. At least 13 FAR genes have been identified in the 
labial gland of Bombus terrestris by RNA sequencing [14], 
and these are currently being functionally characterized 
in our laboratory. Such a spectrum of FARs from various 
organisms with distinct substrate specificities presents a 
potential enzymatic toolbox for tailored biotechnological 
production of fatty alcohols. Additionally, comparative 
analysis of these FARs might help uncover the determi-
nants of FAR specificity.

2.3  �Other enzymes

In addition to mFADs and FARs, other FA-modifying and 
FA-biosynthetic enzymes have been studied both in vivo 
and in vitro. These include (i) acyltransferase involved 
in synthesis of FA-storing triacylglycerols [125, 126]; (ii) 
lipases and esterases involved in hydrolytic release of 
FA pheromone precursors from storage triacylglycerols 
[127–129], formation of FA ethyl esters [130], or primary 
metabolism [131–133]; and (iii) cytochrome P450, involved 
in the oxidative decarbonylation of FAs to hydrocarbons 
[134]. However, for the majority of insect pheromone bio-
synthetic steps, the genes and enzymes involved have 
yet to be identified and characterized. Among these are 
enzymes catalyzing (i) FA elongation [135, 136] and FA 
chain shortening [137–140]; (ii) epoxide group formation 
[141, 142]; (iii) acetate ester formation [143, 144]; (iv) oxida-
tion of fatty alcohols to aldehydes [19, 145–147]; and (v) FA 
biosynthesis, e.g. acetyl-CoA carboxylase [148] and fatty 
acid synthase [149].

3  �Enzyme engineering
The specificity of insect pheromone-biosynthetic enzymes 
can evolve abruptly, presumably as a consequence of their 
role in reproductive isolation and speciation [11, 12]. The 

process of functional divergence of pheromone-biosyn-
thetic enzymes, which can be observed in insect subpopu-
lations or closely related species, generates biocatalysts 
that are highly similar in protein sequence yet distinct in 
their enzymatic properties. These enzymes are conveni-
ent model systems to study the mechanisms of enzyme 
specificity determinants [82, 119, 150]. Importantly, the 
amassed knowledge about the function of the FA-modify-
ing enzymes could be used to design novel enzymes with 
desired enzymatic properties.

3.1  �Structural determinants of mFAD function

Substantial research effort has been put into the identi-
fication of specificity determinants of mFADs by either 
random mutagenesis or rational mutagenesis guided by 
topology predictions and sequence comparisons of mFADs 
with distinct specificities. The mFADs and their mutants 
are typically functionally characterized in the yeast 
S. cerevisiae [151] or in baculovirus-insect cell expression 
systems [79]. These experiments led to the identification 
of sequence determinants of both acyl-CoA and acyl-lipid 
mFAD specificities in diverse organisms, such as trans-
membrane helices or conserved histidine-rich motifs [55, 
59, 152–162]. Buček et  al. [82] identified a critical amino 
acid residue in the transmembrane domain of an mFAD 
from Manduca sexta (MsexD3) that determines the speci-
ficity and ability of this desaturase to catalyze biosynthe-
sis of FAs containing three conjugated double bonds via 
E/Z14 desaturation from diunsaturated FAs.

Recently, the crystal structures of two closely related 
mammalian mFADs with bound fatty acyl-CoA substrate 
provided the first direct structural insights into the mFADs 
[163, 164]. In agreement with previous topology predic-
tions [151] and topology-mapping experiments [165], the 
crystal structures revealed four transmembrane α-helices 
and a large extramembrane portion of the enzyme includ-
ing the active center localized on the cytosolic side of the 
ER membrane. The di-iron active center is coordinated 
by an ordered water molecule and nine conserved his-
tidine residues. Eight of the coordinating histidines are 
organized in a tripartite histidine-rich motif, which was 
previously shown to be essential for mFAD activity [166]. 
The crystal structures provided direct experimental evi-
dence for a kinked narrow hydrophobic substrate-bind-
ing tunnel, which extends approximately 24 Å into the 
enzyme interior and binds the fatty acyl tail of the fatty 
acyl-CoA substrate [164]. The kink in the binding tunnel 
is hypothesized to play a role in correct positioning of the 
fatty acyl chain toward the active center.
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The availability of an mFAD crystal structure enables 
homology modeling of other related mFADs and can 
help increase understanding of experimentally obtained 
biochemical data. Indeed, the homology model of 
MsexD3  highlighted the prominent position of the criti-
cal residue Ile224 in the kink of the fatty acyl substrate 
binding tunnel, which presumably plays a critical role in 
positioning the substrate fatty acyl chain with respect to 
the di-iron active center [82]. Ding et al. found that recip-
rocal exchange of a single amino acid residue in moth 
∆11 mFADs can switch between their E and Z desaturase 
specificities. The critical residue 258Glu/Asp is predicted 
to form a secondary coordination sphere of the active 
center iron ions, based on homology models [150].

3.2  �Structural determinants of FAR function

The information about FAR structures is very limited. The 
N-terminal motif (IVF)X(ILV)TGXTGFL(GA) belonging 
to the Rossmann fold NAD(P)+ binding domain and the 
C-terminal FAR_C domain is conserved among the FARs 
[89, 96, 98, 100]. The common dehydrogenase/reductase 
active site motif YXXXK was experimentally confirmed 
to be indispensable for FAR enzymatic activity [167]. Few 
studies have addressed the sequence determinants of FAR 
specificity. A study on FAR5 and FAR8 from Arabidopsis, 
which prefer C18 and C16 acyls, respectively, showed that 
reciprocal domain swaps and single amino acid muta-
tions (355Ala/Leu and 377Val/Met) in the C-terminal part 
of the sequence resulted in a transition between C16 and 
C18 substrate preference [167].

Mutagenesis experiments performed with insect FARs 
also indicate that a limited number of amino acid sub-
stitutions can profoundly change the enzyme specificity 
[119, 120].

Currently, there is no publicly available protein struc-
ture of a FAR, which presents a challenge for performing 
further mutagenesis studies to infer the mechanisms of 
FAR specificity determination and to engineer FARs with 
novel or desired enzymatic properties.

4  �Applications of FA-modifying 
enzymes

The potential biotechnological applications arising from 
the diverse enzymatic capabilities of insect FA-modifying 
enzymes are centered mainly on the synthesis of insect 
pheromones for pest management. However, there are 

also other, mostly unexplored potential applications for 
these insect enzymes (Figure 2).

Synthetic insect pheromones are used in a variety of 
pest management strategies in agricultural fields, forests, 
and urban areas to replace or complement traditional 
insecticides. The pheromones have several inherent advan-
tages over insecticides: they are active in extremely small 
amounts (nanogram and sub-nanogram quantities), and 
they are specific toward the target species and generally 
non-toxic to other animals or humans (reviewed by Witzgall 
et al. [168]). Currently, synthetically prepared insect phero-
mones are used either as attractants for monitoring or mass 
trapping of insect pests, monitoring of other relevant insect 
species such as endangered species ([169], reviewed in 
[170]), or mating disruption of pest species via the release of 
synthetic sex pheromones that compromise olfactory com-
munication and mate finding in insect pests [168].

The estimated total area of land treated with syn-
thetic insect pheromones is approximately 10,000,000 ha 
worldwide and, for example, the global production of 
codlemone, the codling moth (Cydia pomonella) sex pher-
omone, reached 25,000 tons in 2010 [168]; it is primarily 
used in apple orchards. The pheromones have also been 
used widely in vineyards for mating disruption of the 
grapevine moth Lobesia botrana in Germany, Italy and 
California [168].

The establishment of economically viable synthesis 
of pheromones remains a major obstacle to scaling up 
the use of pheromone chemicals in pest control. In par-
ticular, FA-derived pheromone biosynthesis faces several 
challenging issues, such as the requirement for precisely 
positioning one or multiple double bonds into the synthe-
sized FA-chain in a particular double bond configuration 
[171]. In this respect, employment of insect FA-modifying 
pheromone-biosynthetic enzymes or organisms heterolo-
gously expressing these enzymes may be a more economic 
and environmentally friendly option than traditional 
chemical synthesis.

The concept of producing pheromone chemicals in 
genetically modified plants (“pheromone farming”) or 
yeasts (“pheromone brewing”) has been tested [23, 25]. 
In these projects, the researchers semi-synthetically pre-
pared moth pheromones by chemical reduction and con-
secutive acetylation of Z11-unsaturated FAs produced in 
genetically modified plants expressing moth Z11-mFAD. 
Ding et al. reconstructed a complete pheromone biosyn-
thetic pathway by transforming the tobacco plant with a 
combination of two insect pheromone biosynthetic genes 
(mFAD and FAR) and two non-insect genes (thioesterase, 
which modified the length of de novo biosynthesized 
FAs, and acetyltransferase, which catalyzed the final 



396      Tupec et al.: Insect desaturases, reductases and biotechnology

pheromone biosynthetic step yielding the fatty alkyl 
acetates) [24]. The approach of combining insect and non-
insect genes in the host organism is particularly useful 
in situations when suitable genes have not yet been iso-
lated from insects. Plant “pheromone factories” possess 
another attractive feature: if proven non-harmful to the 
environment, they could be planted directly in fields, thus 

circumventing the necessity of isolating and dispersing 
pheromones from specialized dispensers for mating dis-
ruption [24].

The yeast S. cerevisiae is a frequently used host for 
metabolic pathway engineering [172] and represents 
a promising host organism for heterologous expres-
sion of FARs capable of producing biologically active 
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pheromone chemicals [118]. The yeasts co-expressing 
FAR and Z11-mFAD have been used to produce alcohol 
pheromone precursors that can be subsequently isolated 
and chemically oxidized to the biologically active alde-
hyde pheromones [23].

Muñoz et al. [173] tested another approach to small-
scale pheromone synthesis, using immobilized bacterial 
acetyl transferase to catalyze the terminal step of the 
biosynthesis of a di-unsaturated conjugated fatty alkyl 
acetate, a cotton leafworm (Spodoptera littoralis) sex 
pheromone.

In a semi-synthetic approach, insect enzymes would 
be used to produce the precursors of compounds that are 
difficult to access solely by traditional organic synthesis 
tools, and these would be further chemically modified 
[23–25]. Such an approach could yield FAs with multiple 
double bonds in uncommon positions and geometric 
configurations or possibly molecules bearing more than 
one functional group. The insect FARs, with their strict 
substrate specificity toward uncommon substrates, 
could serve to efficiently and specifically convert non-
conventional FAs into their respective alcohols.

In many cases, handling isolated enzymes is diffi-
cult due to their transmembrane character (e.g. mFADs) 
or requirement for additional protein partners and 
coenzymes. The only known exception among the FA-
modifying enzymes is the lipases, which do not require a 
coenzyme, are usually soluble, and have been shown to 
be stable and active in a variety of different environments 
(including organic and ionic solvents) [174, 175]. The use of 
lipases from microorganisms and animals has been widely 
established on an industrial scale [176]; for example, more 
than 10,000 tons of pure 1-phenylethylamine enantiomer 
are produced annually using lipase as a catalyst [177]. 
Lipases are abundant in insect genomes. The majority 
of them evolved after divergence of insect orders [178], 
and thus, they potentially possess properties not present 
among lipases from other organisms. Insect lipase specifi-
cities and enzymatic properties, however, remain poorly 
studied in general. The isolated lipases from non-insects 
have been used for enantioselective synthesis of phero-
mones from bark beetles [179], corn rootworms [180], rice 
moths [181], and many other insect species [182].

To the best of our knowledge, there is currently no 
commercial application of insect enzymes in the synthesis 
of oleochemicals, although the implementation of some 
insect enzymes could substantially expand the toolbox of 
FA modifications available to both organic chemistry and 
mass industrial production. One recent example from the 
research field is the use of honeybee FAR1 for the synthesis 

of wax esters in engineered S. cerevisiae co-expressing FA 
elongase and wax synthase [183].

5  �Challenges and future perspective
One of the main drawbacks to the use of genetically 
modified organisms for production of pheromones and 
other FA-derivatives is the cost of developing such trans-
genic organisms. Additionally, substantial optimiza-
tion and scale-up of production capacity are required 
to convert the heterologous expression systems used 
in research into feasible production organisms. So far, 
efforts to produce insect pheromones in host organisms 
have led to (i) 2  mg/L of fatty alcohols in S. cerevisiae 
liquid culture [23]; (ii) 44 mg of unsaturated FA-derived 
methyl ester per kg of plant material [25]; and (iii) hun-
dreds of mg of unsaturated FAs, tens of mg of the respec-
tive fatty alcohols, and several mg of the final acetates 
per kg of fresh leaf tissue from a Nicotiana benthamiana 
expression system [24]. In host systems transformed with 
non-insect enzyme sequences, the production of fatty 
alcohols and wax esters in bacteria (E. coli or Cyanobac-
teria) or yeasts (S. cerevisiae, Rhodosporidium toruloides, 
or Yarrowia lipolytica) can reach hundreds to thousands 
of mg/L cultivation medium after lab-scale optimiza-
tion [7, 184–187]. In particular, oleaginous yeasts such 
as R. toruloides [188] and Y. lipolytica [6, 189–191], which 
accumulate large amounts of lipids and have estab-
lished genetic engineering procedures, might be promis-
ing host organism candidates. As a future prospect, the 
production of desired pheromone chemicals might also 
be achieved through expression of enzymes with engi-
neered functions.

There are multiple avenues potentially leading to 
enhanced yields of FA biosynthetic enzymes: (i) genetic 
modification of the ER retention signal [24], (ii) optimi-
zation of the expressed gene codon usage for the host 
organism [192], (iii) promoter strength and introduction of 
regulatory sequences such as the eukaryotic Kozak con-
sensus sequence [193], (iv) moving from transient plant 
transformation and yeast expression plasmids toward 
stable plant transformants [24] and genome-integrated 
sequences in yeast [172], and (v) extensive metabolic engi-
neering of the host organisms [7]. In addition to increasing 
the yield of specific FA derivatives, attention must also be 
paid to biosynthesis of side products such as undesired 
FA isomers, which could act as a repellent or inhibitor and 
thus compromise the pest management strategy.
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This review has focused on a relatively minor part of 
insect biosynthetic capabilities. In a broader context, we 
envision that insect bioprospecting, the search among 
insect organisms for commercially valuable resources 
[194], eventually will exploit their genetic and biosyn-
thetic diversity.
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