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Abstract: Great advances in biotechnology have allowed 
the construction of a computer from DNA. One of the pro-
posed solutions is a biomolecular finite automaton, a sim-
ple two-state DNA computer without memory, which was 
presented by Ehud Shapiro’s group at the Weizmann Insti-
tute of Science. The main problem with this computer, in 
which biomolecules carry out logical operations, is its 
complexity – increasing the number of states of biomo-
lecular automata. In this study, we constructed (in labora-
tory conditions) a six-state DNA computer that uses two 
endonucleases (e.g. AcuI and BbvI) and a ligase. We have 
presented a detailed experimental verification of its feasi-
bility. We described the effect of the number of states, the 
length of input data, and the nondeterminism on the com-
puting process. We also tested different automata (with 
three, four, and six states) running on various accepted 
input words of different lengths such as ab, aab, aaab, 
ababa, and of an unaccepted word ba. Moreover, this arti-
cle presents the reaction optimization and the methods 
of eliminating certain biochemical problems occurring 
in the implementation of a biomolecular DNA automaton 
based on two endonucleases.

Keywords: biomolecular computers; DNA computing; 
finite automata.

1  Introduction

The tremendous advances in genetics and molecular 
biology have enabled the use of DNA as a nanomaterial 
for computation. Most researchers in DNA computing, 
the new computational paradigm that uses biomolecules 
for computations [1], have applied well-known biologi-
cal operations to solve particular problems in computer 
science [2–4]; in addition, they have also designed 
nanomachines built on DNA [5, 6]. DNA computing has 
found implementation in medicine, e.g. in the diagno-
sis and therapy of cancer [7] as well as in in vitro DNA-
based logic circuits and gates to diagnose the levels of 
miRNA [8]. Another approach focuses on the potential 
application of biocomputing machines to biological pro-
cesses [9, 10] and to monitor enzymatic regulation [11]. 
A technique called DNA manipulation has been used in 
the biomolecular implementation of digital circuits [12] 
as well as neural networks [13]. Research into DNA com-
putations have focused on the biomolecular implemen-
tation of logical operations [14, 15], molecular inference 
[16, 17], and molecular programming [18]. Over a period 
of a few decades of research into DNA computing, various 
theoretical models have been proposed, for example, the 
splicing system [1, 19], the self-assembly model [20], com-
puting with membranes [21], and the sticker-based model 
[22]. The self-assembly of DNA molecules has enabled the 
folding of DNA molecules into shapes such as squares and 
five-pointed stars [23]; this DNA origami has allowed the 
coupling of molecular emitters to photonic crystal cavities 
[24]. Current research in DNA computing shows sophis-
ticated computer systems, e.g. biomolecular calculators 
that operate by selecting the results from a library [25] 
or using biomolecular memory as an alternative storage 
media [26].

Although many studies have focused on the biomo-
lecular implementation of known theoretical models of 
computation [27–29], only a few of them have presented 
detailed reports on laboratory applications. This asserts 
the necessity of creating interdisciplinary research groups 
composed of researchers from different areas of science, 
such as computer scientists and biologists, who can solve 
some complex, biochemical-related problems. For this 
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reason, the laboratory test of a biomolecular nondeter-
ministic finite automaton (a simple two-state two-sym-
bol automaton) [30] is considered a major event in DNA 
computing.

A deterministic finite automaton (DFA) represents 
the simplest model of a computer [31] that enables us 
to solve plain problems (operations of addition and 
multiplication of integers are beyond the capabilities of 
such machines). Each finite automaton (FA) consists of 
a tape with cells containing an input word created from 
symbols of a certain finite alphabet, and a control unit 
reading the symbols of the input word one after another 
and changing its state according to the transition rules. 
Each transition rule is of the form (s0, a) → s1 when an 
automaton is in the state s0, after reading the symbol 
a, it transits to the state s1. The automaton accepts the 
input word if starting from the initial state, after reading 
the whole word, its control unit transits to one of the dis-
tinguished final states. Usually, FA are represented by 
graphs [32]. Figure 1B presents an example (in the form 
of graph structure) of a two-state automaton, which 
accepts words with an odd number of a’s. A variant of 
FA is the nondeterministic finite automata (NFA). The 
difference between DFA and NFA is that every state of 
a DFA always has exactly one exiting transition rule for 
each symbol in the alphabet, whereas in NFA, a state 
may have zero, one, or many exiting transition rules for 
each symbol in the alphabet. NFA accepts an input word 
when one of the possible ways leads to an accepting 
state and reads the whole input word. An example of an 
NFA is given in Figure 1C (accepting words with at least 
one symbol a).

In 2001, a group at the Weizmann Institute of Science 
implemented a two-state two-symbol NFA [30] (see all pos-
sible transition molecules in Figure 1A) that used only one 
restriction enzyme (RE), FokI and ligase. In later studies, 
researchers showed that molecular computers can act 
without ligase in some limited manner [33, 34]. These first 
implementations were based on the use of the follow-
ing biomolecular elements: FokI RE, ligase enzyme, and 
double-stranded DNA fragments (an input molecule, a set 
of transition molecules, and a set of detection molecules). 
An input molecule (Figure 2A) is a double-stranded DNA 
molecule that represents an input word (for example, the 
input word x = aba) consisting of the symbols a and b. A 
single-stranded overhang (a sticky end) in the input word 
represents not only a symbol but also a state, i.e. a pair 
<state, symbol >. Another element of the biomolecular 
DNA automaton is a set of transition molecules (software). 
Each transition molecule contains a specific sequence rec-
ognizable by the FokI, a single-stranded overhang (a sticky 
end), and the additional base pairs (Figure 2B for one tran-
sition (s0, a) → s1). An integral part of such automatons are 
the detection molecules (detectors, Figure  2C), which in 
laboratory experiments recognize the final state of com-
putation. These molecules consist of a single-stranded 
overhang (sticky end) and an additional double-stranded 
fragment of DNA.

If we want to make a computation, first we choose 
(fix) an NFA, i.e. we chose some transitions from all pos-
sible transition molecules (Figure 1A). Next, we put all 
elements together: FokI, many copies of the chosen transi-
tion molecules, detection molecules, and the input mole-
cules. In each cycle of the computation process (Figure 3), 

Figure 1: The FA. (A) All possible transitions of a two-state two-symbol NFA. (B) An example of a two-state two-symbol DFA. (C) An example of 
a two-state two-symbol NFA. (D) All possible transitions of a six-state two-symbol NFA.
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Figure 2: The elements of a biomolecular FA and corresponding elements of the FA in the form of a graph: (A) an example of an input mol-
ecule representing the input word aba. (B) An example of a transition rule. (C) An example of detection molecule for state s1.

Figure 3: Schematic diagram of a computation using one endonuclease FokI presented in 2001 by Benenson et al. [30].

a transition molecule is combined with a sticky end of the 
input molecule and FokI can cut inside the next symbol 
and reveal a new sticky end. Such operations precisely 
reflect the action of an NFA.

To increase the complexity of the DNA computer pre-
sented by Ehud Shapiro’s group at the Weizmann Institute 
of Science [30], we designed a theoretical model of a six-
state, two-symbol NFA (see Figure 1D). DNA molecules 
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representing all 72 transitions of the six-state, two-symbol 
FA are presented in the Appendix of our previous article 
[35]. The sticky ends cleaved by the REs BbvI and AcuI are 
four and two nucleotides in length, respectively. A general 
computation scheme consists of alternating the cutting 
and ligating processes of the DNA molecules using BbvI 

and AcuI (Figure 4). In this article, we built and tested the 
more powerful six-state automaton. It is composed of our 
earlier theoretical ideas [35, 36] and it is, to our knowledge, 
the first working example of a six-state automaton built 
with DNA and REs. We tested all aspects that were impor-
tant for DNA computer works: the effect of the length of 

Figure 4: Schematic diagram of a computation using many endonucleases, e.g. BbvI and AcuI.
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input words on the result of the experiment as well as the 
effect of nondeterminism of finite state automata on the 
results. We also performed experimental tests of six-state 
automaton, reaction optimization, and eliminated certain 
biochemical problems.

2  �Materials and methods

2.1  �Synthetic DNA

Synthetic oligonucleotides (lyophilized, 200  nmol) were 
from Genomed (Warsaw, Poland). The oligonucleotides for 
software (transition molecules) were ST56_1 (5′-AATTCT-
GAAGGTAGAAGGTATTAGTTGCTCCTC-3′), ST56_2 (5′-GGC-
CGAGGAGCAACTAATACCTTCTACCT-TCAG-3′), ST50_1 (5′-AATTCT-
GAAGCATCTTCATCATTAGTTGCTCCTC-3 ′), ST50_2 
(5′-GGCCGAGGAGCAACTAATGATGAAGATGCTTCAG-3′), 
ST42_1 (5′-AATTGCAGCTCTGAATTAGTTGCTCCTC-3′), ST42_2 
(5′-GGCCGAGGAGCAACTAATTCAGAGCTGC-3′), ST67_1 
(5′-AATTGCAGCTCTCTCCGATTAGTTGCTCCTC-3′), ST67_2 
(5′-GGCCGAGGAGCAACTAATCGGAGAGAGCTGC-3′), ST66_1 
(5′-AATTCTGAAGTCTCTCGCTGTATTAGTTGTCATCGC-3′), 
ST66_1 (5′-GGCCGCGATGACAACTAATACAGCGAGAGACTTCAG-3′), 
ST2_1 (5′-AATTGCAGCTCTGTCGTATTAGTTGTCATCGC-3′), 
ST2_2 (5′-GGCCGCGATGACAACTAATACGACAGAGCTGC-3′), 
T32_1 (5′-CGGCAGCGGTAGTAACCATTATTCATCGC-3′), 
T32_2 (5′-GCGATGAATAATGGTTACTACCGCTGC-3′), T65_1 
(5′-CGCTGAAGGGTAGGCTGAACCATTATTCATCGC-3′), T65_2 
(5′-GCGATGAATAATGGTTCAGCCTACCCTTCAG-3′), T8_1 
(5′-CGCTGAAGGGTAGAATGCGATTAGTTGCTCCTC-3′), T8_2 
(5′-GAGGAGCAACTAATCGCATTCTACCCTTCAG-3′), T66P_1 
(5′-CGCTGAAGGTAGAAGCTGTATTAGTTGTCA-TCGC-3′), T66P_2 
(5′-GCGATGACAACTAATACAGCTTCTACCTTCAG-3′), T67P_1 
(5′-CGGCAGCGTAGAACGATACTTTAGATTGACTTCAG-3′), 
T67P_2 (5′-CTGAAGTCAATCTAAAGTATCGTTCTACGCTGC-3′).

The oligonucleotides for the construction of the input 
molecules (input word ab, ba, aab, aaab, ababa) and 
detection molecule were SAB_1 (5′-CGCCAATTATCAGC-
CGATACTTTAGATTGCCTTCAG-3′), SAB_2 (5′-CTGAAGGC
AATCTAAAGTATCGGCTGATAATTGG-3′), SBA_1 
(5′-CGCCAATTCGACTAATATACTTTAGATTGCCTTCAG-3′), 
SBA_2 (5′-CTGAAGGCAATCTAAAGTATATTAGTCGAA
TTGG-3′), SAAB_1 (5′-CGCCAATTATCAGCCGACTACGA-
TACTTTAGATTGCCTTCAG-3′), SAAB_2 (5′-CTGAAGGCAA
TCTAAAGTATCGTAGTCGGCTGATAATTGG-3′), SAAAB_1 
(5′-CGCCAATTATCAGCCGACTACGACTACGATACTTTA-
GATTGCCTTCAG-3′), SAAAB_2 (5′-CTGAAGGCAATCTAAA-
GTATCGTAGTCGTAGTCGGCTGATAATTGG-3′), SABABA_1 
(5′-AATTCCAATTCGACTAATCAGCCGACTAATCAGCCGATT-

AGTTGCTCCTC-3′), SABABA_2 (5′-GGCCGAGGAGCAAC-
TAATCGGCTGATTAGTCGGCTGATTAGTCGAATTGG-3′), 
TERM_5_1 (5 ′-CGTTATACTTTAGATTGCCTTCAG-3 ′), 
TERM_5_2 (5 ′ -CTGAAGGCAATCTAAAGTATAA-3 ′ ) , 
TERM_4_1 (5′-CGTGATACTTTAGATTGCCTTCAG-3′), 
TERM_4_2 (5 ′ -CTGAAGGCAATCTAAAGTATCA-3 ′ ) , 
STERM_1_1 (5′-AATTATTGTATTAGTTGTCATCGC-3′), 
STERM_1_2 (5′-GGCCGCGATGACAACTAATACAAT-3′).

The transition molecules, input molecule, and 
detection molecule were prepared by annealing pairs 
of oligonucleotides (sense and antisense): ST56_1 and 
ST56_2, ST50_1 and ST50_2, ST42_1 and ST42_2, ST66_1 
and ST66_1, ST67_1 and ST67_2, ST2_1 and ST2_2, T32_1 
and T32_2, T65_1 and T65_2, T8_1 and T8_2, T66P_1 and 
T66P_2, T67_1 and T67_2, T67P_1 and T67P_2, SAB_1 and 
SAB_2, SBA_1 and SBA_2, SAAB_1 and SAAB_2, SAAAB_1 
and SAAAB_2, SABABA_1 and SABABA, TERM_5_1 and 
TERM_5_2, TERM_4_1 and TERM_4_2, STERM_1_1 and 
STERM_1_2.

2.2  �Enzymes and plasmid vectors

BbvI and AcuI, which were used as the hardware and to 
prepare DNA molecules representing the components 
of the automaton, BsmAI, ClaI, BsrDI, BtgzI, NotI and 
AcuI, and T4 DNA ligase, were from New England Biolabs 
(Ipswich, MA, USA). T4 polynucleotide kinase (PNK), pJET 
1.2 and LITMUS 38i plasmids were from Fermentas (Grand 
Island, NY, USA).

2.3  �Chemicals

Plasmid Miniprep Kit and Gel Extraction Kit were from 
Axygen (Union City, CA, USA). Perfect 100 bp DNA Ladder 
was from Eurx (Gdansk, Poland). It contained 13 bands 
with fragments of the following sizes: 100, 200, 300, 400, 
500, 600, 700, 800, 900, 1000, 1500, 2000, and 2500 bp. 
For easy reference, bands at 500 bp and 1000 bp were con-
sidered brighter than other bands in the ladder. Thermo 
Scientific GeneRuler 1 kb DNA Ladder is composed of 14 
chromatography-purified individual DNA fragments (in 
base pairs): 10,000, 8000, 6000, 5000, 4000, 3500, 3000, 
2500, 2000, 1500, 1000, 750, 500, and 250 bp. It contained 
three reference bands of (6000, 3000, and 1000 bp) for 
easy orientation. Sigma-Aldrich pUC18 DNA HaeIII Ladder 
contained 11 bands with fragments of the following sizes: 
587, 458, 434, 298, 267, 257, 174, 102, 80, 18, and 11 bp. All 
other chemicals and bacterial media were from Sigma-
Aldrich (Saint Louis, MO, USA).
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2.4  �Construction of DNA libraries 
containing DNA molecules for use 
in the computational reactions

The general scheme of preparing automaton’s compo-
nents was different from that presented by Ehud Shapiro’s 
group at the Weizmann Institute of Science [30]. We built 
a “DNA library”, a collection of DNA molecules represent-
ing computer elements that are stored and propagated 
in a population of Escherichia coli through the process of 
molecular cloning. We used two different experimental 
schemes labeled as experimental Scheme 1 and Scheme 2. 
Scheme 1 was used to test the three-state automaton with 
the use of the words: ab, ba, aab, and aaab. Scheme 2 was 
used to test four-state and six-state automata. The first part 
of the cloning procedure was the same in both experimen-
tal schemes. Single-stranded oligonucleotides were labeled 
according to the represented components of the automaton: 
the input words, the transition molecules, and detection 
molecules. These oligonucleotides were 5′ phosphoryl-
ated by the T4 PNK. We used 100 pmol of oligonucleotides, 
which were phosphorylated with 10 U PNK in 20 μl of the 
PNK buffer and 1 mM ATP, for 60 min at 37°C, precipitated 
with ethanol and suspended in TE buffer (10 mM Tris–HCl, 
1  mM EDTA, pH 8.0). The molecules of the automaton’s 
components were prepared by mixing the appropriate pairs 
of oligonucleotides. Thereafter, complementary oligonu-
cleotides (sense and antisense) were incubated for 10 min 
at 95°C, and then slowly (1°C/min) cooled to room tempera-
ture. Then, double-stranded DNA molecules were cloned 
into the pJET 1.2 plasmid vector (Scheme 1) or LITMUS 38i 
(Scheme 2). The obtained clones were sequenced at the 
Institute of Biochemistry and Biophysics (Warsaw, Poland) 
and underwent restriction analysis. Typical restriction 
analysis of obtained clones are presented in the Supple-
mentary Material. Before the computational reaction, DNA 
fragments were obtained by the cleavage of plasmid DNA 
with REs, agarose gel electrophoresis, and subsequent puri-
fication with the QIAquick DNA Purification Kit (Scheme 1). 
In experimental Scheme  2, we utilized polymerase chain 
reaction (PCR) to obtain DNA molecules. The proper sticky 
ends were generated with the appropriate REs followed by 
purification through agarose gel electrophoresis.

2.5  �Polymerase chain reaction

We used PCR to obtain DNA molecules used in our com-
puter with Perpetual OptiTaq PCR Master Mix (Eurx, 

Gdansk, Poland). PCR primers used in this study were 
from Genomed (Warsaw, Poland) and they were Primer_2 
(5′-CGTGGCTAGCGGGAAG-3′), Primer_3 (5′-ACCATGAT-
TACGCCAAGCTA-3′), Primer_4 (5′-AGGAGAGCGCAC-
GAGGGA-3′), Primer_5 (5′-CTCACTCATTAGGCACCC-3′), 
and Primer_6 (5′-TGCTGCAAGGCGATTAAGTT-3′).

The PCR mixture (25 μl) consisted of 1.25 U Perpetual 
OptiTaq DNA Polymerase, 1× reaction buffer (1.5 mM MgCl2), 
0.2 mM of each dNTP, and 0.5 μM of upstream and down-
stream primer. PCR conditions were as follows: initial dena-
turation step at 95°C for 3 min, 30 cycles at 95°C for 30 s and 
30 s at 60°C annealing temperature, and at 72°C for 30 s. 
The final extension step was performed at 72°C for 5 min. 
The PCR was carried out using an MJ Research, INC thermal 
cycler, model PTC-100 (Waltham, MA, USA). After the PCR, 
samples were subjected to restriction digestion with proper 
RE. The digested products were resolved on a 2% agarose 
gel and stained with 0.5 μg/ml ethidium bromide.

Transition molecules were prepared with Primer_2 
and Primer_3, and the length of their final version (after 
digestion with RE and gel purification) was around 110 bp. 
The term molecule was prepared with Primer_2 and 
Primer_4 and its final length was 404 bp. The word mol-
ecule was prepared with Primer_5 and Primer_6 and its 
final length was 230 bp.

2.6  �Computation reaction

In the reaction, we verified autonomous and program-
mable cleavage of DNA molecules by two endonucleases 
in one test tube. This reaction was run for 2  h in NEB4 
buffer at 37°C. The reaction tube contained a set of DNA 
fragments representing the input and transitions mol-
ecules, 1u BbvI and AcuI as well as 10 U T4 DNA ligase. 
The control sample was similar to test samples except REs 
and ligase. The product of the reaction was purified with 
phenol, chloroform, and izoamyl alcohol (25:24:1), pre-
cipitated with ethanol, and separated by 2% agarose gel 
electrophoresis. The reactions started with the ligation of 
a transition molecule with the input word. After the cyclic 
reactions of digestion, the ligation of the final DNA frag-
ment (the rest of the input molecule) with the terminal 
molecule followed, producing the output-reporting mol-
ecule – the length of the DNA fragment was the sum of 
the rest input and the terminal molecules. Detection of the 
DNA fragment with such length by gel electrophoresis fol-
lowed by ethidium bromide staining indicates the accept-
ance of the input word by the automaton.
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3  �Results
In this section, we present the results of laboratory imple-
mentation of our automata. These experiments focused 
on the key elements, essential to the operation of autom-
ata with two REs: BbvI and AcuI.

3.1  �The reaction optimization

Our DNA computer did not work without ligase and the 
ligation step was crucial for efficient computation reac-
tion. Thus, we had to optimize it to compromise the 
cutting and joining processes. The optimum tempera-
ture of the most commonly used T4 DNA ligase is around 
37°C. Therefore, the best choice for blunt-ended DNA 
fragments is 37°C. However, sticky ends are often too 
short to form a stable duplex at these conditions; in that 
case, ligation at lower temperature (25°C) is preferable. 
We also used relatively short DNA fragments because 
joining contiguous DNA fragments (thousands of bp) is 
very challenging. We found the optimal condition for 
the biomolecular computer: the initial ligation step per-
formed at 25°C (optimal temperature for T4 DNA ligase 
action) for 15 min, followed by incubation at 37°C (tem-
perature for BbvI, AcuI action) for 2 h, and the final liga-
tion step at 25°C for 15 min.

3.2  �The length of the input words has no 
effect on the DNA computer

We tested the operation of automaton A1, presented in 
Figure 5A, by running it on various accepted input words 
of different lengths: ab, aab, aaab, and an unaccepted 
ba. The experiments presented in Figure  6A and B indi-
cate that the length of the input words has no effect on 
the results of computation. Automaton A1 worked as 
expected. In all the samples, we observed intermediate 
molecules (Figure 6A and B, lines 2 and 4). Intermediate 
molecules did not arise in the control samples that lacked 
enzymes (Figure 6A and B, lines 1 and 3). We also obtained 
the output-reporting molecule for the state s5 (length 846 
bp) in samples with the input words: ab, aab, and aaab 
input molecules (Figure 6A, line 2; Figure 6B, lines 2 and 
4). The unaccepted input word ba was not computed, and 
we did not observe any output-reporting molecule for the 
state s5 (length 846 bp; Figure 6A, line 4).

Figure 5: The finite automata testing in the laboratory: (A) FA A1; (B) 
NFA A2; (C) NFA A3; (D) FA A4.

3.3  �The nondeterminism of the DNA 
computer

In these experiments, we had to slightly modify our com-
puter in comparison to the previous one, as we planned 
to obtain two final states for the automaton in one tube. 
We changed the length of the molecules to distinguish 
both states. The output-reporting molecule for state s5 
was 714 bp in length, whereas for state s4, it was 614 bp 
in length. We tested two NFAs, A2 and A3, presented in 
Figure 5B and C both on the same input word aab. In the 
automaton A2, half the number of molecules represent-
ing the input word aab “chose” the wrong way through 
the transition (s3, a) → s4. Nevertheless, the result for 
automaton A2 (Figure  6C, lane 2) was almost the same 
as that of automaton A3 (Figure 6D, lane 2) on the same 
input word aab. In automaton A3, the nondetermin-
ism appears in the final transitions. The results (Figure 
6D, lane 2) confirmed the assumption that the input 
molecules “chose” both last transitions, (s2, b) → s5 and 
(s2, b) → s4, equally.
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3.4  �An experimental testing of the six-state 
automaton

We tested the operation of the six-state automaton A4 
presented in Figure 5D by running it on the accepted 
input word: ababa. The entire procedure is presented in 
Figure 7. The output-reporting molecule for state s1 had a 
length of 613 bp. We validated the mechanism of opera-
tion by the results of two experiments: with REs (BbvI, 
AcuI) and ligase; without REs (BbvI, AcuI) and ligase. 
The results of the experiments (see Figure 6E) showed 
that it is possible to construct a six-state automaton 
using two REs (BbvI and AcuI) and that this automa-
ton could act autonomously in one test tube. Thus, we 
proved experimentally that by using two enzymes, e.g. 
BbvI and AcuI, it is possible to expand the number of 
states (to six states) in biomolecular NFA, as presented 
by Ehud Shapiro’s group at the Weizmann Institute of 
Science [30].

4  �Discussion
In this article on our study, we have presented detailed 
laboratory tests of the biomolecular NFA with two endo-
nucleases: BbvI and AcuI. The experiments conducted 
have proved that it is possible to construct (in a wet lab) 
biomolecular models of computation, e.g. biomolecu-
lar NFA using REs and ligase. Additionally, this article 
shows that it is possible in a real laboratory to increase 
the number of states (to six states) in the biomolecular 
NFA presented by Ehud Shapiro’s group at the Weizmann 
Institute of Science [30]. These experiments create an 
opportunity for the implementation of more complex NFA 
and other theoretical models of computers, e.g. push-
down automata [29].

The complexity (number of states) of biomolecular 
automata [30] is bounded from above by the number of 
available sticky ends. REs such as FokI (with 4-nt sticky 
ends) enable the construction of automata with, at most, 

Figure 6: (A) Experimental testing of automaton A1 on the accepted word ab and nonaccepted word ba. (B) Testing automaton A1 on 
accepted inputs words: aab, aaab. (C) Experimental testing of the influence of nondeterminism of the automaton A2 on results (on accepted 
input word aab). (D) Experimental testing of the influence of nondeterminism of automaton A3 on results (on accepted input word aab). (E) 
Experimental testing of automaton A4 on results (on accepted input word ababa). Abbreviations: M1 – the size of the marker (100 base pair); 
M2 – the size of the marker (1 kb); M3 – the size of the marker (pUC HaeIII); |s1 |  – the length of an output reporter (613 bp); |s4 |  – the length 
of an output reporter (614 bp); |s5 |  – the length of an output reporter (856 bp and 714 bp); 1,3 – the result of computation without endonu-
cleases and without ligase; 2,4 – the result of computation with the use of endonucleases and ligase.
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three states. Among extensions based on the use of one 
RE, one can distinguish the extension proposed by 
Unold et al. [37], as well as by Soreni et al. [38], whereas 

extensions based on the use of more than one RE were 
first proposed by us [35]. We also have considered and 
presented certain arithmetic estimates concerning the 

Figure 7: An example of a computation for six-state FA (the input word ababa) tested in the laboratory.
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possibilities of theoretical extension of a biomolecular 
DNA automaton using two or more REs [36]. An extended 
model based on many REs creates an opportunity to 
implement, in the laboratory, more complex NFA [39] and 
even other theoretical models of computers: pushdown 
automata [28] and Turing machines [27].

From the biochemical point of view, a computation 
reaction is the sequential joining and cutting of DNA 
molecules. In these biochemical reactions, we have dis-
tinguished some problems that could reduce the effi-
ciency of a computation process. The real problem in this 
approach is the use of two different REs together (e.g. in 
the same test tube); therefore, we must fit them. Both the 
used REs are part of about 170 endonucleases available 
in FastDigest™ technology, of which digestion buffers 
support 100% activity of all endonucleases. Second, the 
efficiency of a reaction is being limited because of the 
problems related to the occurrence of many copies of DNA 
molecules in a single test tube. Analysis has revealed that 
some transition molecules may ligate with one another, 
i.e. two copies of the same transition molecule may ligate 
with one another. Such a situation can take place for the 
following two-nucleotide sticky ends (cleaved by the 
endonuclease AcuI) of transition molecules: AT, TA, GC, 
and CG because they are complementary to each other 
and ligate in reaction conditions. Further analyses have 
shown that, additionally, some different transition mol-
ecules ligate with one another when transition molecules 
were used simultaneously with the following two-nucleo-
tide sticky ends: AA-TT, AC-GT, AG-CT, CA-TG, CC-GG, and 
GA-TC. The same situation applies for the sticky ends that 
are four nucleotides in length (cleaved by the endonucle-
ase BbvI), e.g. ATAT, TATA, GCGC, and CGCG. It is possible 
to eliminate such a situation by using different techniques 
to prevent self-ligation of DNA [40], e.g. standard dephos-
phorylation of the 5′ ends by alkaline phosphatase. The 
problem with two copies of the same transition molecule 
ligating with one another could be eliminated by expand-
ing the genetic alphabet [41, 42] – using unnatural base 
pairs, e.g. isocytosine (dC), isoguanine (dG), 5-(2,4-diami-
nopyrimidine) (dj), and xanthosine (dX). In such a situa-
tion, sticky ends that are two nucleotides in length could 
be coded as AdC, dCA, dGC, CdG. This approach has the 
additional interesting property that the alphabet for codes 
of symbols could be expanded from four nucleotides  
(the alphabet is Σ = {A, T, G, C}) to, e.g. eight nucleotides 
(the alphabet is Σ = {A, T, G, C, dC, dG, dj, dX). Thus, using 
unnatural base pairs, it will be possible to increase the 
complexity, i.e. the number of states and symbols of a bio-
molecular computer.

We should take into account not just the adding of 
more and more REs but also the unwanted cross-talk, 
the total noise of the system, even the limitations on 
finding universal buffers for all different enzymes, 
because any of these may affect the feasibility of the 
DNA computer. In our experiments, we tested the crucial 
elements of the biomolecular automaton’s actions. First, 
we checked the autonomous actions of two REs (BbvI 
and AcuI) in a test tube. Next, after successful prelimi-
nary tests, we checked the effect of the length of input 
words and nondeterminism of NFA on the results. Addi-
tionally, we tested various automata, e.g. a six-state 
biomolecular automaton. From these experiments, we 
obtained a main conclusion: “it is possible to construct 
more complicated finite automata using more than one 
RE”. Moreover, the length of the input data and non-
determinism do not influence the detection of results. 
In addition, we have noticed that the efficiency of the 
biochemical process would decrease if we used sticky 
ends in the construction of biomolecular automatons, 
which ligate with one another. Therefore, we propose 
not to use sticky ends complementary with one another. 
Additionally, we suggest the possibility of using syn-
thetic unnatural nucleotides in biomolecular implemen-
tation models of computation based on DNA. Such an 
approach to the design biomolecular computers allows 
us to eliminate biochemical problems occurring at the 
implementation of biomolecular computers.

We believe that using multiple and autonomous 
applications of REs in one test tube is the next step 
toward a complete understanding of their potential, and 
toward applying the computation with biomolecules in 
medicine, e.g. in the diagnosis and therapy of cancer. It 
should be noted that the DNA automata have potential 
to direct interaction with the biochemical world and 
may become the indicators of a disease within the living 
cell. The future of DNA automaton applications is cur-
rently connected with medical diagnosis, to the process 
of attempting to determine or to identify diseases such 
as cancer or other genetic disorders. The discovery of 
miRNA and the identification of their role in regulatory 
pathways controlling gene expression have opened new 
possibilities of using DNA automata as a cure [7]. Biomo-
lecular computers may, in the future, communicate with 
biological systems and they have the potential to become 
excellent diagnostic tools.
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