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Abstract: Now days, production of fuels and petrochemi-
cals from renewable lignocellulosic biomass is an indis-
pensable issue to meet the growing energy demand. 
Meanwhile, the changes in the climate and soil topogra-
phy influence the growth and development as well as can-
opy level of the lignocellulosic biomass. In this study, Zilla 
spinosa Turr (Zilla) plants with similar age and size were 
collected from three main sectors (upstream, midstream, 
and downstream) of Wadi Hagul during spring (April) and 
summer (July) seasons. Environmental stresses evoked 
reduction in the energy trapping pigments concomitant 
with increments in chlorophyll fluorescence in summer 
harvested plants particularly at downstream. Further-
more, the biofuels generating compounds including car-
bohydrate, lignin, and lipid making the plant biomasses 
are greatly affected by environmental conditions. Greater 
amount of lignin was estimated in summer harvested 
Z.  spinosa shoots particularly at downstream. Moreover, 
the total oil content which is a promising source of bio-
diesel was considerably decreased during summer season 
particularly at downstream. The physical properties of the 
lipids major constituent fatty acid methyl esters determine 
the biofuel properties and contribute in the adaptation of 
plants against environmental stresses. Hence, the analy-
sis of fatty acid profile showed significant modifications 
under combined drought and heat stress displayed in 
the summer season. The maximum increase in saturated 
fatty acid levels including tridecanoic acid (C13:0), pen-
tadeanoic acid (C15:0), palmitic acid (C16:0), and stearic 
acid (C18:0) were estimated in spring harvested Z. spinosa 
aerial portions particularly at midstream. In spite of the 
reduction in the total oil content, a marked increase in 
the value of unsaturated to saturated fatty acids ratio and 
thereby the unsaturation index were achieved during the 
dry summer period. Henceforth, these seasonal and spa-
tial variations in fatty acids profiles may contribute in the 

acclimatization of Z. spinosa plants to soil water scarcity 
associated with heat stress experienced during summer. 
In addition, the alterations in the fatty acid profiles may 
match biofuel requirements. In conclusion, the most ade-
quate growing season (spring) will be decisive for achiev-
ing high lipid productivity associated with improved 
biofuel quality in terms of high saturated fatty acids per-
centage that improves its cetane number. However, the 
dry summer season enhanced the accumulation of greater 
amount of lignin that may enhance the biodiesel quantity.

Keywords: biofuel; carbohydrates; cellulose; fatty acids; 
heat stress; lignin; lipids; water scarcity; Zilla spinose 
(Turr).

1  Introduction
The Bio-energy from natural photosynthetic biomass can 
substitute the fossil fuels in providing clean and reliable 
renewable energy resources [1]. Meanwhile, the natural 
green biomass particularly in the desert is regularly face 
adverse growth conditions, such as drought, salinity, and 
high temperatures [2]. These stresses can reduce growth 
and development, productivity, and cause plant death 
under severe abiotic stress condition [3]. Similarly, envi-
ronmental stresses can interrupt plant cellular structures 
and impair the physiological functions [4]. The relative 
concentrations of energy trapping pigments are known 
to be altered under abiotic stresses, and therefore, they 
can be used as indicator for interaction between plants 
and their environments [5]. Severe drought stress causes 
changes in chlorophyll content, affecting chlorophyll com-
ponents, damaging the photosynthetic apparatus, and 
inhibits the photosynthesis [6]. In addition, the pigment 
ratio of chlorophylls (a+b)/carotenoids can be used as an 
indicator for stress. Thus, greater values of chlorophylls 
(a+b)/carotenoids ratio up to 5–6 indicated intact photo-
synthetic apparatus. It was deduced that chlorophyll is 
broken down faster than carotenoids under stress, and the 
pigment ratio declined to be about 2–3 [7].

Indeed, photosynthesis is one of the most sensi-
tive physiological processes in stressed plants [8], 
which thereby directly contribute in biomass produc-
tion. Boughalleb and Hajlaoui [9] postulated that the 
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photosynthetic pigments, net photosynthetic rate, stoma-
tal conductance, transpiration rate, the maximal photo-
chemical efficiency of PSII, and the intrinsic efficiency of 
PSII reaction centers decreased in Olea europaea plants 
exposed to water scarcity. The sensitivity of photosyn-
thesis to heat and drought is related to the damage of 
photosystem (PS) II components located in the thylakoid 
membranes [10, 11]. Consequently, the reduction in pho-
tosynthesis will reduce the production of metabolites and 
hence the plant biomass. Indeed, the greatest component 
of the plant biomass is the cell walls, which comprise 
lignin and polysaccharides as cellulose and hemicellu-
lose. The utilization of the lignocellulosic plant materi-
als could be considered as a source for the intermediate 
chemicals and the second generation biofuels [12]. It was 
recorded that the utilization of lignocellulosic plant resi-
dues could provide about 10–20% of the current world 
energy demand [13]. However, the reduction in lignin 
is sometimes accompanied by increased cellulose and 
hemicellulose deposition. Thus, the reduction in lignin 
biosynthesis was associated with cellulose accumulation 
and growth in some transgenic trees [14]. The variation in 
lignin content and components could be used to improve 
the digestibility of biomass [15]. Lignin provides mechani-
cal support to the xylem cells, plays an important role in 
plant defense against various biotic and abiotic stresses 
[16, 17], in seed dispersal and in the formation of an apo-
plastic diffusion barrier in the roots [18].

Meanwhile, environmental stresses can induce oxida-
tive stress in the plant cell due to overproduction of reac-
tive oxygen species (ROS, [19, 20]). The ROS can directly 
damage the cellular macromolecules including lipids, 
metabolic enzymes, and the nucleic acids leading to 
cell death [21]. Henceforth, the decomposition product 
of polyunsaturated fatty acids hydroperoxides such as 
malondialdehyde (MDA) can be used as an evidence for 
lipid peroxidation extent [22]. Consequently, the change 
in membranes will usually be reflected by corresponding 
alterations in plant total lipids content which represents 
about 80% of the total lipid of leaf tissue [23].

Moreover, the vegetable oil can be used as a renewa-
ble biological sources for biodiesel which substitute diesel 
fuel [24]. Recently, the vegetable oil was transformed into 
green diesel or renewable biofuel by transesterification 
[24]. Several researchers reported that vegetable oils are 
a promising fuel that can substitute petroleum fuels [25]. 
The vegetable oil composition of arid inhabiting plants is 
considerably affected by the changes in environmental 
conditions beside their genetic factors [26]. The nature 
and the structure of the fatty acid methyl ester determine 
the biofuel properties. The distribution of fatty acids in the 

vegetable oil or fat determines the cetane number of the 
produced biodiesel. In general, the exposure of various 
crop species to long periods of water deficits lead to reduc-
tions in the levels of phospholipid, glycolipid and linoleic 
acid contents and increased the triacylglycerol [27,  28]. 
The relative amounts of the different fatty acid radicals 
determine the properties of fats.

Saturated fatty acids including C14:0, myristic acid; 
C16:0, palmitic acid; and C18:0, stearic acid have higher 
cetane numbers and are less susceptible to oxidation than 
unsaturated ones but they tend to crystallize at very high 
temperatures [29]. A variety of ester-based fatty esters 
can be used as biodiesel (or biofuel) beside its roles in 
the adaptation of plants against environmental stresses. 
Moreover, the adaptive role of lipid modifications evoked 
by environmental stresses is frequently depend on physi-
cal properties of the lipids involved in membrane struc-
ture and affected the permeability of biomembranes [23]. 
So, the knowledge of the lipid composition in plant cells 
is important issue. The fatty acid composition of all acyl 
lipids changed during stress in the direction of increased 
saturation of the fatty acids [30]. It was reported that 
short chain fatty acids particularly C16 and C18 are non-
specific and exist in the plant cell membranes and cuticle 
or wax [31]. Pham Thi et  al. [27] pointed out that water 
deficits inhibit fatty acid desaturation, resulting in a 
sharp decrease in linoleic and linolenic acid biosynthe-
sis. However, water stress induces an increase in fatty 
acid chain length in Arabidopsis thaliana, maintains 
the saturation level of fatty acids through a reduction in 
7,10,13-hexadecatrienoic acid, and induces an increase 
in the proportion of linolenic acid which may help in 
drought-stress tolerance [32]. It was reported that the 
unsaturation level of polar lipids decreased in drought-
sensitive plants, whereas it persisted unchanged or even 
increased in drought-resistant plants [33, 34]. The capac-
ity of a plant to maintain (or increase) its polyunsaturated 
fatty acid contents was related to its resistance to drought 
stress [32, 34]. In most plants, the five major fatty acids 
including palmitic acid (C16:0), stearic acid (C18:0), oleic 
acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18: 
3), forming about 95–98% of the total fatty acids [35]. The 
proportions of these fatty acids are strongly influenced by 
high temperatures [36] and drought [37, 38].

Accordingly, wild plants such as Zilla spinosa (Bras-
sicaceae or Cruciferae) one of the most common lig-
nocellulosic wild plant species inhabiting deserts has 
considerable economic importance to local people. Plants 
acclimate the dry environments by modifying their phe-
nology, morphology, physiology, and metabolism [6, 39]. 
Hence, studying the physiological and biochemical 
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changes including bioenergetics molecules as carbohy-
drates, cellulose, lignin, and lipids may help in better 
understanding the tolerance strategies against the harsh 
environmental conditions and well explore the benefits 
of using Zilla plants for producing renewable energy that 
may be utilized as a second generation biofuel material.

2  �Materials and methods
Wadi Hagul situated in the northern portion of the Eastern 
Desert of Egypt within Cairo-Suez district and is restricted by 
latitudes 29°48′28″–29°57′43″N and longitudes 32°09′32″–
32°17′27″E. Wadi Hagul occupied the valley depression 
between Gebel Ataqa to the north and Gebel Kahaliya to 
the south. Its main channel extends for about 35 km and 
collects drainage water on both sides. With reference to the 
vegetation and geological features of Wadi Hagul, three 
main sectors may be distinguished, upstream, middle, and 
downstream (Figure 1). Moreover, the climate of the Wadi 
area has been described as arid to extremely arid [40].

2.1  �Soil sampling

Soil (sand) samples from up-, mid-, and downstream of 
Wadi Hagul were collected from the surface layer (0–20 cm) 

and subsurface layer (20–40 cm) during the flowering 
(May, spring) and fruiting (July, summer) seasons, air dried, 
and then large gravels and plant fragments were excluded 
and made ready for the mechanical and chemical analysis.

Soil–water extract (1:1) was prepared, shaking well for 
2 h and leaving overnight. The filtrate was used for meas-
uring the chemical properties of the soil.

2.2  �Soil reaction (pH)

Soil reaction (pH) was measured by using a portable pH-
meter (Model, ion lab pH level 1) [41].

2.3  �Electrical conductivity (E.C.)

The electrical conductivity (E.C.) was measured by using a 
portable conductivity meter (YSI Model, 35, Yellow Springs 
instrument, Co. Inc., USA). The results were expressed as 
dS/m (dS/m = mmhos/cm) [41, 42].

2.4  �Plant material

Zilla spinosa plants with similar age and size were col-
lected from the three main sectors upstream, midstream, 

Figure 1: Map of Cairo-Suez road showing the locations of the studied area of Wadi Hagul.
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and downstream of Wadi Hagul during spring (April) and 
summer (July) seasons. The aerial parts of Zilla spinosa 
were dried under shade for 15 days, then ground to a 
powder and stored in dark bottles until used in the extrac-
tion and estimation of total soluble carbohydrates, ligno-
cellulosic substances, and total lipids. In addition, the 
fresh aerial parts were used in the determination of photo-
synthetic pigments and MDA contents.

2.5  �Extraction and estimation of 
photosynthetic pigments

The photosynthetic pigments (chlorophyll a, chlorophyll 
b, and carotenoids) were extracted from freshly harvested 
aerial parts of Z. spinosa in 80% acetone and determined 
spectrophotometrically by the method described by 
Metzner et al. [43].

2.6  �Fluorescence spectroscopy

The fluorescence emission spectra analyses were per-
formed using total pigments extracted from one g plant 
tissue. Fluorescence spectroscopy of acetone extracted 
pigments was performed in a Perkin Elmer LS 50B spec-
troflourometer using the indicated excitation and emis-
sion wavelengths [44]. Red fluorescence of chlorophyll 
a was recorded between 650 and 800 nm. The extracts 
were excited at 435 nm. Blue-green fluorescence emission 
spectra were recorded between 380 and 600 nm. Moreo-
ver, the extracts were excited at 337 nm. The spectral slit 
widths were set at 3 and 1.5 nm (excitation and emission, 
respectively).

2.7  �Determination of total soluble 
carbohydrates

Total soluble carbohydrates were extracted following 
the method of Homme et  al. [45] and determined using 
anthrone reagent according to the method described by 
Fairbairn [46].

2.8  �Determination of cellulose and lignin 
contents

The cellulose percentage was determined according to the 
method of Jenkin [47], and the lignin content was deter-
mined by the method described by Rittler et al. [48].

2.9  �Lipid peroxidation

The lipid peroxidation product MDA was assayed by using 
thiobarbituric acid (TBA) protocol described by Cakmak 
and Horst [49]. The amount of MDA was calculated from 
the absorbance at 532  nm after subtracting the nonspe-
cific absorption at 600 nm. The extinction coefficient 155 
mmol/L−1 cm−1 for MDA was used.

2.10  �Extraction and determination of lipids 
and fatty acid profiles

The dried powder (10 g) was extracted with ethyl acetate 
for 18 h by using Soxhlet apparatus [50]. The extract was 
then quantitatively transferred to a weighed flask and the 
solvent was evaporated using an electric fan. The flask 
was then reweighed and the increase in weight was equiv-
alent to the weight of total lipids.

Methylation was done according to the method 
described by Metcalfe et  al. [51] using boron trifluo-
ride (BF3)-methanol. Then, the fatty acid esters were 
extracted from the BF3-methanol solution by using 
hexane. The concentrated extract of fatty acid esters 
was used for gas liquid chromatography (GLC). The GLC 
analysis was carried out on HP-5 system equipped with 
a DB-5 fused silica column (30 m × 0.35 mm × 0.88 μm 
films); oven temperature was 40–240 °C at a rate of 4 °C/
min, injector temperature 260 °C, detector temperature 
280 °C, carrier gas helium with a linear velocity of 31.5 
cm/s, split ratio 1/60, flow rate 1.1 mL/min, rate 4 °C/min, 
final temperature 260 °C, final time 8 min, run time 30 
min, and injected amount 1 μL.

Peaks identification and quantification was carried 
out by using UP 4810 computing integrator (Perkins Elmer 
XL, USA). The percentage of each fatty acid was calculated 
by the following equation:

=

×

% of  fatty acid  
(Peak area of  each individual fatty acid methyl ester /
Total peak area of  fatty acids methyl esters) 100

The unsaturation level of all fatty acids was estimated 
according to Pham Thi et al. [27], the unsaturated index 
can be calculated from the following equation:

= × + ×
+ ×

Unsaturation index   (1   %18 :1)    2   %18 :2  
  3   %18

( )
( ): 3 /100

where 18:1, 18:2, and 18:3, represent the oleic, linoleic, and 
linolenic acids, respectively.
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2.11  �Statistical analysis

Statistical analysis was performed by two-way analysis 
of variance (ANOVA) using SAS software (SAS Institute, 
Cary, N.C.) at a significance level of 5%. Duncan’s mul-
tiple range test was applied to assess the differences 
between the three sites during the two investigated 
seasons.

3  �Results

3.1  �Characteristics of Wadi Hagul habitats

Soil analysis showed a significant decrease in Wadi Hagul 
soil moisture particularly at the third location (down-
stream) during the dry season (July), whereas the EC rises 
compared with the Spring season. However, the pH of the 
soil remained more or less alkaline throughout the study 
period and did not seasonally fluctuate (Tables 1 and 2). 
The high percentage of soil moisture content was more 
pronounced during the wet period of April which was 

related to the fall of rain; however, it significantly reduced 
in the dry season (July). Soil moisture scarcity in Wadi 
Hagul was intensified during summer particularly at the 
edges due to low precipitation concomitant with high tem-
perature (Table 3).

3.2  �The alteration in photosynthetic 
pigments

The values of chlorophylls a, b and carotenoids are greater 
in the wet season collected Zilla spinosa shoots compared 
to those of dry season (Table 4). The greatest levels of 
chlorophylls a and b, a/b, a/b, and total carotenoids as 
well as carotenoids was measured in Zilla spinosa shoot 
tops inhabiting the midstream of Wadi Hagul bed during 
the wet season followed by that collected during the dry 
season. Moreover, the minimum values of chlorophylls a 
and b, a/b ratio, and carotenoids were recorded in plants 
inhabiting downstream the bed particularly during the 
dry season.

Measurements of fluorescence emission spectra 
of chlorophyll a have been an early indicator of stress 

Table 1: Soil reaction, electrical conductivity (EC), and chemical analysis of soil pastes of Wadi Hagul habitats during summer (Sum) and 
spring (Spr).

Location   Depth  
 

pH  EC  Soluble anions meq/L (milliequivalents/liter)

SO4
−2 

 
CI- 

 
HCO3

−

Spr  Sum Spr  Sum Spr  Sum Spr  Sum Spr  Sum

Upstream   0–20  8.5  7.76  1.053  1.379  4.97  3.813  4.1  8.33  0.8  1.6
  20–40  8.5  7.75  0.87  1.118  1.4  3.238  3.3  6.24  0.9  1.66

Midstream   0–20  8.4  7.52  1.80  2.36  9.1  5.588  19.5  14.31  2.1  3.744
  20–40  8.4  7.98  0.198  0.245  2.92  0.728  1.4  0.944  0.5  0.777

Downstream   0–20  8.3  7.96  0.123  0.252  8.2  0.885  0.42  0.95  0.62  0.78
  20–40  8.3  8.09  0.88  0.139  2.65  0.34  0.22  0.65  0.36  0.4

Table 2: The percentage of soil water content and the chemical analysis of Wadi Hagul soil pastes during spring (Spr) and summer (Sum).

Location  
 

Soil water 
content (%)

 
 
 

Soluble cations (meq/L milliequivalents/liter) 
 

CaCO3 (%)

Spr  Sum Mg2+ 
 

Na+ 
 

Ca2+ 
 

K+

Spr  Sum Spr  Sum Spr  Sum Spr  Sum Spr  Sum

Upstream   1.45  0.75  0.86  2.45  2.80  8.10  2.06  2.94  0.214  0.226  7.9  15.5
      0.53  1.56  1.10  6.33  2.42  3.12  0.100  0.133  5.7  8.10

Midstream   2.90  2.75  1.98  4.16  5.43  12.86  5.40  6.24  0.214  0.346  17.3  19.3
      0.12  0.56  0.37  0.95  0.296  0.777  0.100  0.171  13.1  14.9

Downstream   0.90  0.36  0.26  0.60  0.37  0.96  0.41  0.81  0.143  0.154  40.4  41.7
      0.73  0.21  0.10  0.68  0.15  0295  0.100  0.105  48.7  51.2
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Table 3: The meteorological data (climatic condition) of Wadi Hagul at the 4 years 2010–2014.

Months   Wind velocity 
(km/h)

  Relative 
humidity (%)

  Rain fall 
(mm/month)

  Mean minimum 
temperature (°C)

  Mean maximum 
temperature (°C)

January   7.02  59  3.4  10  20
February   7.65  58  3.7  11  21
March   7.46  54  3.2  13  25
April   8.36  47  17.7  16  28
May   7.46  45  0  19  32
June   8.81  48  0  22  36
July   7.89  52  0.5  24  38
August   7.78  54  0  24  38
September  8.3  56  0  22  34
October   8.56  58  0.2  19  30
November   6.8  60  1.7  15  26
December   6.21  62  3.9  11  22

Table 4: Seasonal changes in pigment levels in Zilla spinosa aerial portions collected from different habitats of Wadi Hagul. 

Season   Pigment content 
Location

  Chl a   Chl b   Chl a+b   Chl a/b   Total carotenoids   Chl (a+b)/
carotenoids

Spring   Upstream   2.23 ± 0.013b   0.60 ± 0.020b   2.83   3.72   1.20 ± 0.013b   2.36
  Midstream   3.00 ± 0.010a   0.8 ± 0.017a   3.80   3.8   1.38 ± 0.010a   2.75
  Downstream   0.92 ± 0.011e   0.42 ± 0.023c   1.33   2.19   0.50 ± 0.0008e   2.66

Summer  Upstream   1.10 ± 0.011d   0.421 ± 0.016c   1.52   2.62   0.57 ± 0.0002d   2.71
  Midstream   1.70 ± 0.009c   0.61 ± 0.010b   2.31   2.79   0.84 ± 0.0004c   2.75
  Downstream   0.81 ± 0.007f   0.41 ± 0.011c   1.22   1.98   0.47 ± 0.0001e   2.60

Each value is a mean of three replicates ± SD. a,b,c,d,eChanges indicated by similar letters are not significantly different. fChange is significantly 
different.

conditions in plants. Hot dry summer conditions provoke 
an increase in F675 which is more distinct in downstream 
inhabiting Zilla shoots harvested in dry summer season 
(Figure 2 A–D). Furthermore, a slight increase in chlo-
rophyll a fluorescence emission of upstream and down-
stream located plants was observed with a red shift at 
676 of about 1 nm during Spring (Table 5). Moreover, the 
maximum chlorophyll a fluorescence emission around 
675 nm of Summer plants was greater compared to Spring 
ones at the three studied locations.

It is of interesting to note here that a longer shift at 
F730 with lengths of 2–4 nm was displayed in summer 
harvested shoots as compared with those of spring. The 
increase in the fluorescence emission and the red shift 
are parallel to the reduction in chlorophyll content. Fur-
thermore, the ratio of F450/F675 was markedly reduced 
in Zilla shoots inhabiting the edges of Wadi Hagul par-
ticularly, downstream. In contrary, the ratio of F675/
F730 was markedly increased in Zilla inhabiting Wadi’s 
edges particularly, in downstream inhabiting shoot 
tops (Table 5).

3.3  �The alteration in total soluble 
carbohydrates

The greatest level of total soluble carbohydrates accu-
mulation attained in edges of Wadi Hagul inhabiting 
plants during the wet spring season (Table 6). However, 
during the dry summer season, the total soluble carbohy-
drates reached the highest level in Zilla inhabiting down-
stream Wadi Hagul compared to the other locations. The 
minimum values of total soluble carbohydrates accumula-
tion were estimated in midstream grown plants during the 
wet and dry seasons as compared with those of the other 
Wadi’s beds.

3.4  �The alteration in cellulose and lignin

The amount of both cellulose and lignin was signifi-
cantly increased in Zilla shoots inhabiting Wadi Hagul 
edges (Table 6). Such effect was more pronounced in 
summer harvested Zilla shoots. The maximum increases 
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Figure 2: (A and B) Seasonal changes in blue-green fluorescence emission spectra of Zilla spinosa green tops inhabiting Wadi Hagul during 
the spring (A) and summer (B) seasons. Ex λ = 337 nm (Slit width for both excitation and emission was 3 and 1.5 nm, respectively). Each value 
is a mean of three replicates. (C and D) Seasonal changes in red fluorescence emission spectra of Zilla spinosa green tops inhabiting Wadi 
Hagul during the spring (C) and summer (D) seasons. Ex λ = 435 nm (Slit width for both excitation and emission was 3 and 1.5 nm, respec-
tively). Each value is a mean of three replicates.

Table 5: Seasonal changes in the peak position of fluorescence spectra around 450 and 680 nm in Zilla spinosa shoot extract grown in 
different habitats of Wadi Hagul. 

Season   Location   Peak position around 675 nm  Peak position around 730 nm  F 450/F 675  F 675/F 730

Spring   Upstream   676  727  0.11  7.3
  Midstream   674  725  0.16  6.9
  Downstream   676  728  0.08  9.7

Summer  Upstream   677  730  0.15  6.6
  Midstream   676  728  0.25  6.5
  Downstream   677  732  0.14  9.9

Values are means of three replicates.

in cellulose (61.6 g/100 g dw) and lignin (66 g/100 g 
dw) was recorded at the third location during summer 
season. The lowest amount of either cellulose or lignin 
was measured in spring harvested Zilla inhabits the 
second location.

3.5  �Lipd peroxidation product molondialde-
hyde (MDA)

The intensification of lipid peroxidation is one of the main 
reactions for lipid damage by ROS. When the unsaturated 
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fatty acids are peroxidized, molondialdehyde (MDA) 
is produced. The increments in MDA levels in Zilla tops 
inhabiting the edges of Wadi Hagul during spring and 
summer was positively related to the intensity of the soil 
water scarcity (Table 6).

3.6  �The alteration in total lipids contents

The percentage of total lipid content was positively related 
to soil moisture content along Wadi Hagul (Table 6). The 
greatest lipid percentage displayed in the areal parts of 
Zilla inhabiting the second location during spring (7.24%) 
followed by summer (3.6%) season (Table 6). The lowest 
lipid content (2.9%) displayed by summer harvested Zilla 
inhabiting the third location (downstream).

3.7  �The alteration in fatty acid composition 
in Zilla shoots

The GLC analysis of the fatty acid methyl esters resulted 
in the identification of 12 fatty acids in which palmitic 
(C16:0) and stearic acids (C18:0) are the main saturated 
acids and linoleic acid (C18:2) is the main unsaturated 
acid in Zilla spinosa aerial parts inhabiting Wadi Hagul 
(Table 7). The proportion of tridecanoic acid (C13:0), pen-
tadecanoic (C15:0), palmitic acid (C16:0), and stearic acid 
(C18:0) were markedly increased in spring harvested Zilla 
aerial parts particularly those inhabiting midstream of 
Wadi Hagul. The fatty acid profile of Zilla characterized 
also, by a greater amount of unsaturated fatty acids which 
was detected in summer harvested plants particularly in 
plants inhabiting downstream Wadi Hagul. The incre-
ments in percentage of unsaturated fatty acids such as lin-
oleic acid (C18:2) and linolenic (C18:3) were about 37.33% 
and 11.1%, respectively, in harvested Zilla aerial parts 
inhibiting downstream Wadi Hagul.

4  �Discussion

The geologic alterations impact soil type and hence, the 
habitat as well as weather condition including fluctua-
tions in seasonal temperature and precipitation crossways 
the landscape [52]. Moreover, the spatial pattern plays a 
central role in plant community dynamics, such as suc-
cession, adaptation, maintenance of species density, and 
competition [53].

Indeed, soil moisture scarcity in arid environment 
affects plant community’s occurrence due to low-precip-
itation-induced drought stress [4]. Soil analysis showed a 
significant decrease in Wadi Hagul soil moisture content 
particularly at the third location (downstream) during the 
dry season (July), whereas the EC rises compared with the 
spring season. However, the pH of the soil remained more 
or less alkaline throughout the study period and did not 
cause significant seasonal alterations. The high percent-
age of soil moisture content was attained during the wet 
period of April which was related to the fall of rain. The 
distinct depletion in soil moisture content at the edges of 
Wadi Hagul, particularly during summer was attributed to 
the inclination associated with effects of high temperature 
combined with low precipitation.

Henceforth, only the arid plant communities such 
Zilla spinosa are able to survive and can either avoid or 
tolerate drought periods [54]. Meanwhile, Zilla inhabiting 
midstream can survive and tolerate the hot summer under 
the availability of water (Table 1). Consequently, soil mois-
ture level seems to be the limiting factor for the permanent 
and continuous growth of Zilla populations in Wadi Hagul 
habitats. Moreover, Zilla biomass seems to be more sensi-
tive to water scarcity than heat stress.

Similarly, the environmental stresses alter the meta-
bolic processes in stressed plants particularly, the synthe-
sis of chlorophyll (energy trapping pigment) which was 
positively related to the availability of moisture in the soil. 
The values of chlorophylls a, b, and a/b ratios as well as 

Table 6: Seasonal changes in lipid peroxidation product (malondialdehyde, MDA), total soluble sugars, % of cellulose, % of lignin, and 
total oil content of Zilla spinosa shoots grown in different habitats of Wadi Hagul. 

Season   Parameter 
Location

  MAD (mmol)   Total soluble 
sugars (mg/gfw)

  Cellulose (%)   Lignin (%)   Total lipids (%)

Spring   Upstream   3.46 ± 0.13b  14.0 ± 0.20b  52.0 ± 0.020b  43.1 ± 0.020b  3.90 ± 0.013b

  Midstream   1.90 ± 0.10a  6.76 ± 0.17a  50.4 ± 0.017a  41.7 ± 0.017a  7.24 ± 0.010a

  Downstream   5.79 ± 0.11e  10.31 ± 0.23c  56.3 ± 0.023c  42.3 ± 0.023c  3.60 ± 0.0008e

Summer  Upstream   6.820 ± 0.11d  4.19 ± 0.16c  62.1 ± 0.016c  62.1 ± 0.016c  3.20 ± 0.0002d

  Midstream   5.98 ± 0.9c  2.64 ± 0.10b  60.6 ± 0.010b  60.6 ± 0.010b  3.60 ± 0.0004c

  Downstream   7.17 ± 0.7f  6.42± 0.11c  66.0 ± 0.011c  66.0 ± 0.011c  2.90 ± 0.0001e

Each value is a mean of three replicates ± SD. a,b,c,d,eChanges indicated by similar letters are not significantly different. fChange is signifi-
cantly different.
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carotenoids in Z. spinosa shoots were markedly increased 
during the wet season particularly in plants inhabiting 
midstream. In addition, the higher levels of chlorophylls 
in Zilla shoots at the second location reflected also that 
the plants did not have much problem to survive in the 
moist arid habitats that help it to withstand heat stress. 
However, the reduction in chlorophylls in plants inhabit-
ing the Wadi’s edges particularly during the dry summer 
season perhaps related to retardation in pigments produc-
tion and/or increase in their degradation which may be 
due to the reduction in soil moisture content that comes 
from the variations in topographic factor and changes 
in climatic factors, the edaphic factors and organic sub-
stances [55, 56], which causes reductions in water use effi-
ciency and plant water potential [57]. However, recently, it 
was deduced that the reduction in chlorophyll was attrib-
uted to the acceleration of chlorophyll breakdown rather 
than its slow synthesis [58]. Similar seasonal trends were 
reported for desert shrubs by Aziz [59]. Similarly, it was 
reported that the altitudinal variation induced changes in 
pigment content in Arnica montana and Porphyra yezoen-
sis [60, 61].

Similarly, hot dry summer induced reduction in chlo-
rophyll a/b ratio particularly at the edges of the Wadi. 
It was postulated that chlorophyll a/b ratio slightly 
increased in drought tolerant wheat cultivars and sig-
nificantly decreased in the susceptible ones under water 
deficit conditions [62]. Such differences could be due to a 
shift in an occurrence of photosynthetic systems toward 
a lower ratio of photosystem (PS) II to PSI [63] or/and 
reduction in Chl biosynthesis as reported for several plant 
species [64–66].

Similarly, the ratio of chlorophylls (a+b) to carot-
enoids decreased in Zilla inhabiting the edges particu-
larly during the dry season. Such effect was negatively 
related to soil moisture and stress intensity and could be 
used as a stress indicator [7]. The substantial reduction in 
chlorophyll content assayed in Zilla inhabiting the edges 
particularly during the dry summer season suggested a 
possible influence of drought stress on the reduction of 
stomatal conductance and photosynthetic rates during 
the dry periods [57, 67] and thereby the biomass.

Furthermore, the spectroscopic methods have been 
used to characterize the physiological state of plant as 
an early stress indicator. The relationships between the 
intensity of fluorescence emission bands or band ratios 
to plant health and stress condition were investigated by 
Buschmann [68] and Lichtenthaler et al. [69]. The inten-
sity and the form of the fluorescence emission spectra are 
influenced by environmental conditions [70]. The chloro-
phyll fluorescence emission of far red values and ratio of Ta
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F680 to F730 and blue to red (F450/F680) are very suit-
able to describe the seasonal and spatial variation in pho-
tosynthetic activity in Zilla shoot tops. The fluorescence 
emission reflects the intactness of the internal photosyn-
thetic activity [71]. The greatest increase in the chloro-
phyll a fluorescence emission and the ratio of F675/F730 
associated with the decline in F450/F675 of upstream and 
downstream collected Zilla during dry seasons was posi-
tively related to the reduction in the level of chlorophylls 
which displayed by the variation in the intensity of soil 
water deficit and the EC of the soil. Moreover, the observed 
increase in red fluorescence emission particularly in 
downstream inhabiting plants during summer and spring 
occurs at the expense of the photosynthetic conversion of 
the absorbed light and is related to damage of PSII and 
light harvesting system complex (LHC) [71]. Furthermore, 
excitation at 337 nm shows the presence of blue fluores-
cence with an emission near 425 nm, smaller shoulder 
around 520 nm region (green fluorescence), and the red 
chlorophyll fluorescence with emission near 675 nm. The 
increase in the intensity of red fluorescence emission near 
the 680 nm region was attributed to the reduction in chlo-
rophyll content, which might be results from the injuries 
of antenna and reaction centres of chlorophyll a in PSII 
[72]. The increase in the fluorescence emission and the red 
shift due to varying chlorophyll content was reported also 
by Krause and Weis [73] and Kancheva et al. [74].

The plants response to water stress depends mainly 
on the severity and duration of the stress and growth 
stage of the plant [75]. Thus, different physiological and 
biochemical processes are altered by stress such as water 
relation [76], gas exchange, photosynthesis [77], and car-
bohydrates, protein, amino acids, and other organic com-
pounds metabolism [78], which may contribute in stress 
tolerance and thereby biomass production. The total 
soluble carbohydrates were quite different among Zilla 
shoots grown in different habitats during the wet and 
dry seasons. Higher values of soluble carbohydrates were 
measured in Zilla shoots during the wet season particu-
larly in upstream inhabiting plants. The greater accumu-
lation of soluble sugars attained in spring collected Zilla 
shoots was positively related to chlorophyll content and 
chlorophyll molecules efficiency [79]. The accumulation 
of carbohydrates depends on the plant species, soil topog-
raphy, and moisture content. Some plants as palms and 
some leguminous species accumulated high carbohydrate 
content during the wet season as to reinitiate the growth of 
new tissues [80, 81] and survive the dry season character-
ized by low soil moisture content [82]. Subsequently, the 
accumulated carbohydrates involved in the adaptation of 
arid deciduous species, for maintenance of metabolism 

under long drought period [83]. Soluble sugars can serve 
as osmoprotectant and a carbon source for biomass pro-
duction [84].

On the other hand, the decline in soluble carbohy-
drates in summer collected Zilla shoots might be due 
the decrease in chlorophyll content which may result in 
lower rate of photosynthesis and minimal metabolic activ-
ity under extreme conditions [85, 86] or allocation to the 
underground roots [87] to promote root growth to search 
of water [88].

Furthermore, under the harsh environmental stress-
ful conditions, the woody plants tend to spend large 
amounts of carbon in the production of lignified support 
tissues [89]. The greatest amounts of lignin displayed in 
Zilla shoots inhabiting downstream the Wadi particularly 
during summer was concomitant with the increases in 
total phenols particularly P-coumaric and caffeic acids 
and the activities of PAL and peroxidases which involved 
in lignin biosynthesis parallel with reduction in feruelic 
acid (Khattab et al., Unpublished). Such biochemical alter-
ations induced lignin deposition and cell wall stiffness as 
well as reduced cell wall extensibility and consequently 
enhanced plant stress tolerance [90]. The accumulation 
of lignin in response to biotic and abiotic stresses is an 
important defence mechanism in plants [91] to cope with 
the severe stresses. It confers stability to xylem vessels 
required for efficient water transport [92]. In addition, 
the carbohydrate polymers including cellulose, hemicel-
lulose, and lignin forms the largest portion of “lignocel-
lulosic” plant materials which have recently been utilized 
as a source of feedstock for bioenergy production [93, 94]. 
Similarly, the accumulation of lignin in response to biotic 
and abiotic stress was recorded in many plants [91, 95].

In addition, plant nutrient deficiency induced by dif-
ferent stressors during summer may result in a considera-
ble reduction in total lipid content. The total lipids content 
of Zilla spinosa inhabiting different habitats of Wadi 
Hagul was positively related to the soil moisture level. On 
the other hand, the reduction in the total lipids content 
in Zilla inhabiting the edges particularly during summer 
might be attributed to the inhibition of lipid biosynthe-
sis [96] and/or stimulation of lipolytic and peroxidative 
activities [97, 98], concomitant with decline in membrane 
lipid content [99]. Similarly, the total lipid content gen-
erally exhibits a decline in response to either drought or 
temperature stress in various plant species [32, 100–103].

Indeed, the fatty acid pattern which composes plants 
lipids depends mainly on the temperature and water 
availability [104, 105]. Meanwhile, the alteration of fatty 
acid composition particularly in membrane lipids is criti-
cal for plant adaptation against drought stress [100, 106]. 
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The fatty acid profile analysis showed the occurrence of 
the saturated fatty acids including undecylic acid (C11:0), 
trideclic acid (C13:0), pentadecanoic acid (C15:0), palmitic 
acid (C16:0), margaric acid (C17:0), stearic acid (C18:0), 
and unsaturated fatty acids as linoleic acid (C18:2) in 
Zilla aerial portions inhabiting Wadi Hagul. However, 
oleic acid (C18:1) and linolenic acid (C18:3) were absent in 
midstream inhabiting plants during the two investigated 
seasons. Hence, the greatest levels of total saturated fatty 
acids have been exhibited in Zilla aerial portions during 
the spring growing season; however, the total amount 
of unsaturated fatty acids was attained during the dry 
summer period concomitant with increments in the pro-
portions of oleic acid (C18:1), linoleic acid (C18:2), and 
linolenic acid (C18:3) and decline in saturated fatty acids 
palmitic acid (C16:0) and stearic acid (C18:0). The down-
stream inhabiting plants exhibited the greatest level of 
unsaturation index (DBI) during the dry summer period 
(Table 7). The stress-induced changes in unsaturated 
fatty acids may play a role in the defense mechanism 
and it reflects the deleterious effects in Zilla plants. Such 
increments in the unsaturated fatty acids and the double 
bond index (DBI) might be due to the effect of heat and 
drought stresses which may speed up the kinetic energy 
and molecules movement across membranes, thus cause 
loosening of chemical bonds inside molecules of bio-
logical membranes. Such effect increases the membrane 
fluidity by either denaturation of proteins or an increase 
in unsaturated fatty acids [107]. Meanwhile, the extent 
of fatty acids unsaturation varies by the plant species 
and the drought intensity [108]. It was reported that the 
unsaturation level of lipids decreased in sensitive plants, 
whereas it stayed unchanged or even increased in resist-
ant cultivars under drought stress conditions [33, 34]. 
Therefore, the specific adjustments in the fatty acid com-
position and unsaturated lipid level under drought stress 
could help plant maintain membrane integrity [108, 109] 
and plant dehydration tolerance [110, 111]. Henceforth, 
the greatest increase in the unsaturated level and DBI 
in Zilla inhabiting downstream seems to be concomitant 
with the superior extent of stresses which stimulate the 
activities of desaturases enzymes and thus the production 
of unsaturated fatty acids. The increases in desaturases 
activities improved drought and salt stress tolerance in 
transgenic tobacco and mutants Synechocystis [112, 113], 
which suggest that drought and salt tolerance of plants 
depends on the levels of unsaturated fatty acids [113, 114]. 
Similarly, Sui et al [115] and Sui and Han [116] showed that 
the increments in unsaturated fatty acids in halophytes 
were concomitant with the increased tolerance of the pho-
tosystem to salt stress.

In addition, many reports pointed out that environ-
mental stresses such as heat, drought, and salt induce 
changes in FA composition, mainly in the content of lino-
lenic acid (18:3) [34, 117]. In the present investigation, the 
observed predominant accumulation of free linolenic acid 
(C18:3) in summer growing Zilla inhabiting Wadi Hagul 
edges particularly at the third location may serve as a 
stress signal and precursor for phyto-oxylipin biosynthe-
sis [118] and involved in formation of cellular membranes, 
suberin and cutin waxes which act as protectors against 
stressful environmental conditions [119]. Furthermore, 
such fatty acids could reduce the structural and functional 
damages of cellular membranes induced by stresses [99, 
120]. It was reported that the increase in C18:3 fatty acids 
was associated with enhanced plants tolerance against 
abiotic stresses which dependent on the inherent level 
of fatty acid unsaturation and/or the ability to maintain 
or adjust fatty acid unsaturation [114, 115]. Similarly, the 
greater unsaturation level induced by drought stress was 
reported in Arabidopsis thaliana [32] and kentucky blue-
grass [121].

On the other hand, both salt and drought stress were 
found to reduce the amount of 18:3, in rape leaves, cru-
ciferous herbs (Crambe sp.), pea (Pisum sativum), the 
legume Pachyrhizus ahipa, and in salt-tolerant but not 
salt-sensitive citrus cells [122–124].

Similarly, the integrity and functions of cell mem-
branes are sensitive to stresses such as drought and heat. 
Membranes are the main targets of degradative processes 
induced by drought and it has been shown that water scar-
city decreases membrane lipid content [27, 33] concomitant 
with inhibition of lipid biosynthesis [98] and stimulation 
of lipolytic and peroxidative activities [97, 125]. Hence for, 
the reduction in the total lipid content is concomitant with 
increments in MDA (a lipid peroxidation product) levels in 
Zilla tops inhabiting the edges of Wadi Hagul particularly 
during hot–dry summer season. Moreover, the substan-
tial greatest increase in the MDA suggests more ROS in 
summer collected Zilla shoots, reflected the greater mem-
branes damages and decreased cell membrane stability 
which serves as an indirect measure of stress tolerance in 
diverse plant species [126–129].

5  �Conclusion
The hot dry summer associated with water scarcity in the 
arid habitats of Wadi Hagul markedly modified the quan-
tity and composition of infochemicals which in turn influ-
ence the occurrence and density of Zilla population and 
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thereby biomass production, meanwhile contribute in 
plant tolerance. Thus, deficiency in soil water content and 
plant nutrient induced by different stressors during dry 
hot summer season evoked a considerable increase in the 
lignin content concomitant with reduction in total oil level 
in Zilla aerial portions inhabiting different habitats of 
Wadi Hagul. The environmental stressors not only limited 
resources of vegetable oil but also modulate the oil com-
prises fatty acids in favor of increasing the percentage of 
unsaturated fatty acids particularly in downstream inhab-
iting plants which is undesirable for biodiesel generation 
(greater cetane number). Zilla spinosa is a lignocellulosic 
woody shrub with promising biofuel sources including lig-
nocellulosic compounds beside the vegetable oil content. 
Finally, the biomass and chemical composition of Zilla 
spinosa are greatly affected by water scarcity compared to 
the upraised temperatures displayed in summer season.
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