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Introduction

Salt stress is one of the most important limi-
tations to crop productivity and species distribu-
tion. It can affect several physiological processes, 
from seed germination to plant development. 
Photosynthesis, a key metabolic pathway in plant 
development, is a major target for salt stress. Dur-
ing salt stress, reduction of the chloroplast strom-
al volume and generation of reactive oxygen spe-
cies (ROS) are thought to play important roles in 
photosynthesis inhibition (Shi et al., 2006; Luo et 
al., 2008). ROS can be generated in the chloro-
plasts by direct transfer of excitation energy from 
chlorophyll to produce singlet oxygen, or by uni-
valent oxygen reduction at photosystem I in the 
Mehler reaction (Laloi et al., 2007; Breusegem et 
al., 2008).

The role of salicylic acid (SA) in defense mech-
anisms against pathogens’ attack has been known 
for several years. Furthermore, its role in abiotic 

stresses has been also summarized (Yuan and Lin, 
2008). SA mediates pathogenesis-related (PR) 
gene expression, systemic acquired resistance, and 
redox homeostasis under environmental stresses. 
Studies with an Arabidopsis transgenic line ex-
pressing a salicylate hydroxylase gene, NahG, to 
reduce endogenous SA demonstrated that SA is 
required for O3 tolerance by maintaining the cel-
lular redox state and inducing defense responses 
(Sharma et al., 1996; Yang et al., 2004). However, a 
high level of SA activates an oxidative burst and 
a cell death pathway meanwhile leading to O3 
and salt stress sensitivities (Rao and Davis, 1999; 
Borsani et al., 2001).

Generally, when an environmental stress is ini-
tiated, a plant needs a certain level of SA to in-
crease the level of ROS by inhibiting antioxidant 
enzymes. Then the ROS act as a secondary stress 
signal to enhance the activities of cellular protec-
tive enzymes during the later stress (Yuan and 
Lin, 2008). Exogenous H2O2 or SA pre-treatment 
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similarly increases the stress tolerance by activat-
ing cellular protective enzymes (Shi et al., 2006; 
Wahid et al., 2007; Lei et al., 2008; Luo et al., 2008). 
Hereby, it could be deduced that NahG plants 
adapt worse to stress. However, wild-type plants 
germinated in media supplemented with 100 mM 
NaCl or 270 mM mannitol showed intensive necro-
sis in the shoots, while NahG Arabidopsis plants 
germinated under the same conditions remained 
green and developed true leaves (Borsani et al., 
2001). Borsani et al. (2001) suggested that SA po-
tentiates the generation of ROS in photosynthetic 
tissues during salt and osmotic stress. However, 
NahG does not generate SA-induced antioxi-
dant enzymes. Some protective substances other 
than antioxidant enzymes should be promoted in 
NahG and hampered in wild-type plants, such as 
reduced glutathione (Borsani et al., 2001).

Here, we investigated the mechanism of higher 
tolerance to moderate salt stress of NahG plants, 
and found that a higher GSH/GSSG (glutathione/
oxidized glutathione) ratio and ASA/DHA (ascor-
bic acid/dehydroascorbate) ratio in NahG plants 
may be accounted as the reason. NahG plants 
actually did not produce more active antioxidant 
enzymes than the wild-type ones did under natu-
ral conditions, but maintained higher activities of 
glutathione reductase (GR) and dehydroascor-
bate reductase (DHAR) during the stress. Corre-
spondingly, the reduced states of the glutathione 
pool and the ascorbic acid pool were stabilized in 
NahG plants under salt stress. However, the re-
duced glutathione and ascorbic acid only played 
a limited role in stress tolerance. NahG plants did 
not adapt better under severe salt stress.

Material and Methods

Plant growth and stress treatments

Seeds of Arabidopsis wild-type Columbia (Col) 
and ecotype Cvi-0, and transgenic NahG plants 
(Friedrich et al., 1995) were surface-sterilized 
in 20% (v/v) commercial bleach for 20 min, fol-
lowed by six washes with sterile distilled water. 
The seeds were sown onto agar plates for ger-
mination. The basal agar medium contained Mu-
rashige and Skoog (Murashige and Skoog, 1962) 
salts with 2% (w/v) sucrose and 0.7% (w/v) agar. 
The various agar plates used in this work were 
made by adding the appropriate amount of NaCl 
to the molten basal media. The plates with the 
seeds were placed at 4 ºC in the dark for 48 h to 

improve germination uniformity before transfer 
to growth chambers with 16 h of light (approx. 
100 μmol m–2 s–1) at 22 °C, 8 h of dark at 18 °C, 
and 70% relative humidity for 20 d.

For GSH, GSSG, ASA and DHA determination, 
and RT-PCR analysis, approx. 150 35-d-old seed-
lings were transferred from Murashige and Skoog 
plates to 1,000-mL fl asks containing 500 mL of 
200 and 400 mM NaCl solutions. The fl asks were 
shaken at 120 rpm at 22 °C with continuous cool 
fl uorescent light illumination (approx. 100 μmol 
m–2 s–1). 8 h later, the seedlings were collected 
from the fl asks and frozen immediately in liquid 
nitrogen. The samples were ground in liquid ni-
trogen and kept at – 80 °C until use.

Oxidative damage estimation

Electrolyte leakage was measured according to 
Sun et al. (2006). After measuring the conductiv-
ity, the barley samples were boiled for 15 min to 
achieve 100% electrolyte leakage.

The H2O2 content of leaves was measured as 
described by Velikova et al. (2002). Approx. 0.5 g 
of fresh leaves were cut into small pieces and ho-
mogenized in an ice bath with 5 mL 0.1% (w/v) 
trichloroacetic acid (TCA). The homogenate 
was centrifuged at 12,000 × g for 20 min at 4 °C. 
0.5 mL of the supernatant was added to 0.5 mL 
10 mM potassium phosphate buffer (pH 7.0) and 
1 mL 1 M KI. The absorbance of the supernatant 
was read at 390 nm.

Lipid peroxidation was estimated by measur-
ing the thiobarbituric acid-reactive substances 
(TBARS) as previously described (Sun et al., 
2006). The lipid peroxides were expressed as na-
nomoles of malonaldehyde.

Determination of GSH, GSSG, ASA and DHA

Approx. 200 mg of the powder resulting from 
the procedure described above were resuspend-
ed in 0.5 mL of 5% (w/v) sulfosalicylic acid and 
sonicated over 10 min. Extraction and determi-
nation of the GSH and GSSG content were as 
described previously (Law et al., 1983). ASA and 
DHA were extracted and determined according 
to Wang et al. (1991).

Determination of antioxidant enzymes

For the enzyme assays, 0.3 g of leaves was 
ground with 3 mL ice-cold 25 mM HEPES buffer 
(pH 7.8) containing 0.2 mM EDTA, 2 mM ascor-
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bate and 2% PVP. The homogenate was centri-

fuged at 4 °C for 20 min at 12,000 × g and the 

resulting supernatant was used for the determina-

tion of the enzymatic activity (Zhu et al., 2000).

The superoxide dismutase (SOD) activity was 

assayed by measuring the ability to inhibit the 

photochemical reduction of nitroblue tetrazolium 

following the method of Stewart and Bewley 

(1980). The catalase (CAT) activity was meas-

ured as the decline in the absorbance at 240 nm 

due to the decrease of extinction of H2O2 using 

the method of Patra et al. (1978). The guaiacol 

peroxidase (GPX) activity was measured as the 

increase in the absorbance at 470 nm due to 

guaiacol oxidation (Nickel and Cunningham, 

1969). The ascorbate peroxidase (APX) activ-

ity was measured by the decrease in the ab-

sorbance at 290 nm as ascorbate was oxidized 

(Nakano and Asada, 1981). The DHAR activity 

was assayed by measuring the increase in the 

absorbance at 265 nm due to reduced ascorbate 

formation (Nakano and Asada, 1981). The GR 

activity was measured according to Foyer and 

Halliwell (1976) and depends on the rate of 

the decrease in the absorbance of NADPH at 

340 nm.

Transcripts analysis

RNA was extracted from the frozen tissue as de-

scribed previously (Yuan et al., 2005). The RD29A 

and GPX clones, corresponding to the expressed 

sequence tag accessions nos. 31G2T7 and 139F9T7, 

were amplifi ed by PCR using the following prim-

ers: forward AGGATGTGCCGACGGGATT and 

reverse AAGGCTTTGTCTTCTTCTTCAGTT-

GT, forward TGCAAATGGCGGATGA and 

reverse CCAAACGAAAGTTCTTGAAAC, re-

spectively. The primers for the PR1 clone were 

forward CTCTTGTTCTTCCCTCGAA and re-

verse ATGCTCCTTATTGAAATACTGAT.

Statistics

Values presented are means ± one standard 

deviation (SD) of three replicates. Statistical 

analyses were carried out by analysis of variance 

(ANOVA) using SAS software (SAS Institute, 

Cary, NC, USA). Differences between treatments 

were separated by the least signifi cant difference 

(LSD) test at a 0.05 probability level.

Results

SA inhibits the growth of Arabidopsis under salt 
stress in the light

To investigate the possible role of SA in salt 
stress, seeds of wild-type Arabidopsis Col and 
Cvi-0, and SA-defi cient transgenic NahG plants 
were germinated in several concentrations of 
NaCl at moderate light intensity. In the control, 
a basal agar medium (MS), there were no signifi -
cant differences in the growth of wild-type plants 
and NahG plants, but at 100 mM NaCl, the growth 
of wild-type seedlings was severely restrained, 
whereas NahG seedlings germinated and grew 
normally, as Borsani et al. (2001) reported pre-
viously. The fresh weights of the shoots of the 
NahG seedlings were around three times higher 
than those of Col and sixteen times higher than 
those of Cvi-0 plant grown 20 d in 100 mM NaCl 
under light. However, no signifi cant differences 
in terms of fresh weight were found in the roots 
(Fig. 1). When germinated in the dark, either in 
the absence or the presence of NaCl in the me-
dium, no differences were found between NahG 
and wild-type plants (data not shown).

SA increases oxidative damages under salt stress

The coupling of salt sensitivity to light expo-
sure in wild-type and Cvi-0 seedlings of Arabi-
dopsis suggested that high NaCl concentrations 
enhanced the production of ROS, and that SA 

Fig. 1. Fresh weight of Col, NahG, and Cvi-0 seedlings 
after growing in Murashige and Skoog media contain-
ing 0 or 100 mM NaCl. Seedlings were germinated and 
grown on plates under light and after 15 d the seedlings 
were collected and weighed. The Arabidopsis ecotype 
Cvi-0 showed greater sensitivity to NaCl than Col and 
NahG. Bars represent standard deviations of 3 inde-
pendent replicates (n = 50). CK, control.
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could be involved. During the lack of SA, the de-

creases in the generation of ROS may explain the 

increased tolerance of NahG seedlings to NaCl.

To test this assumption, 35-d-old seedlings of 

wild-type, NahG and Cvi-0 Arabidopsis were 

transferred from MS plates to 1,000-mL fl asks 

containing 500 mL of 200 mM, 400 mM NaCl solu-

tion, respectively, and control (1/2 Hoagland nu-

trition solution). After 8 h, the H2O2 levels were 

determined. Results showed that at 200 mM and 

400 mM NaCl, the H2O2 level increased greatly in 

the wild-type and Cvi-0 seedlings. In contrast, the 

generation of H2O2 increased slightly in NahG 

Fig. 2. H2O2 accumulation, electrolyte leakage and lipid 
peroxidation induced by NaCl under light. Bars repre-
sent standard deviations of 5 independent replicates 
(n = 5). CK, control.

Fig. 3. Glutathione and ascorbic acid levels and GSH/
GSSG and ASA/DHA ratios under NaCl stress. Glu-
tathione means (GSH + GSSG) total content; ascorbic 
acid means (ASA + DHA) total content. Bars repre-
sent standard deviations of 3 independent replicates 
(n = 3). CK, control.
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plants at 200 mM NaCl, but nearly to the level of 
to Col and Cvi-0 plants at 400 mM NaCl (Fig. 2).

Oxidative damage also can be assessed by 
monitoring changes in the lipid peroxidation and 
electrolyte leakage. Thiobarbituric acid-reactive 
substances (TBARS) and electrolyte leakages 
increased similarly to the H2O2 contents in Col, 
NahG and Cvi-0 seedlings at 200 mM and 400 mM 
NaCl. These increases were signifi cantly higher 
in Col and Cvi-0 plants than in NahG plants at 
200 mM NaCl. However, there were no signifi cant 
differences among wild-type, NahG, and Cvi-0 
plants at 400 mM NaCl (Fig. 2).

NahG plants maintain the reduction of 
glutathione and ascorbic acid under salt stress

Previous studies demonstrated that the addi-
tion of reduced GSH and ASA could decrease 
the ROS level and reverse the toxic effect caused 
by NaCl (Borsani et al., 2001). Furthermore, SA 
is necessary for the induction of antioxidant de-
fenses and maintaining the redox state of the glu-
tathione pool (Sharma et al., 1996). The amounts 
of GSH, GSSG, ASA and DHA, and the ratios of 
GSH/GSSG and ASA/DHA were measured. At 
200 mM and 400 mM NaCl, the total glutathione 
and total ascorbic acid content in most plants in-
creased slightly, whereas the ratios of GSH/GSSG 
and ASA/DHA in Col and Cvi-0 seedlings de-
clined greatly (Fig. 3). In contrast, NahG plants 
maintained signifi cantly higher levels of GSH/
GSSG and ASA/DHA ratios (more than tree 
times to Cvi-0) at 200 mM NaCl, although the ra-
tios declined at 400 mM NaCl (Fig. 3).

NahG plants maintain higher activities of GPX 
and DHAR under salt stress

Plants are capable of removing ROS using 
several antioxidant enzymes such as SOD, CAT, 
GPX, GR, APX and DHAR. Higher activities of 
several antioxidant enzymes in NahG Arabidopsis 
may partially explain its higher tolerance to mod-
erate salt stress. As shown in Fig. 4, all antioxidant 
enzyme activities decreased under stress, may be 
8 h of stress were not enough to prompt antioxi-
dant enzyme activities. It is noticeable that GR 
and DHAR activities in NahG seedlings almost 
did not decrease at 200 mM NaCl, but signifi cantly 
decreased at 400 mM NaCl, corresponding to the 
higher levels of GSH/GSSG and ASA/DHA ra-
tios at 200 mM NaCl. The decline of SOD, CAT, 

GPX, and APX activities was slighter in NahG 
plants than in Col seedlings at 200 mM NaCl, what 
may refl ect the slighter damages in NahG plants, 
rather than antioxidant enzymes could be pro-
moted by SA-defi ciency.

Expression analysis of RD29A, PR1, and GPX

The transcriptional levels of three representa-
tive genes, RD29A, PR1, and GPX, were tested. 
RD29A gene expression is induced by NaCl and 
osmotic stresses and the gene encodes a protein 
with potential protective function during desicca-
tion (Yamaguchi-Shinozaki and Shinozaki, 1993). 
PR1 gene expression is induced by SA and patho-
gen attack (Hammond-Kosack and Jones, 1996). 
Therefore, it can be considered as a molecular 
marker for SA accumulation. GPX expression 
can be considered as a molecular marker for oxi-
dative stress (Rao and Davis, 1999).

As shown in Fig. 5, all expressions of RD29A 
were induced by NaCl. In NahG plants, RD29A 
was also induced, even more intensively, suggest-
ing that this induction was independent of SA. 
As expected, salt stress did not induce PR1 ex-
pression in NahG plants, because SA was actively 
degraded. NaCl increased the GPX expression in 
all types of plants, and the induction was signifi -
cant at 400 mM NaCl. It is interesting that GPX 
expression was also induced in NahG plants by 
NaCl, suggesting that NaCl produced an oxidative 
stress independent of SA. This is consistent with 
the increased oxidative damages in NahG plants 
caused by NaCl (Fig. 2). Change of GPX gene ex-
pression were not detected during changes of the 
GPX enzyme activity, especially at 400 mM NaCl, 
because plants were severely stressed at this con-
centration.

Discussion

Salt stress affects the plant metabolism and 
growth from seed germination to seedling devel-
opment. The complexity of the plant response to 
salt stress, on one hand, can be explained by the 
osmotic stress and the ionic imbalance caused by 
salinity (Zhu, 2001). On the other hand, oxidative 
stress resulted from exposure of plants to high 
NaCl concentration also is a major reason (Bor-
sani et al., 2001). The contribution and interaction 
among these components remain elusive.
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Previous studies proposed that SA could be a 

signaling molecule forming a feedback amplifi -

cation cycle in concert with ROS during abiotic 

stresses, just as in plant-pathogen interactions 

(Shim et al., 2003; Yuan and Lin, 2008). In this way, 

SA induction is not required but the endogenous 

SA present amplifi es the effects of ROS initial 

levels. This is supported by our data showing that 

increased oxidative damages and GPX induction 

occurred in NahG seedlings at high NaCl concen-

trations. Moreover, this indicates that part of the 

oxidative stress generated during NaCl exposure 

is independent of the presence of SA.

SA has been proposed to have a dual role in 
plants. First, SA is necessary for the induction of 
antioxidant defenses and maintaining the redox 
state of the cells (Sharma et al., 1996; Clarke et 
al., 2004). For example, endogenous SA protects 
rice plants from oxidative damages caused by ag-
ing as well as biotic and abiotic stresses (Yang et 
al., 2004); SA also protects maize from cadmium 
stress (Metwally et al., 2003; Pal et al., 2005). Sec-
ond, excessive SA accumulation can induce a 
programmed cell death pathway, leading to a hy-
persensitive reaction in response to stresses (Rao 
and Davis, 1999; Mateo et al., 2006; Yuan and Lin, 
2008).

Fig. 4. Effects of different NaCl stresses on the activities of SOD, CAT, GPX, GR, APX, and DHAR in Col, NahG, 
and Cvi-0 seedlings. Bars represent standard deviations of 3 independent replicates (n = 3). CK, control.
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