Sabrin R.M. Ibrahim*, Gamal A. Mohamed and Samir A. Ross

Aspernolides L and M, new butyrolactones from the endophytic fungus *Aspergillus versicolor*

DOI 10.1515/znc-2016-0138

Received June 30, 2016; revised August 28, 2016; accepted August 30, 2016

Abstract: During the systematic search of active compounds from endophytic fungi, two new butyrolactones, namely aspernolides L (2) and M (4), together with four known compounds: 1-*O*-acetylglycerol (1), butyrolactone I (3), butyrolactone VI (5), and (+) alantrypinone (6) were characterized from the EtOAc extract of the endophytic fungus *Aspergillus versicolor* isolated from the roots of *Pulicaria crispa* (Asteraceae). Extensive spectroscopic analysis, including 1D, 2D NMR, and HRESIMS, was used to elucidate their structures. Compounds 1, 5, and 6 are reported for the first time from this fungus.

Keywords: *Aspergillus versicolor*; Aspernolide; butyrolactones; endophytic fungi; *Pulicaria crispa*.

1 Introduction

Bioactive secondary metabolites from endophytic fungi, isolated from higher plants, are a major focus of natural product research [1–4]. They have been utilized as drugs and/or lead compounds in the pharmaceutical industry [1–5]. The specific habitats, metabolic pathways, and bioactivities of the endophytic fungi make them a good source of structurally novel and/or biologically

*Corresponding author: Sabrin R.M. Ibrahim, Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia, Phone: +966 581183034,

E-mail: sabrinshaur@gmail.com; sribrahim@taibahu.edu.sa; and Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Gamal A. Mohamed: Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; and Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt

Samir A. Ross: National Center for Natural Products Research, Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, Mississippi 38677, USA active secondary metabolites [5, 6]. Fungi of the genus Aspergillus (Moniliaceae) have been reported as prolific producers of bioactive compounds as xanthones, butyrolactones, anthraquinones, polyketides, and alkaloids [1, 2, 5–10], some of them possess various biological activities [11-14]. In the course of our search for secondary metabolites from endophytic fungi, we investigated the fungal strain Aspergillus versicolor isolated from the roots of Pulicaria crispa (Asteraceae), which was collected from Gabal Al-aquiq, Al Madinah Al Munawwarah, Saudi Arabia. As a result, two new butyrolactones, namely aspernolides L (2) and M (4), and four known compounds (1, 3, 5, and 6) were isolated from this strain (Figure 1). The structures of these compounds were elucidated on the basis of a comprehensive analysis of 1D and 2D NMR spectra.

2 Materials and methods

2.1 General

Optical rotations were measured with a Perkin-Elmer 241 automatic polarimeter (Perkin-Elmer Inc., Waltham, MA, USA). UV spectra were recorded in MeOH on a Shimadzu 1601 UV/VIS spectrophotometer (Shimadzu, Kyoto, Japan). The IR spectra were measured on a Shimadzu Infrared-400 spectrophotometer (Shimadzu, Kyoto, Japan). ESIMS spectra were obtained with an LCQ DECA mass spectrometer (ThermoFinnigan, Bremen, Germany) coupled to an Agilent 1100 HPLC system equipped with a photodiode array detector. HRESIMS was recorded on LTQ Orbitrap mass spectrometer (ThermoFinnigan, Bremen, Germany). 1D and 2D NMR spectra (chemical shifts in ppm, coupling constants in Hz) were recorded on Bruker Avance DRX 500 MHz spectrometers (Bruker BioSpin, Billerica, MA, USA) using DMSO- d_{κ} as solvent. For column chromatography, silica gel (0.063-0.200 mm, Merck, Darmstadt, Germany), RP₁₈ (0.04-0.063 mm, Merck, Darmstadt, Germany), and Sephadex LH-20 (0.25-0.1 mm, Sigma-Aldrich) were used. Pre-coated silica gel 60 F_{250} plates (0.2 mm, Merck, Darmstadt, Germany) were used for thin-layer chromatography (TLC).

Figure 1: Structures of isolated compounds 1-6.

2.2 Isolation and cultivation of the fungal material

Pulicaria crispa was collected from Gabal Al-aquiq, Al Madinah Al Munawwarah, Saudi Arabia in March 2014. The plant was authenticated by Dr. Emad Alsherif, Associate Professor of Plant Ecology, Department of Biology, Faculty of Science and Arts, Khulais, King Abdulaziz University, Saudi Arabia. A specimen (PC-3-2014) was preserved at the herbarium of the Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University. Aspergillus versicolor was isolated from the internal roots tissue of P. crispa. The inner root tissues were carefully dissected under sterile conditions and placed on potato dextrose agar plates (PDA, Difco), containing chloramphenicol and gentamicin as antibacterial agents to prevent bacterial growth. The dishes were incubated at 27 °C for 4–6 weeks. Then, hyphal tips of the fungi were periodically removed and transferred to fresh PDA plates. The fungi were identified on the basis of their colonial morphological trait and microscopic observation, using light microscopy (CX31RBSF, Olympus) [15], which

was genetically reinforced by the analysis of ITS sequence (Genbank Accession number AV191832.1). The fungus was deposited at the Department of Microbiology, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia (PC No. MAR32014). The fresh fungal culture was transferred into 10 Erlenmeyer flasks (1 L each) for isolation and identification of secondary metabolites, containing rice solid cultures (100 mL of distilled water were added to 100 g commercially available rice and kept overnight prior to autoclaving). The cultures were then incubated at room temperature for 30 days under septic conditions.

2.3 Extraction and isolation

The rice cultures were extracted with EtOAc and concentrated under vacuum. The concentrated extract was mixed with 100 mL distilled $\rm H_2O$ and partitioned between n-hexane and 90% MeOH. The total 90% MeOH extract (5.9 g) was subjected to $\rm SiO_2$ vacuum liquid chromatography (VLC) using n-hexane, EtOAc, and MeOH, which were separately concentrated to give FV1 (1.4 g), FV2 (1.9 g), and FV3 (2.3 g),

respectively. Fraction FV-2 (1.9 g) was subjected to normal phase VLC using CHCl₂:MeOH gradients (100% CHCl₂ to 50:50 CHCl₃:MeOH), 100 mL fractions were collected and monitored by TLC to obtain nine sub-fractions: FVE2-1 to FVE2-9. Sub-fraction FVE2-2 (95 mg) was chromatographed over SiO_2 CC (20 g, 50×2 cm) using CHCl₂:MeOH (99.5:0.5 to 97:3) as an eluent to give impure 1, which was further purified by repeated chromatography on a SiO, CC using n-hexane:EtOAc gradient to afford 1 (12.7 mg, white amorphous powder). SiO₂ CC (40 g, 50×2 cm) of sub-fraction FVE2-3 (153 mg) using CHCl₃:MeOH in order of increasing polarity afforded impure 2, which was purified on RP₁₈ column (0.04–0.063 mm; 40 g, 50×2 cm) using H₂O:MeOH gradient to give 2 (4.7 mg, yellow gum). Sub-fraction FVE2-4 (391 mg) was chromatographed over sephadex LH-20 (30 g, 50×2 cm) using MeOH as an eluent to yield impure 3 and 4. Separately, each one was purified on RP-18 column

 $(0.04-0.063 \text{ mm}; 40 \text{ g}, 50\times2 \text{ cm}) \text{ using H}_3\text{O:MeOH gradi-}$ ent to obtain 3 (9.9 mg, vellow gum) and 4 (3.8 mg, vellow gum). Separately, sub-fractions FVE2-5 (186 mg) and FVE2-6 (142 mg), each one was subjected to repeated SiO₂ CC (50 g, 50×2 cm) using CHCl₂: MeOH (95 to 85:15) as an eluent to give 5 (15.1 mg, yellow gum, sub-fraction FVE2-5) and 6 (21.0 mg, white powder, sub-fraction FVE2-6).

Aspernolide L (2): Yellow gum. - $\left[\alpha\right]_{D}^{25}$ +48 (c 0.05, MeOH). - UV (MeOH): λ_{max} (log ε) = 209 (4.31), 226 (4.03), 316 (3.86) nm. - IR (KBr): 3436, 2978, 1729, 1667, 1056 cm⁻¹. - NMR data (DMSO-d_c, 500 and 125 MHz) see Table 1. - HRESIMS m/z 499.2329 (calcd for 499.2332 [M+H]+, $C_{28}H_{35}O_{8}$).

Aspernolide M (**4**): Yellow. - $[\alpha]_{D}^{25}$ +85 (*c* 0.03, MeOH). - UV (MeOH): λ_{max} (log ε) = 216 (4.12), 236 (3.97), 331 (3.41) nm. - IR (KBr): 3423, 2945, 1733, 1669, 1440, 1117, 1025 cm⁻¹. - NMR data (DMSO- d_6 , 500 and 125 MHz) see Table 1. -HRESIMS m/z 525.2121 [M+H]⁺ (calcd $C_{20}H_{33}O_{0}$, 525.2125).

Table 1: NMR spectroscopic data of compounds 2 and 4 (DMSO-d₂, 500 and 125 MHz).

Position	2		Position	4	
	δ _H (mult., J [Hz])	δ _c (mult.)		δ _H (mult., J [Hz])	$\delta_{\rm c}$ (mult.)
1	_	168.1 C	1	_	168.5 C
2	_	138.2 C	2	_	138.2 C
3	_	128.1 C	3	_	128.7 C
4	_	84.7 C	4	_	84.7 C
5	_	169.8 C	5	_	169.9 C
6	3.42 d (14.9)	38.1 CH,	6	3.41 d (16.0)	38.1 CH,
	3.38 d (14.9)	2		3.36 d (16.0)	2
1'	_	119.9 C	1'	_	121.4 C
2′	7.50 d (8.2)	128.8 CH	2′	6.87 d (2.5)	128.8 CH
3′	6.87 d (8.2)	115.7 CH	3′	_	119.6 C
4'	_	157.9 C	4′	_	157.5 C
5′	6.87 d (8.2)	115.7 CH	5′	6.51 d (7.5)	115.8 CH
6′	7.50 d (8.2)	128.8 CH	6′	7.49 dd (7.5, 2.5)	131.6 CH
1"	_	123.9 C	7′	2.64 dd (16.1, 4.8)	31.0 CH ₃
				2.40 dd (16.1, 7.3)	2
2"	6.43 d (2.2)	131.4 CH	8′	3.71 dd (7.3, 4.8)	68.5 CH
3″	_	121.1 C	9′	_	77.2 C
4"	_	152.5 C	10 ′	1.18 s	25.7 CH ₃
5"	6.49 d (8.0)	116.0 CH	11'	1.18 s	25.7 CH ₃
6"	6.47 dd (8.0, 2.2)	128.7 CH	1"	_	124.4 C
7"	2.31 t (6.8)	28.1 CH ₂	2"	6.42 d (2.0)	131.7 CH
8"	1.59 t (6.8)	39.6 CH,	3″	_	119.6 C
9"	_ ` ` `	73.9 C	4"	_	151.7 C
10"	1.23 s	26.6 CH ₃	5″	6.52 d (8.0)	115.6 CH
11"	1.24 s	26.4 CH,	6"	6.47 dd (8.0, 2.0)	129.0 CH
1‴	4.14 dd (14.5, 6.8)	65.5 CH,	7″	2.64 dd (16.1, 5.5)	31.0 CH,
	3.90 dd (14.5, 5.3)	2		2.40 dd (16.1, 8.0)	2
2‴	1.62 m	31.9 CH ₂	8″	3.74 dd (8.0, 5.5)	68.0 CH
- 3‴	1.25 m	21.7 CH ₂	9″	_	77.0 C
4‴	0.84 t (6.6)	14.0 CH,	10″	1.21 s	25.8 CH,
-OCH,	3.76 s	53.5 CH ₃	11"	1.21 s	25.8 CH,
4'-OH	10.71 s	-	-OCH ₃	3.73 s	53.5 CH ₃
4″-OH	9.85 s	_	OH	5.13 brs	-

The bold values are the atoms positions.

3 Results and discussion

The culture of A. versicolor was extracted with EtOAc. The extract was subjected repeatedly to SiO₂, sephadex, and RP₁₀ CC to afford two new and four known compounds. Compounds 1, 3, 5, and 6 were identified by combined spectroscopic analyses as 1-O-acetylglycerol [16], butyrolactone I [17], butyrolactone VI [1, 2], and (+) alantrypinone [18, 19], respectively. The spectroscopic data for these compounds were in good agreement with those reported in the literature.

Compound 2 was obtained as a yellow gum. Its molecular formula C₂₈H₃₄O₈ was determined by HRESIMS pseudo-molecular ion peak at m/z 499.2329 (calculated for 499.2332 $[M+H]^+$, $C_{28}H_{35}O_8$), indicating 12 degrees of unsaturation. The ¹H and ¹³C NMR spectral data of 2 revealed that 8 of the 12 units of unsaturation were attributed to two phenyl moieties (Figures S3 and S4). In addition, two carbonyls and two olefinic carbons account for three degrees of unsaturation. The IR spectrum showed absorption bands of hydroxyl, carbonyl group, and C-H aromatic at 3436, 1729, and 1667 cm⁻¹, respectively. The ¹³C, DEPT, and HSQC spectra of 2 revealed the presence of 28 carbon resonances: three methyls, one methoxy (δ_c 53.5, 5-OCH₃), five methylenes, an oxymethylene δ_c 65.5 (C-1"'), seven methines, and 11 quaternary carbons, including two carbonyls at δ_c 169.8 (C-5) and 168.1 (C-1), two oxygenbonded aromatic carbons at δ_c 157.9 (C-4') and 152.5 (C-4"), and an oxygenated aliphatic carbon (δ_c 84.7, C-4), which suggested that 2 had a butyrolactone skeleton. The ¹H NMR and ¹H-¹H COSY spectra displayed four ortho-coupled aromatic protons of a 1,4-disubstituted benzene moiety at δ_{μ} 7.50 (d, 2H, J=8.2 Hz, H-2', 6') and 6.87 (d, 2H, J=8.2 Hz, H-3',5') (Figure 2). They correlated to the carbons at δ_c 128.8 and 115.7, respectively, in the HSQC spectrum (Figure S5, Table 1). Three aromatic signals at $\delta_{_{\rm H}}$ 6.43 (d, J=2.2 Hz, H-2'')/ δ_c 131.4, 6.49 (d, J=8.0 Hz, H-5'')/116.0, and 6.47 (dd, J=8.0, 2.2 Hz, H-6'')/128.7 characteristic for a 1,3,4-tri-substituted benzene ring were observed. The observed HMBC cross peaks of H-2' and H-6'/C-1' and C-4', H-3' and H-5'/C-1', C-4', and C-6', H-2"/C-1", C-3", C-4", and C-6", H-5"/C-1" and C-3", and H-6"/C-1" and C-2" confirmed these moieties (Figure 3). Furthermore, a side chain consisting of an oxygenated quaternary carbon (δ_c 73.9 C-9"), two methylenes at $\delta_{\rm H}$ 1.59 (t, J = 6.8 Hz, H-8")/ $\delta_{\rm C}$ 39.6 (C-8") and 2.31 (t, J=6.8 Hz, H-7")/ δ_c 28.1 (C-7"), and two singlet methyls at $\delta_{\rm H}$ 1.23 (H-10")/26.6 (C-10"), and 1.24 (H-11")/26.4 (C-11") was observed characteristic for 3-hydroxy-3-methylbutyl moiety. This was confirmed by the observed ¹H-¹H COSY and HMBC correlations (Figure 3). The HMBC correlations of H-7"/C-2" and C-4", H-8"/C-3", and H-2"/C-7" indicated

its attachment at C-3" (Figure S6). A methylene group at $\delta_{_{\rm H}}$ 3.42 and 3.38 (2H, each d, J = 14.9 Hz, H-6)/ δ_c 38.1 (C-6) was observed. The HMBC cross peaks of H-6/C-4, C-1", C-2", and C-6" indicated that this methylene was connected to C-4 and C-1" of the tri-substituted phenyl residue. The singlet signal at δ_{H} 3.76 showed HSQC cross peak to the carbon at $\delta_{\rm c}$ 53.5, attributable to a methoxy group. It had HMBC cross peak to C-5 (δ_c 169.8). Furthermore, the oxygen-bearing methylene group at δ_H 4.14 (dd, J=14.5, 6.8 Hz, H-1"'A) and 3.90 (dd, J = 14.5, 5.3 Hz, H-1"'B)/ δ_c 65.5 (C-1"'), two multiplet methylenes at δ_{H} 1.62 (H-2"')/31.9 (C-2"') and 1.25 (H-3"')/21.7 (C-3"'), and a triplet methyl at $\delta_{\rm H}$ 0.84 (J = 6.6 Hz, H-4"')/14.0 (C-4"'), indicated the presence of a butyloxy group in 2. The HMBC cross peaks of H-1" to C-2 confirmed the connectivity of this group at C-2. The configuration at C-4 of 2 was deduced to be 4R based on biosynthetic considerations and its specific rotation ($[\alpha]_n$ +48 (c 0.05, MeOH)). It was reported that the configuration at C-4 could be assigned on the basis of the optical rotation's sign. Butyrolactones with R-configured C-4 had positive optical rotation values such as butyrolactones I-VIII [20, 21]; however; those with negative optical rotation values possessed S-configured C-4 as in isobutyrolactone II and V [22]. Thus, the structure of 2 was assigned as methyl (R)-4-butoxy-2-(4-hydroxy-3-(3hvdroxy-3-methylbutyl)benzyl)-3-(4-hvdroxyphenyl)-5-oxo-2,5-dihydrofuran-2-carboxylate and named aspernolide L.

Compound 4 was also obtained as a yellow gum with a molecular formula $C_{29}H_{22}O_{9}$ determined by its HRESIMS pseudo-molecular ion peak at m/z 525.2121 [M+H]⁺ (calculated C₂₀H₂₂O₀, 525.2125), requiring 14 degrees of unsaturation. Compound 4 was 26 mass units and 2 degrees of unsaturation more than 2. The 1D and 2D NMR spectral data (Table 1) revealed that the structure of 4 was very similar to those of 2 except the absence of the signals associated with the 3-hydroxy-3-methylbutyl, butyloxy, and 1,4-disubstituted benzene moieties. It had a 1,3,4-trisubstituted phenyl moiety at $\delta_{\rm H}$ 6.87 (d, J = 2.5 Hz, H-2′)/ $\delta_{\rm C}$ 128.8, 6.51 (d, J=7.5 Hz, H-5')/115.8, and 7.49 (dd, J=7.5, 2.5 Hz, H-6')/131.6 instead of the 1,4-disubstituted phenyl moiety in 2 (Figures S9 and S10). It was confirmed by the HMBC cross peaks of H-2' to C-4' and C-6', H-5' to C-1', C-3', and C-4', and H-6' to C-1', C-4', and C-5'. Its connectivity at C-3 was established by the HMBC cross peaks of H-2' and H-6' to C-3. Compared with 2, the two additional degrees of unsaturation, along with the observed ¹H and ¹³C NMR signals, indicating the presence of two 2,2-dimethyltetrahydro-2H-pyran-3-ol rings fused to the two tri-substituted phenyl rings in 4, which was further confirmed by the HMBC correlations of H-7' to C-2', C-4', and C-9', H-8' to C-3', C-10', and C-11', H-10' and H-11' to C-8' and C-9', H-7" to C-2", C-4", and C-9", H-8" to C-3", C-10",

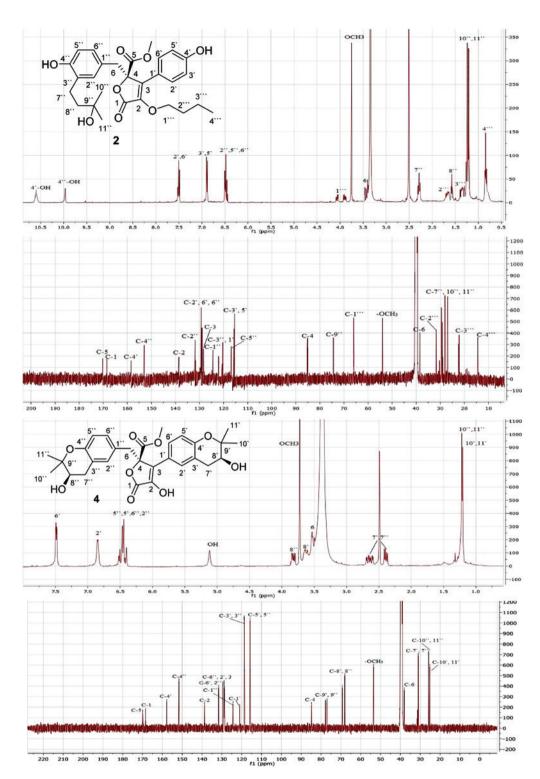


Figure 2: ¹H and ¹³C NMR spectra of compounds 2 and 4 (DMSO-d₆, 500 and 125MHz).

and C-11", and H-10" and H-11" to C-8" and C-9", establishing their attachment at $C_{3'}$ - $C_{4'}$ and $C_{3''}$ - $C_{4''}$, respectively (Figure S12). The configuration of the secondary alcohols at C-8' and C-8" was assigned as S-configured based on the comparison of the ¹H and ¹³C NMR chemical shifts as well as optical rotation value ($[\alpha]_{D} + 85$ (c 0.03, MeOH))

with those of previously reported butyrolactones [1, 2, 23, 24]. This unambiguously led to the elucidation of 4 as methyl (R)-4-hydroxy-3-((S)-3-hydroxy-2,2-dimethylchroman-6-yl)-2-(((R)-3-hydroxy-2,2-dimethylchroman-6-yl)methyl)-5-oxo-2,5-dihydrofuran-2-carboxylate and named aspernolide M.

Figure 3: Some key $^{1}\text{H-}^{1}\text{H COSY}$ (—) and HMBC (H \rightarrow C) correlations of 2 and 4.

4 Conclusions

Six compounds (1–6) were isolated and characterized from the EtOAc extract of the *Aspergillus versicolor* isolated from the roots of *Pulicaria crispa* (Asteraceae), two of them are new natural products (2 and 4). Compounds 1, 5, and 6 are reported for the first time from this fungus.

References

- Ibrahim SR, Elkhayat ES, Mohamed GA, Khedr AI, Fouad MA, Kotb MHR, et al. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus. Phytochem Lett 2015;14:84-90.
- Elkhayat ES, Ibrahim SR, Mohamed GA, Ross SA, Terrenolide S.
 A new anti-leishmanial butenolide from the endophytic fungus Aspergillus terreus. Nat Prod Res 2016;30:814–20.
- Ibrahim SR, Abdallah HM, Mohamed GA, Ross SA. Integracides
 H-J: New tetracyclic triterpenoids from the endophytic fungus
 Fusarium sp. Fitoterapia 2016;112:161–7.
- Ibrahim SR, Mohamed GA, Ross SA. Integracides F and G: New tetracyclic triterpenoids from the endophytic fungus *Fusarium* sp. Phytochem Lett 2016;15:125–30.
- Ibrahim SR, Mohamed GA, Moharram AM, Youssef DT. Aegyptolidines A and B: New pyrrolidine alkaloids from the fungus Aspergillus aegyptiacus. Phytochem Lett 2015;12:90–3.
- Sanchez JF, Somoza AD, Keller NP, Wang CC. Advances in aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep. 2012;29:351–71.
- Wu QX, Crews MS, Draskovic M, Sohn J, Johnson TA, Tenney K, et al. Azonazine, a novel dipeptide from a hawaiian marinesediment-derived fungus, Aspergillus insulicola. Org Lett 2010:12:4458-61.
- 8. Furtado NAJC, Pupo MT, Carvalho I, Campo VL, Duarte MCT, Bastos JK. Diketopiperazines produced by an *Aspergillus fumi*gates Brazilian Strain. J Braz Chem Soc 2005;16:1448–53.

- Correa MJC, Nunes FM, Bitencourt HR, Borges FC, Guilhon GMSP, Arruda MSP, et al. Biotransformation of chalcones by the endophytic fungus Aspergillus flavus Isolated from Paspalum maritimum Trin. J Braz Chem Soc 2011;22:1333–38.
- Li GY, Yang T, Luo Yi-Ga, Chen XZ, Fang D-M, Zhang GL. Brevianamide J, a new indole alkaloid dimer from fungus Aspergillus versicolor. Org Lett 2009;11:3714–17.
- Lin WH, Brauers G, Ebel R, Wray V, Berg AS, Sudarsono, et al. Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 2003;66:57-61.
- Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, et al. Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 2010;33:231–5.
- 13. Fremlin LJ, Piggott AM, Lacey E, Capon RJ. Cottoquinazoline A and Cotteslosins A and B, metabolites from an australian marine-derived strain of *Aspergillus versicolor*. J Nat Prod 2009;72:666–70.
- Li XB, Zhou YH, Zhu RX, Chang WQ, Yuan HQ, Gao W, et al. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodiv 2015;12:575–92.
- Rekha C, Shridhar NB, Jagadeesh SS, Narayanaswamy HD.
 Isolation and identification of fungal isolates from contaminated meadow grass fodder. J Livestock Sci 2015;6:104–8.
- Yan HJ, Gao SS, Li CS, Li XM, Wang BG. Chemical constituents of a marine-derived endophytic fungus *Penicillium commune* G2M. Molecules 2010;15:3270–5.
- Ye Y, Xia C, Yang J, Yang Y, Qin Y, Gao X, et al. Butyrolactones derivatives from the fermentation products of an endophytic fungus *Aspergillus versicolor*. Bull Korean Chem Soc 2014;35:3059–62.
- Larsen TO, Frydenvang K, Frisvad JC, Christophersen C. UVguided isolation of alantrypinone, a novel *Penicillium* Alkaloid. J Nat Prod 1998;61:1154–57.
- Ren-Yi G, Lei X, Yi K, Ming C, Jian-Chun Q, Li L, et al. Chaetominine, (+)-Alantrypinone, Questin, Isorhodoptilometrin, and 4-Hydroxybenzaldehyde Produced by the Endophytic Fungus Aspergillus sp. YL-6 Inhibit Wheat (*Triticum aestivum*) and Radish (*Raphanus sativus*) Germination. J Plant Interact 2015;10:87–92.
- 20. Zhou M, Lou J, Li Y, Wang Y, Zhou K, Ji B, et al. Butyrolactones from the endophytic fungus *Aspergillus versicolor* and their anti-tobacco mosaic virus activity. J Braz Chem Soc 2015;26:545–9.
- 21. San-Martín A, Rovirosa J, Vaca I, Vergara K, Acevedo L, Viña D, et al. New butyrolactone from a marine-derived fungus *Aspergillus* sp. J Chil Chem Soc 2011;56:625–7.
- 22. Nong X, Wang Y, Zhang X, Zhou M, Xu X, Qi SH. Territrem and butyrolactone derivatives from a marine-derived fungus *Aspergillus Terreus*. Mar Drugs 2014;12:6113–24.
- Li L-J, Li T-X, Kong L-Y, Yang M-H. Antioxidant aromatic butenolides from an insect-associated Aspergillus iizukae. Phytochem Lett 2016;16:134–40.
- 24. Haritakun R, Rachtawee P, Chanthaket R, Boonyuen N, Isaka M. Butyrolactones from the fungus *Aspergillus terreus* BCC 4651. Chem Pharm Bull 2010;58:1545–8.

Supplemental Material: The online version of this article (DOI: 10.1515/znc-2016-0138) offers supplementary material, available to authorized users.