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Abstract: The drastic growth of the population on our 
planet requires the efficient and sustainable use of our 
natural resources. Enzymes are indispensable tools for 
a wide range of industries producing food, pharmaceu-
ticals, pesticides, or biofuels. Because insects constitute 
one of the most species-rich classes of organisms colo-
nizing almost every ecological niche on earth, they have 
developed extraordinary metabolic abilities to survive in 
various and sometimes extreme habitats. Despite this met-
abolic diversity, insect enzymes have only recently gener-
ated interest in industrial applications because only a few 
metabolic pathways have been sufficiently characterized. 
Here, we address the biosynthetic route to iridoids (cyclic 
monoterpenes), a group of secondary metabolites used by 
some members of the leaf beetle subtribe Chrysomelina 
as defensive compounds against their enemies. The ability 
to produce iridoids de novo has also convergently evolved 
in plants. From plant sources, numerous pharmacologi-
cally relevant structures have already been described. In 
addition, in plants, iridoids serve as building blocks for 
monoterpenoid indole alkaloids with broad therapeu-
tic applications. As the commercial synthesis of iridoid-
based drugs often relies on a semisynthetic approach 
involving biocatalysts, the discovery of enzymes from the 
insect iridoid route can account for a valuable resource 
and economic alternative to the previously used enzymes 
from the metabolism of plants. Hence, this review illus-
trates the recent discoveries made on the steps of the iri-
doid pathway in Chrysomelina leaf beetles. The findings 
are also placed in the context of the studied counterparts 
in plants and are further discussed regarding their use in 
technological approaches.

Keywords: chemical defense; chrysomelidae; iridoid bio-
synthesis; iridoid enzymes.

1  Introduction
Iridoids comprise a large family of biologically active 
molecules that have thus far been found in plants and 
insects. Structurally, they are known as cyclopentan-[c]-
pyran with a hydroxyl (iridoid aglucones) or glucosyl 
group (iridoid glucosides) at the C-1 position of the pyran 
ring. In particular, plants produce manifold structures 
subgrouped according to, for example, substituents, 
linkage to other molecules, or modifications of the ring 
structures (summarized, e.g. in Refs. [1–4]). Among the 
2500–3000 identified plant iridoids/secoiridoids are the 
secologanins, which serve as key building blocks in the 
synthesis of thousands of monoterpenoid indole alka-
loids, including vinblastine/vincristine or camptothecin 
that are widely used as anticancer agents [5, 6]. Besides 
anticancer activity, iridoids have additional pharmaceu-
tical potentials that provide valuable resources for the 
development of novel drugs and therapeutic strategies 
against diverse diseases [7–9]. In the natural environment, 
iridoids benefit plants by preventing microbial invasions 
[10–14], and by repelling herbivorous vertebrates and 
invertebrates [10, 15, 16].

The protective effect of iridoids can be based on their 
bitter taste, making these phytochemicals in particular 
distasteful to mammals [17], and on their physiologi-
cal toxicity, which also affects invertebrates and patho-
gens in a dose-dependent manner [2]. To date, it has 
been shown that iridoid toxicity can be attributed to the 
highly reactive aglycones that are released from the corre-
sponding nontoxic iridoid glucosides that are often safely 
stored in plant organelles [18, 19]. Glycoside hydrolysis 
can be achieved nonenzymatically or enzymatically by 
β-glucosidases (hydrolases, EC 3.2.1.21) produced by the 
plants themselves [20–22] or by their enemies [12, 13, 23, 
24]. If the resulting compound is a reactive aldehyde, 
it has the ability to link irreversibly and nonselectively 
essential cellular components including proteins. This 
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may affect the physiological processes of invasive organ-
isms directly and/or decrease the nutritive value of dietary 
proteins considerably [25–28]. Although a universal target 
of iridoids has not been defined, these rather nonspe-
cific effects contribute to an increased mortality of, for 
example, nonadapted herbivores feeding on iridoid glyco-
side-containing diets [24].

The biosynthesis of iridoids in plants proceeds 
through C5-isopentenyl diphosphate (C5-IDP) and 
C5-dimethylallyl diphosphate (C5-DMADP) – the universal 
building blocks for all terpenoids. C5-IDP and C5-DMADP 
are biosynthesized in two pathways existing side by side 
in higher plants – namely, the cytosolic mevalonic acid 
(MVA) pathway and the plastid 2-methyl-d-erythritol 
4-phosphate pathway. The 2-methyl-d-erythritol 4-phos-
phate route was found to be the main route for the synthe-
sis of iridoid precursors in plants [7]. The iridoid pathway 
starts with its key intermediate, geraniol diphosphate, 
and comprises a number of oxidation, reduction, glyco-
sylation, and methylation reactions [5, 29]. The biosyn-
thesis of secologanin through the intermediates iridodial 
and iridotrial in the Madagascar periwinkle, Catharanthus 
roseus, has been best understood [30–35]. The pathway 
in C. roseus is organized in a complex manner, with the 
enzymes localized in different cell types and subcellular 
compartments [36, 37].

Although iridoids are typically encountered in the 
plant kingdom, these secondary metabolites can also be 
identified in insects. In fact, the name iridoid is a generic 
term derived from iridomyrmecin, a component of defen-
sive secretions identified from species of the ant genus Iri-
domyrmex [38] (Figure 1). Insects use iridoids frequently 
as chemical stimuli for communication or defense [41–47]. 
Although many insects profit from the sequestration 
of iridoid glucosides from their host plants [16, 48–50], 

others, such as stick insects [51], rove beetles [40], or leaf 
beetles [52–56] are able to produce iridoids de novo.

The biosynthetic steps are thought to proceed in a 
similar way to the known pathway in plants. However, as 
in plants, in insects, the iridoid pathway has also been 
characterized in only a few species and, even in these pio-
neering examples, the pathway is not yet fully resolved. 
The best investigated insect species regarding iridoid 
synthesis thus far belong to the family of leaf beetles 
(Chrysomelidae, subtribe Chrysomelina) (Table 1). In par-
ticular, the juveniles of Chrysomelina beetles evolved spe-
cialized pair-wise exocrine glands (composed of a reservoir 
with adhered glandular cells) on their dorsal segments to 
release iridoids in droplets as defensive secretions. Con-
sidering the evolutionary aspects of Chrysomelina beetles, 
it has been shown that iridoid de novo synthesis precedes 
the sequestration of plant-derived secondary metabolites 

Figure 1: Iridoid defense molecules identified from insects (accord-
ing to Kunert et al. [39] and Weibel et al. [40]).

Table 1: Iridoid compounds in defensive secretions from the larval stages of selected Chrysomelina (Chrysomelidae) species specialized to 
different host plants.

Species Compounds Configuration de (%) Host plant

Phaedon cochleariae Chrysomelidial (5R,8R) 94 Brassica rapa subsp. chinensis
Hydrothassa marginella Chrysomelidial, plagiolactone (5S,8S) 95 Ranunculus acris
Phratora vulgatissima Chrysomelidial, plagiodial (5S,8S) 93 Salix caprea
Gastrophysa viridula Chrysomelidial (5R,8R) 96 Rumex obtusifolius
Gastrophysa polygoni Chrysomelidial (5R,8R) 92 Polygonum aviculare
Gastrophysa cyanea Chrysomelidial, gastrolactone (5R,8R) 97 Rumex obtusifolia
Gastrophysa atrocyanea Chrysomelidial (5R,8R) 91 Rumex obtusifolia
Plagiodera versicolora Plagiodial, plagiolactone Salix fragilis
Linea aenea Plagiodial, plagiolactone Alnus glutinosa
Prasocuris phellandrii Plagiodial Caltha palustris
Phratora laticollis Plagiodial Populus canadensis

The absolute configuration of chrysomelidial has been measured by gas chromatography–mass spectrometry (GC-MS) on a chiral column 
(adapted from Kunert et al. [39]). de, diastereomeric excess.
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for the production of defensive compounds [57]. To 
achieve the exploitation of phytochemicals, the larvae use 
transport and metabolic mechanisms already present in 
the iridoid de novo-producing species. These mechanisms 
were adapted according to host plant affiliations during 
the evolutionary sequence of Chrysomelina species.

Based on the fact that iridoid/secoiridoid-derived com-
pounds have tremendous pharmacological potential, the 
plant enzymes of this pathway are the focus of the current 
research as biocatalysts in commercial drug production 
[58, 59]. Additionally, because iridoids are also used as 
sex pheromones by aphids, which are agriculturally rel-
evant pest species, they are exploited for the development 
of innovative and integrated pest management strategies 
[60, 61]. Hence, a molecular understanding of the iridoid 
metabolism, not only in plants but also in insects, has 
the potential to expand the repertoire of enzymatic work-
horses available for different industrial approaches in the 
field of human health or nutrition. Due to the ecological 
and socioeconomic relevance of the iridoid pathway, we 
highlight in this review the most recent developments 
in our understanding of the iridoid biosynthesis and its 
enzymatic machinery in Chrysomelina beetles.

2  �Iridoid de novo synthesis: early 
steps

The iridoid de novo biosynthesis in the larvae of 
Chrysomelina species starts with the formation of the iso-
prene units C5-DMADP and C5-IDP, which are derived from 
the MVA pathway [62]. To date, two enzymes have been 
studied in this early part of the pathway: the 3-hydroxy-
3-methylglutaryl-CoA reductase (HMGR, EC 1.1.1.34) and 
the short-chain isoprenyl diphosphate synthase (scIDS) 
whose properties are described below in more detail.

HMGR catalyzes the rate-limiting step in the MVA 
pathway [63]. The enzyme utilizes two molecules of NADPH 
to mediate the four-electron reduction of 3-hydroxy-
3-methyl-glutaryl-coenzyme A to the carboxylic acid 
mevalonate. Because HMGR is one of the most regulated 
enzymes known [64], its regulatory features may also be 
important for the biosynthesis of iridoids in chrysomelids. 
Consistently, analyses of different larval tissues from the 
iridoid synthesizing species Phaedon cochleariae and Gas-
trophysa viridula revealed high HMGR mRNA levels, high 
HMGR activity, and accumulation of the iridoid intermedi-
ate, 8-hydroxygeraniol-8-O-β-d-glucoside, in the fat body 
tissue of the iridoid de novo producers [65]. Hence, the fat 
body – the most prominent tissue in the larvae performing 

myriad metabolic functions throughout the insects’ devel-
opment [66] – is implicated in de novo production of the 
glucosidically bound iridoid precursor. It is further reason-
able to assume that iridoid biosynthesis is spatially distrib-
uted and the glucosidically bound intermediate is released 
from fat body tissue into the hemolymph followed by 
transport into the defensive glands for further conversion.

HMGR is regulated on very different levels, pre- and 
posttranslationally [64]. In insects, for example, it is 
known that HMGR transcription is affected by juve-
nile hormones [67, 68]. From Chrysomelina beetles, we 
reported that HMGR is negatively regulated by 8-hydrox-
ygeraniol, another intermediate of iridoid biosynthesis 
[69]. Purification of the catalytic HMGR domain revealed 
that inhibition by 8-hydroxygeraniol is subject to the 
catalytic domain, which was corroborated by docking 
analyses on the modeled HMGR catalytic portion. De novo 
producing larvae possess the potential to sequester glu-
cosidically bound 8-hydroxygeraniol if present in the diet 
[70–73]. After cleavage of the sugar moiety, the aglucon 
may interfere with HMGR and, consequently, the enzyme 
may represent a key regulator to maintain homeostasis of 
endo- and exogenous metabolites of the iridoid synthe-
sis. Inhibition was also observed for other insect HMGRs 
including Drosophila melanogaster.

The second characterized enzyme of the early steps 
in the iridoid pathway is a member of the scIDS. Gener-
ally, catalysis by scIDSs follows a sequential mechanism 
called “head-to-tail alkylation”. During chain elonga-
tion, the allylic cosubstrate, e.g. C5-DMADP or C10-gera-
nyl diphosphate (C10-GDP), undergoes coupling with 
homoallylic C5-IDP through electrophilic alkylation at its 
carbon-carbon double bond. For the scIDS in the iridoid 
pathway, it is expected that the enzyme produces C10-
GDP, the ubiquitous C10-building block of many monoter-
penes [74–77]. The reaction mechanism depends on the 
activation on a trinuclear metal cluster usually contain-
ing Mg2+ or Mn2+ [78].

Compared with plants, only a few GDPs have thus 
far been characterized in insects [75]. Strikingly, most 
of them have the ability to form multiple products. For 
example, an enzyme studied from the bark beetle, Ips 
pini, displayed prenyltransferase and terpene synthase 
activity [79–81], resulting in the formation of precursors 
for the de novo synthesis of monoterpenoid aggrega-
tion pheromones such as ipsdienol, which coordinates 
the colonization of coniferous trees [82]. Another scIDS 
from Dendroctonus spp. bark beetles produced C10-GDP 
and C15-farnesyl diphosphate (C15-FDP) depending on the 
C5-IDP/C5-DMADP substrate ratio [79–81]. Bifunctional-
ity was also observed from the scIDSs characterized from 
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different aphid species [83–87]. Here, the recombinant 
proteins generated both GDP and FDP in parallel, and 
hence may be involved in the biosynthesis of either aphid 
sex pheromones or the sesquiterpene (E)-β-farnesene, the 
most common component of alarm pheromones.

Based on earlier studies describing the role of metal 
cofactors for scIDS catalysis, the product composition of 
a scIDS discovered from juvenile P. cochleariae has been 
tested in the presence of different metal ions [88]. Sur-
prisingly, we found the enzyme isoprenyl diphosphate 
synthase 1 (PcIDS1) from P. cochleariae possessing an 
unusual product regulation mechanism not previously 
described for scIDSs. It alters the chain length of its prod-
ucts depending on the cofactor: the recombinant PcIDS1 
yielded 96% C10-GDP and only 4% C15-FDP in the presence 
of Co2+ or Mn2+ as a cofactor, whereas it yielded only 18% 
C10-GDP but 82% C15-FDP in the presence of Mg2+. Kinetic 
studies further reinforced their assertion that PcIDS1 has 
an energetic preference for Co2+ with C5-DMADP as an 
allylic cosubstrate for C10-GDP production but showed 
that C15-FPP production was favored when Mg2+ was the 
cofactor. Cation quantification studies in P. cochleariae 
larval tissues strengthened the physiological plausibility 
that the flux of carbon into separate metabolic pathways 
(C10- vs. C15-isoprenoids) could be accomplished by these 
ions in vivo.

Inspired by our work, the functional characteriza-
tion of a farnesyl diphosphate synthase from the yellow 
fever mosquito, Aedes aegyptii, for example, revealed a 
similar dependency from the divalent cation of product 
condensation as observed for PcIDS1 [89]. Given that 
plants possess a number of genes encoding IDS’s (e.g. at 
least 10 in Arabidopsis thaliana), whereas insects possess 
only a few (e.g. 3 in Bombyx mori), insects may compen-
sate for this disparity by generating different chain-length 
products in other ways. Instead of “inventing” a new IDS, 
insects seem to use different cofactors to add products to 
an enzyme’s repertoire, thereby lowering metabolic costs. 
This type of “adjustable” enzyme may afford insects an 
efficient mechanism for the generation of chemical diver-
sity that is critical for adaptation to ever-changing eco-
logical contexts. Compared with plants, the functions of 
the many predicted isoprenyl diphosphate synthases in 
insects are much less understood. For example, putative 
trans-isoprenyl diphosphate synthases recently character-
ized from the flea beetle, Phyllotreta striolata, displayed 
terpene synthase activity [90]. Hence, the few function-
ally characterized isoprenyl diphosphate synthases from 
insects have already shown the potential of these enzymes 
or of chimeric insect-plant/microbe proteins [91] for use 
in a biotechnological context, such as in the optimization 

of carbon fluxes during the production processes of 
pharmaceuticals.

Later in the iridoid pathway, geranyl diphosphate 
is converted into 8-hydroxygeraniol through geraniol, 
thereby removing the diphosphate moiety (Figure 2). The 
enzymes responsible for these reactions still remain to be 
elucidated in iridoid de novo-producing leaf beetles. In 
the plant C. roseus, the conversion of GDP into geraniol is 
catalyzed by a terpene synthase (geraniol synthase), but 
in beetles, a homologous sequence has not been identi-
fied. It is conceivable that a phosphatase is involved in the 
PPi group cleavage followed by a cytochrome P450 medi-
ated ω-hydroxylation to obtain 8-hydroxy geraniol [92, 
93]. An alternative would be the implication of a so-called 
“moonlighting P450” enzyme that possesses two catalytic 
centers exerting monooxygenase and terpene synthase 
activity [94]. Such an enzyme could cleave the diphos-
phate and oxidize geraniol to form 8-hydroxygerniol. In C. 
roseus, it is known that the P450 enzyme CYP76B6 (G8O) 
oxidizes geraniol to 8-hydroxygeraniol [95]. Following oxi-
dation, a glucose unit is transferred onto 8-hydroxygeran-
iol to enable the translocation of the precursor from the 
hemolymph into the defensive glands. The responsible 
glycosyltransferase, however, remains elusive.

3  �Iridoid de novo synthesis: 
late steps

In P. cochleariae, the iridoid biosynthesis proceeds 
not entirely in the glands but it is most likely compart-
mented within the larval body [69]. After translocation 
of 8-hydroxygeraniol-O-β-d-glucoside into the defensive 
glands, its final transformation into iridoids occurs in the 
secretions. This transformation involves the hydrolysis of 
the glucoside and oxidation of the two primary hydroxy 
groups to produce the dialdehyde 8-oxogeranial, which is 
followed by a cyclization [52, 54, 39].

In general, hydrolysis of glycosides occurs in the meta-
bolism of all organisms. Enzymes that catalyze such reac-
tions often belong to the glycosyl hydrolase family 1 (GH1) 
according to CAZy [96, 97]. Whereas in plants, GH1s play an 
important role in the activation of glucosides for defense 
purpose [98–101], insects use those enzymes mainly for 
digestion, either in the gut or in the salivary glands [24, 
102, 103]. In addition to this, GH1s may also be involved 
in the production of chemical defenses widely distributed 
in insects [104]. However, because only a few metabolic 
pathways have been characterized to date, it is not surpris-
ing that only a few insect β-glucosidases are known to be 
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utilized for the synthesis of deterrents. Examples include 
the β-glucosidase linamarase from the caterpillars of the 
six-spot burnet moth, Zygaena filipendulae [105, 106], the 
ascorbate-dependent β-thioglucosidases (called myrosi-
nases) from the cabbage aphid, Brevicoryne brassicae [107–
109], and from the flea beetle, P. striolata [110].

To assess their importance in deterrent biosynthesis, 
we identified and functionally characterized GH1 glucosi-
dases from different Chrysomelina species [111]. Deter-
mination of the kinetic parameters of heterologously 
expressed enzyme from P. cochleariae revealed hydro-
lase activity in the presence of physiological precursors 

Figure 2: Comparative illustration of key steps in the iridoid/secoidoid biosynthesis from mustard leaf beetle, P. cochleariae (Pc), and Mad-
agascar periwinkle, C. roseus. GPPS, geranyl diphosphate synthase; GES, geraniol synthase; G8O, geraniol 8-oxidase; 8-HGO, 8-hydroxy-
geraniol oxidoreductase; IS, iridoid synthase; PcIDS1, isoprenyl diphosphate synthase; PcgbGlc, glandular β-glucosidase; Pc8HGO, 
8-hydroxy geraniol oxidoreductase (GMC superfamily); PcTo-like, takeout-like protein.



422      Burse and Boland: Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles

from different deterrent pathways found in Chrysomelina 
beetles, i.e. activity was determined in the presence of 
8-hydroxygeraniol-O-β-d-glucoside (intermediate in the 
iridoid metabolism of P. cochleariae), salicin (interme-
diate in the salicyl aldehyde synthesis of Chrysomela 
populi), and 2-phenylethyl-β-d-glucoside (intermediate 
in the ester production found in Chrysomela lapponica). 
Evidently, the intrinsic broad substrate selectivity of 
the enzyme does not require changes in the catalytic 
center to allow the conversion of different plant-derived 
compounds.

β-glucosidases play an important role in complex 
biomass hydrolysis from renewable sources for the pro-
duction of biofuels, food, or food additives [112, 113]. 
However, product inhibition impairing yields, thermal 
inactivation of enzymes, and the high cost of enzyme pro-
duction are still the main obstacles to commercial hydrol-
ysis processes. Hence, the demand for alternatives to the 
currently available enzyme preparations has prompted 
researchers to further characterize enzymes from the most 
diverse organisms. The hydrolysis reactions from insects 
represent one of these sources that have not yet been suf-
ficiently exploited. For example, the glucosidases from 
Chrysomelina leaf beetles exhibited an optimal hydrolytic 
activity at particularly low pH (optimal range 4.5–6), a 
property that might be of interest for specific technologi-
cal processes [111].

The following reaction,  flavin adenine dinucleotide 
(FAD)-dependent oxidation, is known to be catalyzed 
from members of the multigene family of glucose-meth-
anol-choline (GMC) oxidoreductases [114]. Interestingly, 
plants use a completely different enzyme family for the 
oxidation of 8-hydroxygeraniol. In C. roseus, an NAD(P)-
binding Rossmann fold domain-type oxidoreductase 
(8-hydroxygeraniol oxidoreductase, 8-HGO) contributes 
to the formation of 8-oxogeranial by the catalysis of two 
successive and reversible oxidation steps [30].

The GMC protein from the larvae of P. cochleariae 
(Pc8HGO) has been identified in defensive secretions by 
proteomic analyses [115]. The importance of this enzyme 
for the formation of chrysomelidial has been further 
verified by RNAi in vivo. Functional characterization, 
including the substrate specificity of this enzyme after het-
erologous expression, revealed the selective oxidation of 
8-hydroxygeraniol to 8-oxogeranial. In addition, the sub-
strate specificity of Pc8HGO was tested by incubating the 
oxidase with salicyl alcohol, the substrate of Chrysomela 
spp. salicyl alcohol oxidase (SAO). No enzyme-based con-
version to salicyl aldehyde could be detected, indicating 
that this particular enzyme does not react with salicyl 
alcohol. Also, the recently tested SAO is selective only 

for the genuine substrate of the salicyl aldehyde pathway 
[116–118]. Thus, unlike the glandular β-glucosidases, the 
GMC oxidases have a narrow substrate spectrum.

In comparison to other oxidoreductases, the members 
of the GMC oxidoreductase family share a conserved 
sequence motif, the β-α-β dinucleotide binding motif 
(GxGxxG(x)18E) responsible for the binding of cofactor 
FAD. Despite the diversity of substrates that can be con-
verted by the members of this protein family, the majority 
of GMC oxidoreductases seem to share a catalysis mecha-
nism involving a hydride transfer from the substrate to FAD 
that is promoted by a conserved histidine residue. Subse-
quently, molecular oxygen is utilized as the acceptor for 
the hydride and is further reduced to hydrogen peroxide. 
In insects, the GMC oxidoreductase multigene family has 
undergone a massive expansion. For comparison, in ver-
tebrates, only one to two GMC genes are known, whereas, 
in insects, 15–43 genes are known. It is believed that these 
GMC genes are involved in developmental, immune, or 
defensive processes in insects. It seems that the substrate 
diversity in redox reactions potentially supplied by this 
multigene family equips insects with a toolbox that allows 
them to adjust to the particular biotic and abiotic condi-
tions that may result, for example, when shifting host 
plants [119, 120]. Although the exact functions of many of 
these GMC genes have not been elucidated, it can already 
be suggested that GMC members have the potential to cat-
alyze reactions that are valuable from a biotechnological 
perspective.

Whereas deglucosylation and oxidation reactions are 
also found in sequestering species, the final cyclization of 
acyclic dialdehydes to generate iridoids proceeds exclu-
sively in iridoid de novo producing species. Interestingly, 
with the same precursor, isotopic tracing studies have 
shown that there are two mechanistically different cycli-
zation modes in different leaf beetle groups [39]. When 
deuterium atom labeled [2H5]Ger-8-OH was used for the 
feeding experiments, the precursor lost a single deuterium 
atom from C(4) in P. cochleariae, Hydrothassa marginella, 
and Phratora vulgatissima. In contrast, in Gastrophysa 
cyanea, Gastrophysa polygoni, Gastrophysa atrocyanea, 
and G. viridula, [2H5]Ger-8-OH was observed to exchange 
all three deuterium atoms from the methyl group at C(3) 
(Figure 3). Based on these isotopic labeling studies, two 
different cyclization mechanisms have been proposed 
proceeding through either a “transoid” orientation of the 
dienamine intermediate (Phaedon-type cyclization) or a 
“cisoid” orientation of the dienamine (Gastrophysa-type 
cyclization).

Moreover, the absolute configuration and optical 
purity of chrysomelidial secreted by different families 
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was determined by GC-MS. Curiously, except for those 
in H. marginella and P. vulgatissima, which are (5S,8S)-
chrysomelidial, secretions in P. cochleariae and all 
investigated members of the genus Gastrophysa contain 
(5R,8R)-chrysomelidial. To date, however, the only 
enzyme capable of performing the reductive cyclization 
step of 8-oxogeranial has been identified in C. roseus. 
The iridoid synthase is a member of the Rossmann-fold 
NAD(P)+-binding protein superfamily. It cyclizes 8-oxog-
eranial to cis-trans-iridodials and cis-trans-nepetalactol 
under the consumption of NAD(P)H [32]. In a proteomic 
analysis, however, no protein similar to the iridoid syn-
thase from C. roseus could be detected in the secretions 
of iridoid-producing Chrysomelina larvae. Chemical 
analysis of the cyclization reaction predicted a NAD(P)
H-independent reaction leading to the assumption that 
a different class of enzymes is catalyzing the reaction in 
insects compared with plants.

The most promising candidate to be involved in 
cyclization is a takeout-like protein, a member of the 
juvenile hormone-binding protein superfamily, which 
comprises ligand-binding proteins for juvenile hor-
mones or similar hydrophobic terpenoids [121]. The 

detailed biochemical characterization of this protein 
in vitro, however, is still in progress. As the enzymes 
from Chrysomelina leaf beetles are known to differ in 
their stereoselectivity [39], a variety of cyclic products 
can be produced that could serve as building blocks for 
new metabolites of pharmacological relevance. Hence, 
deciphering the reaction mechanism would make the 
enzyme prospectively a candidate for application in 
drug development.

4  �Conclusion and future aspects
Important gaps in our understanding of insect meta-
bolism have been filled in recent years. However, we are 
still only scratching the surface of the metabolic com-
plexity present in the approximately one million insect 
species on our planet [122]. Every newly discovered and 
functional studied protein contributes to the growing set 
of biocatalysts that can render chemical synthesis more 
efficient and sustainable. Iridoid biosynthesis in leaf 
beetles definitely offers special features that could be 

Figure 3: Metabolism of [2H5]-8-hydroxygeraniol toward chrysomelidial in different leaf beetle larvae. The proposed mechanism for iridoid 
cyclization includes the formation of a dienamine. The dienamine intermediate is “transoid” for Phaedon and “cisoid” for Gastrophysa 
(adapted from Kunert et al. [39]).
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attractive for industrial applications. Because the iridoid 
pathway in beetles diverges from that in plants, its 
catalytic proteins can come into consideration as valu-
able tools for alternative synthesis strategies for iridoid-
derived drugs. Our mechanistic studies on the insect 
iridoid route hence provide a framework for further 
enzyme engineering.

The intrinsic catalytic activity itself as well as the 
physicochemical properties of the enzymes can be 
exploited for industrial applications. For example, the 
secretory proteins localized in the defensive secretions 
of Chrysomelina larvae have to function in an extracel-
lular milieu not comparable with the normal cellular 
interior. Defensive secretions possess nonphysiologic pH 
values and contain the enzymes together with the end 
products. Often, these metabolic end products are lipo-
philic and form separated phases or a kind of oil-water 
emulsion in the secretions [123]. Furthermore, the deter-
rents can have damaging effects on the proteins, e.g. iri-
doids can cause a nonspecific cross-linking of proteins. 
Hence, the enzymes in emulsions or on the interface 
between hydrophilic and hydrophobic phases have to 
meet special requirements to fulfill their function. Often, 
special decorations of proteins or interactions with chap-
erone-like proteins improve stability in nonphysiological 
environments.

In particular, protein modifications by N- or O-gly-
canes modulate the physicochemical properties of pro-
teins including thermodynamics, kinetics, chemical 
stability, or 3D architecture [124]. Because protein-based 
pharmaceuticals such as antibodies or enzymes require 
long-term stability, much emphasis has been placed on 
optimal glycosylation parameters by researchers in the 
field of glycoprotein engineering [125, 126]. An under-
standing of the sugar composition of secretory proteins 
in defensive secretions could thus contribute alternative 
glycosylation patterns that might benefit protein design in 
modern medicine.

Because secretory enzymes have to ensure deterrent 
production in a closed reservoir “outside” the insect body, 
they are exposed to a fluctuating surrounding tempera-
ture and should be able to operate in a varying range of 
temperatures. As technological processes often have to 
proceed under nonphysiological conditions simply to be 
profitable, an understanding of the secretory proteins 
from a thermodynamic perspective might promote these 
processes. Our current understanding of the secretory 
proteins in insect iridoid producers provides a platform 
to build on future research on defensive secretions from 
insects with regard to biochemical as well as technologi-
cal aspects.
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