
Z. Naturforsch. 2017; 72(7-8)c: 303–313

Sebastian Sakowski, Tadeusz Krasiński, Joanna Sarnik, Janusz Blasiak, Jacek Waldmajer
and Tomasz Poplawski*

A detailed experimental study of a DNA computer
with two endonucleases
DOI 10.1515/znc-2016-0137
Received March 1, 2017; revised March 1, 2017; accepted March 26,
2017

Abstract: Great advances in biotechnology have allowed
the construction of a computer from DNA. One of the pro-
posed solutions is a biomolecular finite automaton, a sim-
ple two-state DNA computer without memory, which was
presented by Ehud Shapiro’s group at the Weizmann Insti-
tute of Science. The main problem with this computer, in
which biomolecules carry out logical operations, is its
complexity – increasing the number of states of biomo-
lecular automata. In this study, we constructed (in labora-
tory conditions) a six-state DNA computer that uses two
endonucleases (e.g. AcuI and BbvI) and a ligase. We have
presented a detailed experimental verification of its feasi-
bility. We described the effect of the number of states, the
length of input data, and the nondeterminism on the com-
puting process. We also tested different automata (with
three, four, and six states) running on various accepted
input words of different lengths such as ab, aab, aaab,
ababa, and of an unaccepted word ba. Moreover, this arti-
cle presents the reaction optimization and the methods
of eliminating certain biochemical problems occurring
in the implementation of a biomolecular DNA automaton
based on two endonucleases.

Keywords: biomolecular computers; DNA computing;
finite automata.

1 Introduction

The tremendous advances in genetics and molecular
biology have enabled the use of DNA as a nanomaterial
for computation. Most researchers in DNA computing,
the new computational paradigm that uses biomolecules
for computations [1], have applied well-known biologi-
cal operations to solve particular problems in computer
science [2–4]; in addition, they have also designed
nanomachines built on DNA [5, 6]. DNA computing has
found implementation in medicine, e.g. in the diagno-
sis and therapy of cancer [7] as well as in in vitro DNA-
based logic circuits and gates to diagnose the levels of
miRNA [8]. Another approach focuses on the potential
application of biocomputing machines to biological pro-
cesses [9, 10] and to monitor enzymatic regulation [11].
A technique called DNA manipulation has been used in
the biomolecular implementation of digital circuits [12]
as well as neural networks [13]. Research into DNA com-
putations have focused on the biomolecular implemen-
tation of logical operations [14, 15], molecular inference
[16, 17], and molecular programming [18]. Over a period
of a few decades of research into DNA computing, various
theoretical models have been proposed, for example, the
splicing system [1, 19], the self-assembly model [20], com-
puting with membranes [21], and the sticker-based model
[22]. The self-assembly of DNA molecules has enabled the
folding of DNA molecules into shapes such as squares and
five-pointed stars [23]; this DNA origami has allowed the
coupling of molecular emitters to photonic crystal cavities
[24]. Current research in DNA computing shows sophis-
ticated computer systems, e.g. biomolecular calculators
that operate by selecting the results from a library [25]
or using biomolecular memory as an alternative storage
media [26].

Although many studies have focused on the biomo-
lecular implementation of known theoretical models of
computation [27–29], only a few of them have presented
detailed reports on laboratory applications. This asserts
the necessity of creating interdisciplinary research groups
composed of researchers from different areas of science,
such as computer scientists and biologists, who can solve
some complex, biochemical-related problems. For this

*Corresponding author: Tomasz Poplawski, Department of
Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236
Lodz, Poland, E-mail: tomasz.poplawski@biol.uni.lodz.pl
Sebastian Sakowski and Tadeusz Krasiński: Faculty of Mathematics
and Computer Science, University of Lodz, Banacha 22, 90-238
Lodz, Poland
Joanna Sarnik and Janusz Blasiak: Department of Molecular
Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz,
Poland
Jacek Waldmajer: Department of Philosophy, University of Opole,
Katowicka 89, 45-061 Opole, Poland

mailto:tomasz.poplawski@biol.uni.lodz.pl

304      Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases

reason, the laboratory test of a biomolecular nondeter-
ministic finite automaton (a simple two-state two-sym-
bol automaton) [30] is considered a major event in DNA
computing.

A deterministic finite automaton (DFA) represents
the simplest model of a computer [31] that enables us
to solve plain problems (operations of addition and
multiplication of integers are beyond the capabilities of
such machines). Each finite automaton (FA) consists of
a tape with cells containing an input word created from
symbols of a certain finite alphabet, and a control unit
reading the symbols of the input word one after another
and changing its state according to the transition rules.
Each transition rule is of the form (s0, a) → s1 when an
automaton is in the state s0, after reading the symbol
a, it transits to the state s1. The automaton accepts the
input word if starting from the initial state, after reading
the whole word, its control unit transits to one of the dis-
tinguished final states. Usually, FA are represented by
graphs [32]. Figure 1B presents an example (in the form
of graph structure) of a two-state automaton, which
accepts words with an odd number of a’s. A variant of
FA is the nondeterministic finite automata (NFA). The
difference between DFA and NFA is that every state of
a DFA always has exactly one exiting transition rule for
each symbol in the alphabet, whereas in NFA, a state
may have zero, one, or many exiting transition rules for
each symbol in the alphabet. NFA accepts an input word
when one of the possible ways leads to an accepting
state and reads the whole input word. An example of an
NFA is given in Figure 1C (accepting words with at least
one symbol a).

In 2001, a group at the Weizmann Institute of Science
implemented a two-state two-symbol NFA [30] (see all pos-
sible transition molecules in Figure 1A) that used only one
restriction enzyme (RE), FokI and ligase. In later studies,
researchers showed that molecular computers can act
without ligase in some limited manner [33, 34]. These first
implementations were based on the use of the follow-
ing biomolecular elements: FokI RE, ligase enzyme, and
double-stranded DNA fragments (an input molecule, a set
of transition molecules, and a set of detection molecules).
An input molecule (Figure 2A) is a double-stranded DNA
molecule that represents an input word (for example, the
input word x = aba) consisting of the symbols a and b. A
single-stranded overhang (a sticky end) in the input word
represents not only a symbol but also a state, i.e. a pair
<state, symbol >. Another element of the biomolecular
DNA automaton is a set of transition molecules (software).
Each transition molecule contains a specific sequence rec-
ognizable by the FokI, a single-stranded overhang (a sticky
end), and the additional base pairs (Figure 2B for one tran-
sition (s0, a) → s1). An integral part of such automatons are
the detection molecules (detectors, Figure 2C), which in
laboratory experiments recognize the final state of com-
putation. These molecules consist of a single-stranded
overhang (sticky end) and an additional double-stranded
fragment of DNA.

If we want to make a computation, first we choose
(fix) an NFA, i.e. we chose some transitions from all pos-
sible transition molecules (Figure 1A). Next, we put all
elements together: FokI, many copies of the chosen transi-
tion molecules, detection molecules, and the input mole-
cules. In each cycle of the computation process (Figure 3),

Figure 1: The FA. (A) All possible transitions of a two-state two-symbol NFA. (B) An example of a two-state two-symbol DFA. (C) An example of
a two-state two-symbol NFA. (D) All possible transitions of a six-state two-symbol NFA.

Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases      305

Figure 2: The elements of a biomolecular FA and corresponding elements of the FA in the form of a graph: (A) an example of an input mol-
ecule representing the input word aba. (B) An example of a transition rule. (C) An example of detection molecule for state s1.

Figure 3: Schematic diagram of a computation using one endonuclease FokI presented in 2001 by Benenson et al. [30].

a transition molecule is combined with a sticky end of the
input molecule and FokI can cut inside the next symbol
and reveal a new sticky end. Such operations precisely
reflect the action of an NFA.

To increase the complexity of the DNA computer pre-
sented by Ehud Shapiro’s group at the Weizmann Institute
of Science [30], we designed a theoretical model of a six-
state, two-symbol NFA (see Figure 1D). DNA molecules

306      Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases

representing all 72 transitions of the six-state, two-symbol
FA are presented in the Appendix of our previous article
[35]. The sticky ends cleaved by the REs BbvI and AcuI are
four and two nucleotides in length, respectively. A general
computation scheme consists of alternating the cutting
and ligating processes of the DNA molecules using BbvI

and AcuI (Figure 4). In this article, we built and tested the
more powerful six-state automaton. It is composed of our
earlier theoretical ideas [35, 36] and it is, to our knowledge,
the first working example of a six-state automaton built
with DNA and REs. We tested all aspects that were impor-
tant for DNA computer works: the effect of the length of

Figure 4: Schematic diagram of a computation using many endonucleases, e.g. BbvI and AcuI.

Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases      307

input words on the result of the experiment as well as the
effect of nondeterminism of finite state automata on the
results. We also performed experimental tests of six-state
automaton, reaction optimization, and eliminated certain
biochemical problems.

2 �Materials and methods

2.1 �Synthetic DNA

Synthetic oligonucleotides (lyophilized, 200 nmol) were
from Genomed (Warsaw, Poland). The oligonucleotides for
software (transition molecules) were ST56_1 (5′-AATTCT-
GAAGGTAGAAGGTATTAGTTGCTCCTC-3′), ST56_2 (5′-GGC-
CGAGGAGCAACTAATACCTTCTACCT-TCAG-3′), ST50_1 (5′-AATTCT-
GAAGCATCTTCATCATTAGTTGCTCCTC-3 ′), ST50_2
(5′-GGCCGAGGAGCAACTAATGATGAAGATGCTTCAG-3′),
ST42_1 (5′-AATTGCAGCTCTGAATTAGTTGCTCCTC-3′), ST42_2
(5′-GGCCGAGGAGCAACTAATTCAGAGCTGC-3′), ST67_1
(5′-AATTGCAGCTCTCTCCGATTAGTTGCTCCTC-3′), ST67_2
(5′-GGCCGAGGAGCAACTAATCGGAGAGAGCTGC-3′), ST66_1
(5′-AATTCTGAAGTCTCTCGCTGTATTAGTTGTCATCGC-3′),
ST66_1 (5′-GGCCGCGATGACAACTAATACAGCGAGAGACTTCAG-3′),
ST2_1 (5′-AATTGCAGCTCTGTCGTATTAGTTGTCATCGC-3′),
ST2_2 (5′-GGCCGCGATGACAACTAATACGACAGAGCTGC-3′),
T32_1 (5′-CGGCAGCGGTAGTAACCATTATTCATCGC-3′),
T32_2 (5′-GCGATGAATAATGGTTACTACCGCTGC-3′), T65_1
(5′-CGCTGAAGGGTAGGCTGAACCATTATTCATCGC-3′), T65_2
(5′-GCGATGAATAATGGTTCAGCCTACCCTTCAG-3′), T8_1
(5′-CGCTGAAGGGTAGAATGCGATTAGTTGCTCCTC-3′), T8_2
(5′-GAGGAGCAACTAATCGCATTCTACCCTTCAG-3′), T66P_1
(5′-CGCTGAAGGTAGAAGCTGTATTAGTTGTCA-TCGC-3′), T66P_2
(5′-GCGATGACAACTAATACAGCTTCTACCTTCAG-3′), T67P_1
(5′-CGGCAGCGTAGAACGATACTTTAGATTGACTTCAG-3′),
T67P_2 (5′-CTGAAGTCAATCTAAAGTATCGTTCTACGCTGC-3′).

The oligonucleotides for the construction of the input
molecules (input word ab, ba, aab, aaab, ababa) and
detection molecule were SAB_1 (5′-CGCCAATTATCAGC-
CGATACTTTAGATTGCCTTCAG-3′), SAB_2 (5′-CTGAAGGC
AATCTAAAGTATCGGCTGATAATTGG-3′), SBA_1
(5′-CGCCAATTCGACTAATATACTTTAGATTGCCTTCAG-3′),
SBA_2 (5′-CTGAAGGCAATCTAAAGTATATTAGTCGAA
TTGG-3′), SAAB_1 (5′-CGCCAATTATCAGCCGACTACGA-
TACTTTAGATTGCCTTCAG-3′), SAAB_2 (5′-CTGAAGGCAA
TCTAAAGTATCGTAGTCGGCTGATAATTGG-3′), SAAAB_1
(5′-CGCCAATTATCAGCCGACTACGACTACGATACTTTA-
GATTGCCTTCAG-3′), SAAAB_2 (5′-CTGAAGGCAATCTAAA-
GTATCGTAGTCGTAGTCGGCTGATAATTGG-3′), SABABA_1
(5′-AATTCCAATTCGACTAATCAGCCGACTAATCAGCCGATT-

AGTTGCTCCTC-3′), SABABA_2 (5′-GGCCGAGGAGCAAC-
TAATCGGCTGATTAGTCGGCTGATTAGTCGAATTGG-3′),
TERM_5_1 (5 ′-CGTTATACTTTAGATTGCCTTCAG-3 ′),
TERM_5_2 (5 ′ -CTGAAGGCAATCTAAAGTATAA-3 ′) ,
TERM_4_1 (5′-CGTGATACTTTAGATTGCCTTCAG-3′),
TERM_4_2 (5 ′ -CTGAAGGCAATCTAAAGTATCA-3 ′) ,
STERM_1_1 (5′-AATTATTGTATTAGTTGTCATCGC-3′),
STERM_1_2 (5′-GGCCGCGATGACAACTAATACAAT-3′).

The transition molecules, input molecule, and
detection molecule were prepared by annealing pairs
of oligonucleotides (sense and antisense): ST56_1 and
ST56_2, ST50_1 and ST50_2, ST42_1 and ST42_2, ST66_1
and ST66_1, ST67_1 and ST67_2, ST2_1 and ST2_2, T32_1
and T32_2, T65_1 and T65_2, T8_1 and T8_2, T66P_1 and
T66P_2, T67_1 and T67_2, T67P_1 and T67P_2, SAB_1 and
SAB_2, SBA_1 and SBA_2, SAAB_1 and SAAB_2, SAAAB_1
and SAAAB_2, SABABA_1 and SABABA, TERM_5_1 and
TERM_5_2, TERM_4_1 and TERM_4_2, STERM_1_1 and
STERM_1_2.

2.2 �Enzymes and plasmid vectors

BbvI and AcuI, which were used as the hardware and to
prepare DNA molecules representing the components
of the automaton, BsmAI, ClaI, BsrDI, BtgzI, NotI and
AcuI, and T4 DNA ligase, were from New England Biolabs
(Ipswich, MA, USA). T4 polynucleotide kinase (PNK), pJET
1.2 and LITMUS 38i plasmids were from Fermentas (Grand
Island, NY, USA).

2.3 �Chemicals

Plasmid Miniprep Kit and Gel Extraction Kit were from
Axygen (Union City, CA, USA). Perfect 100 bp DNA Ladder
was from Eurx (Gdansk, Poland). It contained 13 bands
with fragments of the following sizes: 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000, 1500, 2000, and 2500 bp.
For easy reference, bands at 500 bp and 1000 bp were con-
sidered brighter than other bands in the ladder. Thermo
Scientific GeneRuler 1 kb DNA Ladder is composed of 14
chromatography-purified individual DNA fragments (in
base pairs): 10,000, 8000, 6000, 5000, 4000, 3500, 3000,
2500, 2000, 1500, 1000, 750, 500, and 250 bp. It contained
three reference bands of (6000, 3000, and 1000 bp) for
easy orientation. Sigma-Aldrich pUC18 DNA HaeIII Ladder
contained 11 bands with fragments of the following sizes:
587, 458, 434, 298, 267, 257, 174, 102, 80, 18, and 11 bp. All
other chemicals and bacterial media were from Sigma-
Aldrich (Saint Louis, MO, USA).

308      Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases

2.4 �Construction of DNA libraries
containing DNA molecules for use
in the computational reactions

The general scheme of preparing automaton’s compo-
nents was different from that presented by Ehud Shapiro’s
group at the Weizmann Institute of Science [30]. We built
a “DNA library”, a collection of DNA molecules represent-
ing computer elements that are stored and propagated
in a population of Escherichia coli through the process of
molecular cloning. We used two different experimental
schemes labeled as experimental Scheme 1 and Scheme 2.
Scheme 1 was used to test the three-state automaton with
the use of the words: ab, ba, aab, and aaab. Scheme 2 was
used to test four-state and six-state automata. The first part
of the cloning procedure was the same in both experimen-
tal schemes. Single-stranded oligonucleotides were labeled
according to the represented components of the automaton:
the input words, the transition molecules, and detection
molecules. These oligonucleotides were 5′ phosphoryl-
ated by the T4 PNK. We used 100 pmol of oligonucleotides,
which were phosphorylated with 10 U PNK in 20 μl of the
PNK buffer and 1 mM ATP, for 60 min at 37°C, precipitated
with ethanol and suspended in TE buffer (10 mM Tris–HCl,
1 mM EDTA, pH 8.0). The molecules of the automaton’s
components were prepared by mixing the appropriate pairs
of oligonucleotides. Thereafter, complementary oligonu-
cleotides (sense and antisense) were incubated for 10 min
at 95°C, and then slowly (1°C/min) cooled to room tempera-
ture. Then, double-stranded DNA molecules were cloned
into the pJET 1.2 plasmid vector (Scheme 1) or LITMUS 38i
(Scheme 2). The obtained clones were sequenced at the
Institute of Biochemistry and Biophysics (Warsaw, Poland)
and underwent restriction analysis. Typical restriction
analysis of obtained clones are presented in the Supple-
mentary Material. Before the computational reaction, DNA
fragments were obtained by the cleavage of plasmid DNA
with REs, agarose gel electrophoresis, and subsequent puri-
fication with the QIAquick DNA Purification Kit (Scheme 1).
In experimental Scheme 2, we utilized polymerase chain
reaction (PCR) to obtain DNA molecules. The proper sticky
ends were generated with the appropriate REs followed by
purification through agarose gel electrophoresis.

2.5 �Polymerase chain reaction

We used PCR to obtain DNA molecules used in our com-
puter with Perpetual OptiTaq PCR Master Mix (Eurx,

Gdansk, Poland). PCR primers used in this study were
from Genomed (Warsaw, Poland) and they were Primer_2
(5′-CGTGGCTAGCGGGAAG-3′), Primer_3 (5′-ACCATGAT-
TACGCCAAGCTA-3′), Primer_4 (5′-AGGAGAGCGCAC-
GAGGGA-3′), Primer_5 (5′-CTCACTCATTAGGCACCC-3′),
and Primer_6 (5′-TGCTGCAAGGCGATTAAGTT-3′).

The PCR mixture (25 μl) consisted of 1.25 U Perpetual
OptiTaq DNA Polymerase, 1× reaction buffer (1.5 mM MgCl2),
0.2 mM of each dNTP, and 0.5 μM of upstream and down-
stream primer. PCR conditions were as follows: initial dena-
turation step at 95°C for 3 min, 30 cycles at 95°C for 30 s and
30 s at 60°C annealing temperature, and at 72°C for 30 s.
The final extension step was performed at 72°C for 5 min.
The PCR was carried out using an MJ Research, INC thermal
cycler, model PTC-100 (Waltham, MA, USA). After the PCR,
samples were subjected to restriction digestion with proper
RE. The digested products were resolved on a 2% agarose
gel and stained with 0.5 μg/ml ethidium bromide.

Transition molecules were prepared with Primer_2
and Primer_3, and the length of their final version (after
digestion with RE and gel purification) was around 110 bp.
The term molecule was prepared with Primer_2 and
Primer_4 and its final length was 404 bp. The word mol-
ecule was prepared with Primer_5 and Primer_6 and its
final length was 230 bp.

2.6 �Computation reaction

In the reaction, we verified autonomous and program-
mable cleavage of DNA molecules by two endonucleases
in one test tube. This reaction was run for 2 h in NEB4
buffer at 37°C. The reaction tube contained a set of DNA
fragments representing the input and transitions mol-
ecules, 1u BbvI and AcuI as well as 10 U T4 DNA ligase.
The control sample was similar to test samples except REs
and ligase. The product of the reaction was purified with
phenol, chloroform, and izoamyl alcohol (25:24:1), pre-
cipitated with ethanol, and separated by 2% agarose gel
electrophoresis. The reactions started with the ligation of
a transition molecule with the input word. After the cyclic
reactions of digestion, the ligation of the final DNA frag-
ment (the rest of the input molecule) with the terminal
molecule followed, producing the output-reporting mol-
ecule – the length of the DNA fragment was the sum of
the rest input and the terminal molecules. Detection of the
DNA fragment with such length by gel electrophoresis fol-
lowed by ethidium bromide staining indicates the accept-
ance of the input word by the automaton.

Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases      309

3 �Results
In this section, we present the results of laboratory imple-
mentation of our automata. These experiments focused
on the key elements, essential to the operation of autom-
ata with two REs: BbvI and AcuI.

3.1 �The reaction optimization

Our DNA computer did not work without ligase and the
ligation step was crucial for efficient computation reac-
tion. Thus, we had to optimize it to compromise the
cutting and joining processes. The optimum tempera-
ture of the most commonly used T4 DNA ligase is around
37°C. Therefore, the best choice for blunt-ended DNA
fragments is 37°C. However, sticky ends are often too
short to form a stable duplex at these conditions; in that
case, ligation at lower temperature (25°C) is preferable.
We also used relatively short DNA fragments because
joining contiguous DNA fragments (thousands of bp) is
very challenging. We found the optimal condition for
the biomolecular computer: the initial ligation step per-
formed at 25°C (optimal temperature for T4 DNA ligase
action) for 15 min, followed by incubation at 37°C (tem-
perature for BbvI, AcuI action) for 2 h, and the final liga-
tion step at 25°C for 15 min.

3.2 �The length of the input words has no
effect on the DNA computer

We tested the operation of automaton A1, presented in
Figure 5A, by running it on various accepted input words
of different lengths: ab, aab, aaab, and an unaccepted
ba. The experiments presented in Figure 6A and B indi-
cate that the length of the input words has no effect on
the results of computation. Automaton A1 worked as
expected. In all the samples, we observed intermediate
molecules (Figure 6A and B, lines 2 and 4). Intermediate
molecules did not arise in the control samples that lacked
enzymes (Figure 6A and B, lines 1 and 3). We also obtained
the output-reporting molecule for the state s5 (length 846
bp) in samples with the input words: ab, aab, and aaab
input molecules (Figure 6A, line 2; Figure 6B, lines 2 and
4). The unaccepted input word ba was not computed, and
we did not observe any output-reporting molecule for the
state s5 (length 846 bp; Figure 6A, line 4).

Figure 5: The finite automata testing in the laboratory: (A) FA A1; (B)
NFA A2; (C) NFA A3; (D) FA A4.

3.3 �The nondeterminism of the DNA
computer

In these experiments, we had to slightly modify our com-
puter in comparison to the previous one, as we planned
to obtain two final states for the automaton in one tube.
We changed the length of the molecules to distinguish
both states. The output-reporting molecule for state s5
was 714 bp in length, whereas for state s4, it was 614 bp
in length. We tested two NFAs, A2 and A3, presented in
Figure 5B and C both on the same input word aab. In the
automaton A2, half the number of molecules represent-
ing the input word aab “chose” the wrong way through
the transition (s3, a) → s4. Nevertheless, the result for
automaton A2 (Figure 6C, lane 2) was almost the same
as that of automaton A3 (Figure 6D, lane 2) on the same
input word aab. In automaton A3, the nondetermin-
ism appears in the final transitions. The results (Figure
6D, lane 2) confirmed the assumption that the input
molecules “chose” both last transitions, (s2, b) → s5 and
(s2, b) → s4, equally.

310      Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases

3.4 �An experimental testing of the six-state
automaton

We tested the operation of the six-state automaton A4
presented in Figure 5D by running it on the accepted
input word: ababa. The entire procedure is presented in
Figure 7. The output-reporting molecule for state s1 had a
length of 613 bp. We validated the mechanism of opera-
tion by the results of two experiments: with REs (BbvI,
AcuI) and ligase; without REs (BbvI, AcuI) and ligase.
The results of the experiments (see Figure 6E) showed
that it is possible to construct a six-state automaton
using two REs (BbvI and AcuI) and that this automa-
ton could act autonomously in one test tube. Thus, we
proved experimentally that by using two enzymes, e.g.
BbvI and AcuI, it is possible to expand the number of
states (to six states) in biomolecular NFA, as presented
by Ehud Shapiro’s group at the Weizmann Institute of
Science [30].

4 �Discussion
In this article on our study, we have presented detailed
laboratory tests of the biomolecular NFA with two endo-
nucleases: BbvI and AcuI. The experiments conducted
have proved that it is possible to construct (in a wet lab)
biomolecular models of computation, e.g. biomolecu-
lar NFA using REs and ligase. Additionally, this article
shows that it is possible in a real laboratory to increase
the number of states (to six states) in the biomolecular
NFA presented by Ehud Shapiro’s group at the Weizmann
Institute of Science [30]. These experiments create an
opportunity for the implementation of more complex NFA
and other theoretical models of computers, e.g. push-
down automata [29].

The complexity (number of states) of biomolecular
automata [30] is bounded from above by the number of
available sticky ends. REs such as FokI (with 4-nt sticky
ends) enable the construction of automata with, at most,

Figure 6: (A) Experimental testing of automaton A1 on the accepted word ab and nonaccepted word ba. (B) Testing automaton A1 on
accepted inputs words: aab, aaab. (C) Experimental testing of the influence of nondeterminism of the automaton A2 on results (on accepted
input word aab). (D) Experimental testing of the influence of nondeterminism of automaton A3 on results (on accepted input word aab). (E)
Experimental testing of automaton A4 on results (on accepted input word ababa). Abbreviations: M1 – the size of the marker (100 base pair);
M2 – the size of the marker (1 kb); M3 – the size of the marker (pUC HaeIII); |s1 |  – the length of an output reporter (613 bp); |s4 |  – the length
of an output reporter (614 bp); |s5 |  – the length of an output reporter (856 bp and 714 bp); 1,3 – the result of computation without endonu-
cleases and without ligase; 2,4 – the result of computation with the use of endonucleases and ligase.

Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases      311

three states. Among extensions based on the use of one
RE, one can distinguish the extension proposed by
Unold et al. [37], as well as by Soreni et al. [38], whereas

extensions based on the use of more than one RE were
first proposed by us [35]. We also have considered and
presented certain arithmetic estimates concerning the

Figure 7: An example of a computation for six-state FA (the input word ababa) tested in the laboratory.

312      Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases

possibilities of theoretical extension of a biomolecular
DNA automaton using two or more REs [36]. An extended
model based on many REs creates an opportunity to
implement, in the laboratory, more complex NFA [39] and
even other theoretical models of computers: pushdown
automata [28] and Turing machines [27].

From the biochemical point of view, a computation
reaction is the sequential joining and cutting of DNA
molecules. In these biochemical reactions, we have dis-
tinguished some problems that could reduce the effi-
ciency of a computation process. The real problem in this
approach is the use of two different REs together (e.g. in
the same test tube); therefore, we must fit them. Both the
used REs are part of about 170 endonucleases available
in FastDigest™ technology, of which digestion buffers
support 100% activity of all endonucleases. Second, the
efficiency of a reaction is being limited because of the
problems related to the occurrence of many copies of DNA
molecules in a single test tube. Analysis has revealed that
some transition molecules may ligate with one another,
i.e. two copies of the same transition molecule may ligate
with one another. Such a situation can take place for the
following two-nucleotide sticky ends (cleaved by the
endonuclease AcuI) of transition molecules: AT, TA, GC,
and CG because they are complementary to each other
and ligate in reaction conditions. Further analyses have
shown that, additionally, some different transition mol-
ecules ligate with one another when transition molecules
were used simultaneously with the following two-nucleo-
tide sticky ends: AA-TT, AC-GT, AG-CT, CA-TG, CC-GG, and
GA-TC. The same situation applies for the sticky ends that
are four nucleotides in length (cleaved by the endonucle-
ase BbvI), e.g. ATAT, TATA, GCGC, and CGCG. It is possible
to eliminate such a situation by using different techniques
to prevent self-ligation of DNA [40], e.g. standard dephos-
phorylation of the 5′ ends by alkaline phosphatase. The
problem with two copies of the same transition molecule
ligating with one another could be eliminated by expand-
ing the genetic alphabet [41, 42] – using unnatural base
pairs, e.g. isocytosine (dC), isoguanine (dG), 5-(2,4-diami-
nopyrimidine) (dj), and xanthosine (dX). In such a situa-
tion, sticky ends that are two nucleotides in length could
be coded as AdC, dCA, dGC, CdG. This approach has the
additional interesting property that the alphabet for codes
of symbols could be expanded from four nucleotides
(the alphabet is Σ = {A, T, G, C}) to, e.g. eight nucleotides
(the alphabet is Σ = {A, T, G, C, dC, dG, dj, dX). Thus, using
unnatural base pairs, it will be possible to increase the
complexity, i.e. the number of states and symbols of a bio-
molecular computer.

We should take into account not just the adding of
more and more REs but also the unwanted cross-talk,
the total noise of the system, even the limitations on
finding universal buffers for all different enzymes,
because any of these may affect the feasibility of the
DNA computer. In our experiments, we tested the crucial
elements of the biomolecular automaton’s actions. First,
we checked the autonomous actions of two REs (BbvI
and AcuI) in a test tube. Next, after successful prelimi-
nary tests, we checked the effect of the length of input
words and nondeterminism of NFA on the results. Addi-
tionally, we tested various automata, e.g. a six-state
biomolecular automaton. From these experiments, we
obtained a main conclusion: “it is possible to construct
more complicated finite automata using more than one
RE”. Moreover, the length of the input data and non-
determinism do not influence the detection of results.
In addition, we have noticed that the efficiency of the
biochemical process would decrease if we used sticky
ends in the construction of biomolecular automatons,
which ligate with one another. Therefore, we propose
not to use sticky ends complementary with one another.
Additionally, we suggest the possibility of using syn-
thetic unnatural nucleotides in biomolecular implemen-
tation models of computation based on DNA. Such an
approach to the design biomolecular computers allows
us to eliminate biochemical problems occurring at the
implementation of biomolecular computers.

We believe that using multiple and autonomous
applications of REs in one test tube is the next step
toward a complete understanding of their potential, and
toward applying the computation with biomolecules in
medicine, e.g. in the diagnosis and therapy of cancer. It
should be noted that the DNA automata have potential
to direct interaction with the biochemical world and
may become the indicators of a disease within the living
cell. The future of DNA automaton applications is cur-
rently connected with medical diagnosis, to the process
of attempting to determine or to identify diseases such
as cancer or other genetic disorders. The discovery of
miRNA and the identification of their role in regulatory
pathways controlling gene expression have opened new
possibilities of using DNA automata as a cure [7]. Biomo-
lecular computers may, in the future, communicate with
biological systems and they have the potential to become
excellent diagnostic tools.

Acknowledgements: This project is supported by the
National Science Centre of Poland (NCN). Grant number:
DEC-2011/01/B/ NZ2/03022.

Sakowski et al.: A detailed experimental study of a DNA computer with two endonucleases      313

References
1.	 Paun G, Rozenberg G, Salomaa A. DNA computing. New comput-

ing paradigms. Berlin, Heidelberg, New York: Springer, 1998.
2.	 Adleman L. Molecular computation of solutions to combinatorial

problems. Science 1994;226:1021–4.
3.	 Faulhammer D, Cukras A, Lipton R, Landweber L. Molecular

computation: RNA solutions to chess problems. Proc Natl Acad
Sci USA 1999;97:1385–9.

4.	Stojanovic M, Stefanovic D. Deoxyribozime-based molecular
automaton. Nat Biotechnol 2003;21:1069–74.

5.	 Reif J, Sahu S. Autonomous programmable DNA nanorobotic
devices using DNAzymes. Theor Comput Sci 2009;410:1428–39.

6.	Sekiguchi H, Komiya K, Kiga D, Yamamura M. A realization of
DNA molecular machine that walks autonomously by using a
restriction enzyme. Lect Notes Comput Sci 2008;4848:54–65.

7.	 Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous
molecular computer for logical control of gene expression.
Nature 2004;429:423–9.

8.	Seelig G, Soloveichik D, Zhang D, Winfree E. Enzyme-free nucleic
acid logic circuits. Science 2006;314:1585–8.

9.	Muhammad MR, Pavan Kumar C, Selvakumar R. Generative and
recognising devices for biological processes. Arab J Sci Eng
2016;41:2893–902.

10.	 Selvakumar R, Muhammad MR, Devi GP. An embedded automa-
ton to monitor the glycolysis process in pancreatic β-cells. Acta
Biotheor 2015;63:23–31.

11.	 Ali RM, Gurusamy PD, Ramachandran S. Computational regula-
tory model for detoxification of ammonia from urea cycle in liver.
Turk J Biol 2014;38:679–83.

12.	 Qian L, Winfree E. Scaling up digital circuit computation with DNA
strand displacement cascades. Science 2011;6034:1196–201.

13.	 Qian L, Winfree E, Bruck J. Neural network computation with DNA
strand displacement cascades. Nature 2011;475:368–72.

14.	 Wąsiewicz P, Malinowski A, Nowak R, Mulawka JJ, Borsuk P,
Węgleński P, et al. DNA computing: implementation of data flow
logical operations. Future Gener Comput Syst 2001;17:361–78.

15.	 Ran T, Kaplan S, Shapiro E. Molecular implementation of simple
logic program. Nat Nanotechnol 2009;10:642–8.

16.	 Wąsiewicz P, Janczak, T, Mulawka, JJ, Płucienniczak A. The
inference based on molecular computing. Cybernet Syst
2000;31:283–315.

17.	 Sainz de Murieta I, Rodriguez-Paton A. DNA biosensors that
reason. Biosystems 2012;109:91–104.

18.	 Wąsiewicz P, Mulawka JJ. Molecular genetic programming. Soft
Comput 2001;5:106–13.

19.	 Freund R, Kari L, Paun G. DNA computing based on splicing:
the existence of universal computers. Theory Comput Syst
1999;32:69–112.

20.	Winfree E. DNA computing by self-assembly. Bridge 2003;33:
31–8.

21.	 Paun G. Computing with membrane. J Comput Syst Sci
2000;61:108–43.

22.	Kari L, Paun G, Rozenberg G, Salomaa A, Yu S. DNA computing,
sticker systems, and universality, Acta Inform 1998;35:401–20.

23.	Rothemund PW. Folding DNA to create nanoscale shapes and
patterns. Nature 2006;440:297–302.

24.	Gopinath A, Miyazono E, Faraon A, Rothemund PW. Engineering
and mapping nanocavity emission via precision placement of
DNA origami. Nature 2016;535:401–5.

25.	 Liu H, Wang J, Song S, Fan C, Gothelf KV. A DNA-based system
for selecting and displaying the combined result of two input
variables. Nat Commun 2015;10089:1–7.

26.	Zhirnov V, Zadegan RM, Sandhu G, Church GM, Hughes W.
Nucleic acid memory. Nat Mater 2016;15:366–70.

27.	 Rothemund PW. DNA and restriction enzyme implementa-
tion of Turing machines. Discrete Math Theor Comput Sci
1995;27:75–120.

28.	Cavaliere M, Jonoska N, Yogev S, Piran R, Keinan E. Seeman
N. Biomolecular implementation of computing devices with
unbounded memory. Lect Notes Comput Sci 2005;3384:35–49.

29.	Krasiński T, Sakowski S, Popławski T. Autonomous push-down
automaton built on DNA. Informatica 2012;36:263–76.

30.	Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E.
Programmable and autonomous computing machine made of
biomolecules. Nature 2001;414:430–4.

31.	 Hopcroft J, Motwani R, Ullman J. Introduction to automata
theory, languages and computation. 3rd ed. Boston: Addison-
Wesley, 2006.

32.	Sipser M. Introduction to the theory of computation. 2nd ed.
Boston: Thomson Course Technology, 2006.

33.	Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E. DNA
molecule provides a computing machine with both data and
fuel. Proc Natl Acad Sci USA 2003;100:2191–6.

34.	Chen P, Jing L, Jian Z, Lin H, Zhizhou Z. Differential dependence
on DNA ligase of type II restriction enzymes: a practical way
toward ligase-free DNA automaton. Biochem Biophys Res
Commun 2007;353:733–7.

35.	 Krasiński T, Sakowski S. Extended Shapiro finite state
automaton. Found Comput Decis Sci 2008;33:241–55.

36.	Krasiński T, Sakowski S, Waldmajer J, Popławski T. Arithmetical
analysis of biomolecular finite automaton. Fundam Inform
2013;128:463–74.

37.	 Unold O, Troć M, Dobosz T, Trusiewicz A. Extended molecular
computing model. WSEAS 2004;1:15–9.

38.	Soreni M, Yogev S, Kossoy E, Shoham Y, Keinan E. Parallel
biomolecular computation on surfaces with advanced finite
automata. J Am Chem Soc 2005;127:3935–43.

39.	Krasiński T, Sakowski S, Popławski T. Towards an autonomous
multistate biomolecular devices built on DNA. World Congress
on Nature and Biologically Inspired Computing, IEEE, 2014;
23–28.

40.	Ukai H, Ukai-Tadenuma M, Ogiu T, Tsuji H. A new technique to
prevent self-ligation of DNA. J Biotechnol 2002;97:233–42.

41.	 Benner S, Allemann R, Ellington A, Ge L, Glasfeld A, Leanz G,
et al. Natural selection, protein engineering, and the last riboor-
ganism: rational model building in biochemistry. Cold Spring
Harb Symp Quant Biol 1987;52:53–63.

42.	Henry A, Romesberg FE. Beyond A, C, G and T: augmenting
nature’s alphabet. Curr Opin Chem Biol 2003;7:727–33.

Supplemental Material: The online version of this article
(DOI: 10.1515/znc-2016-0137) offers supplementary material,
available to authorized users.

