A New Prenylisoflavone from *Ulex jussiaei*

Patrícia Máximo^a, Ana Lourenço^{a,*}, Sónia Savluchinske Feio^b and José Carlos Roseiro^b

- ^a REQUIMTE/CQFB, Departamento de Quimica, FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal. Fax: 351212948550. E-mail: a.lourenco@dq.fct.unl.pt
- b Instituto Nacional de Engenharia e Tecnologia Industrial IBQTA, Laboratório de Microbiologia Industrial, Azinhaga dos Lameiros, 1699 Lisboa Codex, Portugal
- * Author for correspondence and reprint requests
- Z. Naturforsch. 57c, 609-613 (2002); received March 8/April 8, 2002

Ulex, Isoflavones, Derrone

A new naturally occurring isoflavone, derrone, was isolated from *Ulex jussiaei* (Leguminosae) together with the isoflavones ulexins A-C, lupalbigenin, isolupalbigenin, 7-O-methylisolupalbigenin, isoderrone, ulexone A and isochandalone, the pterocarpans (6aR,11aR)-(-)-maackiain, (6aR,11aR)-(-)-2-methoxymaackiain and (6aR,11aR)-(-)-4-methoxymaackiain, the chalcone 4-hydroxylonchocarpine and the dihydrochalcone crotaramosmine. The antifungal activity of the new compound was tested by a bioautographic method against *Cladosporium cucumerinum*, and as expected from structural features it proved to have no activity.

Introduction

Isoflavonoids have been isolated mainly from leguminous plants. The occurrence of isoflavonoid aglycones is almost restricted to the Leguminosae family, despite their large structural variation. This structural diversity arises from the different oxidation levels and also from the number and complexity of substituents. The prenylated isoflavonoids are known as complex isoflavonoids having additional carbon atoms (dimethylallyl or geranyl units) as acyclic or cyclic side chains to the basic C_{15} isoflavonoid skeleton (Tahara and Ibrahim, 1995).

Portugal is the dispersion area of the *Ulex* genus (Espírito-Santo *et al.*, 1997) (Leguminosae, subfamily Papilionoidea). These plants are the source of a great number of flavonoids, mainly isoflavonoids such as isoflavones and pterocarpans. (Harborne, 1962; Sirat and Russell, 1989; Russell *et al.*, 1990; De Rodriguez *et al.*, 1990; Máximo and Lourenço, 1998; Máximo *et al.*, 2000; Máximo *et al.*, 2002) The isoflavonoids are important as phytoalexins (Grayer, 2001) and those isolated from *Ulex* species proved to have relevant antifungal activity (Máximo *et al.*, 2000; Máximo *et al.*, 2002).

Here we report the flavonoid composition of *Ulex jussiaei*, collected at Cabo da Roca (Portugal). The new naturally occurring derrone was

identified together with nine isoflanones, three pterocarpans, one chalcone and one dihydrochalcone. The structures of the metabolites were established by the analysis of their spectroscopic data, by comparison with literature data, and also with authentic samples.

Continuing our search for phytoalexins, the newly isolated derrone was tested against the fungus *Cladosporium cucumerinum* by the bioautographic TLC bioassay, as all the other compounds were, (Máximo *et al.*, 2000; Máximo *et al.*, 2002) and proved to have no activity.

Materials and Methods

Plant material

Plant material of *Ulex jussiaei* was collected at Cabo da Roca (Portugal) in April 1998. Voucher specimens are deposited in the herbarium of Museu, Laboratório, Jardim Botânico da Faculdade de Ciências da Universidade de Lisboa [LISU 171663].

Flavonoid extraction

Dried and finely powdered aerial parts of *U. jussiaei* (2.5 kg) were extracted successively with *n*-hexane (301) and dichloromethane (281) at room temperature. The dried dichloromethane extract (30.4 g) was chromatographed on a silica gel

60 column (Merck 7734) eluted with *n*-hexane– EtOAc mixtures (9:1), (8:2), (7:3) and (6:4) (v/v) to collect fractions a, b, c and d, respectively. Fractions b, c and d were successively chromatographed on silica gel columns and on silica gel 60 F_{254} TLC plates (Merck 5554) using *n*-hexane-EtOAc, n-hexane-Et₂O and CHCl₃-MeOH mixtures as eluents. After this procedure the following pure compounds were obtained in order of increasing chromatographic polarity: ulexin B (1.0 mg), 7-O-methylisolupalbigenin (< 0.1 mg), ulexone A (21.0 mg), isochandalone (11.1 mg), (6aR,11aR)-(-)-2-methoxymaackiain (15.4 mg),ulexin A (7.1 mg), crotaramosmine (< 0.1 mg), (6aR,11aR)-(-)-4-methoxymaackiain (36.1 mg),ulexin C (1.8 mg), 4-hydroxylonchocapin (2.4 mg), (6aR,11aR)-(-)-maackiain (130.9 mg), isoderrone (26.2 mg), lupalbigenin (11.0 mg), derrone (1) (2.0 mg) and isolupalbigenin (40.7 mg).

Derrone (1) was identified by its physical (mp) and spectroscopic data (IV, UV, ¹H NMR, ¹³C NMR, HMBC, HMQC, EIMS) and comparison with literature data for the synthetic compound (Tsukayama et al., 1992). The other compounds were also identified by the analysis of their physical and spectroscopic data, comparison with authentic samples, and literature (ulexin B (Máximo et al., 2000, Singhal et al., 1980), 7-O-methylisolupalbigenin (Máximo et al., 2002), ulexone A (Russell et al., 1990), isochandalone (Tahara et al., 1989), (6aR,11aR)-(-)-2-methoxymaackiain (Máximo and Lourenço, 1998; Mizuno et al., 1990), ulexin A (Máximo et al., 2000), crotaramosmine (Rao et al., 1998), (6aR,11aR)-(-)-4-methoxymaackiain (Máximo and Lourenço, 1998; Cook et al., 1978), ulexin C (Máximo et al., 2002), 4-hydroxylonchocarpin (Filho et al., 1975; Miyase et al., 1980). (6aR.11aR)-(-)-maackiain (Soby et al., 1996), isoderrone (Máximo and Lourenco, 1998); (Tahara et al., 1989), lupalbigenin and isolupalbigenin (Tahara et al., 1994).

Physical and spectroscopic measurements

Melting points were measured on a Reichert thermovar apparatus and are uncorrected. NMR spectra were recorded on a Bruker ARX 400. The ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ and referenced to the signal of residual CHCl₃ (δ 7.26 and 77.0). The EIMS were recorded

on a Hewlett Packard LC/MS HP 1100 apparatus. The FTIR spectra were recorded on a Perkin Elmer Spectrum 1000 apparatus. The UV spectra were recorded on a Milton Roy Spectronic 1201. Silica gel 10% deactivated with water (Merck 7734) was used for the column chromatography separations.

Derrone (1)

Yellow crystals (2.0 mg), m.p. 179–181° (acetone:n-hex). IR $v_{\rm max}^{\rm NaCl}$ cm⁻¹ 3367, 2922, 2846, 1651, 1612, 1574, 1515, 1432, 1317, 1246, 1210, 1174, 1111, 837. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ϵ) 266 (4.22), 299 sh, 349 sh, +NaOMe 273, 304 sh, 368, +NaOAc 267, 298, 346, +AlCl₃ 222, 280, 312 sh, 408. ¹H NMR: Table I. ¹³C NMR: Table I. EIMS (70 eV) m/z (rel. int.): [M]⁺ 336 (17), 321 (100), 203 (13), 160.4 (20), 152 (6), 118 (5).

Results and Discussion

Derrone (1) isolated from *U. jussiaei*, C₂₀H₁₆O₅ $(m/z 336 \text{ [M]}^+ \text{ in EIMS})$, was obtained as yellow crystals. Characteristic C-5-OH isoflavone signals were present in the ¹H NMR and ¹³C NMR spectra (proton signals at $\delta_{\text{C-5-OH}}$ 12.90 s, $\delta_{\text{H-2}}$ 7.88 s and carbon signals at δ_{C-2} 152.6 d, δ_{C-3} 123.7 s and δ_{C-4} 181.2 s). The IR spectrum confirmed the presence of the α,β -insaturated ketone of ring C by the correspondent carbonyl absorption ($v_{C=0}$ 1651 cm⁻¹), and establishing a hydrogen bond with the hydroxyl group at C-5 ($v_{C=O}$ 1612 cm⁻¹). The ¹H NMR spectrum also showed characteristic signals of a 2,2-dimethylpyran substituent (proton signals at $\delta_{\text{H-3"}}$ 5.90 d ($J_{\text{H-3",H-4"}}$ = 10.0 Hz), $\delta_{\text{H-4"}}$ 6.83 d ($J_{\text{H-4",H-3"}}$ = 10.0 Hz), $\delta_{\text{5"-Me}}/\delta_{\text{6"-Me}}$ 1.47 s and carbon signals at $\delta_{C-3''}$ 127.6 d, $\delta_{C-4''}$ 114.7 s and $\delta_{\text{C-5"}}/\delta_{\text{C-6"}}$ 28.1 s) whose location in ring A was established by UV data. Addition of NaOMe induced a bathochromic displacement of band II of the original spectrum (λ_{max} 266 nm \rightarrow λ_{max} 273 nm) witch is consistent with a free C-4' hydroxyl group. Addition of NaOAc induced no shift which proved the inexistence of a free hydroxyl group in C-7.

The ^{1}H NMR also showed two doublets of four aromatic protons with vicinal coupling constants characteristic of ring B of the isoflavone, and one proton signal at δ 6.30 s of aromatic proton in ring A (see Table I).

Fig. 1. Proposed EIMS fragmentation pattern of derrone (1).

From the above data the position of the 2,2-dimethylpyran group in ring A is not clear. To make this assignment the UV spectra are of the utmost importance since they allow angular and linear

2 alpinumisoflavone

Table I. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectral data for compound **1** (CDCl₃, coupling constants (*J*) in Hz).

Н	δ_{H}	C	$\delta_{\rm C}$	HMBC
2	7.88 <i>s</i>	2	152.6 d	
		3	123.7 s	H-2',H-6'
		4 5	181.2 s	H-2
5-OH	12.90 s	5	162.5 s	_
6	6.30 s	6	100.4 d	C_5 -OH
		7	159.8 s	H-4"
		8	$101.2 \ s$	H-6,H-3"
		9	152.6 s	H-2
		10	106.1 s	H-6, C_5 -OH
		1'	123.1 <i>s</i>	H-2,H-
				3',H-5'
2' 3'	7.40 d (8.0)	2'	130.5 d	H-6'
3'	6.87 d (8.4)	3′	115.7 d	H-5'
		4'	156.1 s	H-2',H-6'
5'	6.87 d (8.4)	5′	115.7 d	H-3'
6'	$7.40 \ d \ (8.0)$	6′	130.5 d	H-2'
		2"	78.1 s	H-4"
3"	5.90 d (10.0)	3"	127.6 d	H-5",H-6"
4"	6.83 d (10.0)	4"	114.7 d	
5"-Me	1.47 s	5"	28.1 q	H-6"
6"-Me	1.47 s	6"	28.1 q	H-5"

 δ values for compound 1 are referenced to the signal of residual CHCl3 (δ 7.26 ppm and δ 77.0 ppm).

isomers to be distinguished. As publish by Tsukayama and co-workers (1992) for C-5-OH isoflavones with 2,2-dimethylpyran groups on ring A, the angular and linear structures have different behaviours by the addition of aluminum chloride. By addition of AlCl₃ the angular structures show a band II bathochromic shift of 8-16 nm together with a new absorption maximum at a much longer wavelength (408-415 nm). Such characteristic shift is not observed for the linear compounds. For compound 1 addition of AlCl₃ to the MeOH solution resulted in a band II bathochromic shift of 14 nm and the appearance of another band at 408 nm (Materials and Methods). The angular structure of compound 1 was also confirmed by the correlation observed in the HMBC spectrum between C-6 and C-5-OH (Table I).

From this experimental evidence we disagree with other authors (Chibber and Sharma, 1980; Tanaka *et al.*, 1998) that published the natural occurrence of derrone. In fact they are describing the isomeric linear structure, alpinumisoflavone (2), as have already been discussed by Tsukayama *et al.* (1992). The EIMS spectrum is in agreement with derrone (1) structure (Fig. 1). It presents a fragment at m/z 321 amu due to the loss of a methyl radical of the 2,2-dimethylpyran substituent, and the fragments at m/z 203 amu and m/z 118 amu that result from the *retro* Diels-Alder rupture of ring C.

All the 13 C NMR signals of derrone (1) were assigned from HMQB and HMBC spectra (Table I). From the HMQC spectrum the chemical shifts of the protonated carbon atoms were assigned, as follows: δ 152.6 d (C-2), δ 130.5 d (C-2', C-6'), δ 127.6 d (C-3"), δ 115.7 d (C-3', C-5'), δ 114.7 d (C-4"), δ 100.4 d (C-6), δ 28.1 d (C-5", C-6"). From the HMBC spectrum it was possible to determinate the chemical shifts of C-8 (δ 101.2) and C-10 (δ 106.1) and assign all the remaining quaternary carbon atoms.

From the above reasons we can establish that compound **1** is derrone (5,4'-dihydroxy-7,8-(2,2-dimethylpyrano)isoflavone), now isolated for the first time from a natural source.

The antifungal activity of derrone (1) was tested against *Cladosporium cucumerinum* by the bioautographic TLC bioassay. (Máximo *et al.*, 2000) Considering the structure/activity relations proposed from the tests performed, with the same fungus, over fourteen isoflavones isolated from *Ulex* species (Máximo *et al.*, 2000, Máximo *et al.*,

2002), it was predictable that derrone (1) was inactive. From the previous studies it was clear that the prenyl substitution of isoflavonoids is important for activity, and that open chains substituted structures are more active then the cyclic ones. It was also observed that for isoflavones just with a 2,2-dimethylpyran substitution, the absence of this group in ring B implies no activity. The same result as for derrone (1) was observed for alpinumisoflavone (2). (Máximo *et al.*, 2002)

Acknowledgements

We wish to thank the staff from Herbário, Museu, Jardim Botânico, Faculdade de Ciências da Universidade de Lisboa, Portugal for collecting and classifying plant material. We wish to thank Professor Benjamín Rodriguez González from IQO/CSIC, Madrid, Spain for obtaining mass spectra. One of us (P. M.) wishes to thank Fundação para a Ciência e a Tecnologia (Portugal) for a PRAXIS XXI fellowship.

- Chibber S. S. and Sharma R. P. (1980), Derrone: a new pyranoisoflavone from *Derris robusta* seeds. Phytochemistry **19**, 1857–1858.
- Cook J. T., Ollis W. D., Sutherland I. O. and Gottlieb O. R. (1978), Pterocarpans from *Dalbergia spruceana*. Phytochemistry **17**, 1419–1422.
- De Rodriguez D. J., Chulia J., Simões C. M. O., Amoros M., Mariotte, A. M. and Girre L. (1990), Search for *in vitro* activity of a new isoflavonic glycoside from *Ulex europaeus*. Planta Med. **56**, 59–62.
- Espírito-Santo M. D. E., Cubas P., Lousã M. F., Pardo C. and Costa J. C. (1997), *Ulex parviflorus sensu lato* (Genisteae, Leguminosae) en la zona centro de Portugal. Anales Jard. Bot. Madrid **55**, 49–65.
- Filho R. B., Gottlieb O. R., Mourão A. P., Rocha A. I. and Oliveira F. S. (1975), Flavonoids from *Derris* species. Phytochemistry 14, 1454–1456.
- Grayer R. J. and Kokubun T. (2001), Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry **56**, 253–263.
- Harborne J. B. (1962), Plant polyphenols. XVIII. Chalcone and flavonol glycosides of gorse flowers. Phytochemistry 1, 203–207.
- Máximo P. and Lourenço A. (1998), A pterocarpan from *Ulex parviflorus*. Phytochemistry **48**, 359–362.
- Máximo P., Lourenço A., Feio S. S. and Roseiro J. C. (2000), Flavonoids from *Ulex* species. Z. Naturforsch. **55c**, 506–509.

- Máximo P., Lourenço A., Feio S. S. and Roseiro J. C. (2002), Flavonoids from *Ulex airensis* and *Ulex europaeus* ssp. *europaeus*. J. Nat. Prod. 65, 175-178.
- Miyase T., Ueno A., Noro T. and Fukushima S. (1980), Studies on the constituents of *Lespedeza cyrtobotrya* Miq. I. The structures of a new chalcone and two new isoflav-3-ens. Chem. Pharm. Bull. **28**, 1172–1177.
- Mizuno M., Tanaka T., Tamura K.-I., Matsuura N., Iinuma M. and Phengklai C. (1990), Flavonoids in the roots of *Euchresta horsfieldii* in Thailand. Phytochemistry **29**, 2663–2665.
- Rao M. S., Rao P. S., Tóth G., Balázs B. and Duddeck H. (1998), A revised structure for crotaramosmin from *Crotolaria ramosissima*. J. Nat. Prod. 61, 1148–1149.
- Russell G. B., Sirat H. Md. and Sutherland R. W. (1990), Isoflavones from root bark of gorse. Phytochemistry 29, 1287–1291.
- Singhal A. K., Sharma R. P., Thyagarajan G., Herz W. and Govindan S. V. (1980), New prenylated isoflavones and a prenylated dihydroflavonol from *Millettia pachycarpa*. Phytochemistry **19**, 929–934.
- Sirat H. M. and Russell G. B. (1989), The isolation and identification of two antifungal pterocarpans from *Ulex europaeus* L. Pertanika **12**, 395–398.
- Soby S., Caldera S., Bates R. and VanEtten H. (1996), Detoxification of the phytoalexins maackiain and medicarpin by fungal pathogens of alfafa. Phytochemistry 41, 759–765.

- Tahara S., Ibrahim R. K. (1995), Prenylated isoflavonoids – an update. Phytochemistry 38, 1073–1094.
- Tahara S., Katagiri Y., Ingham J. L. and Mizutani J. (1994), Prenylated flavonoids in the roots of yellow
- lupin. Phytochemistry **36**, 1261–1271. Tahara S., Orihara S., Ingham J. L. and Mizutani J. (1989), Seventeen isoflavonoids from Lupinus albus roots. Phytochemistry 28, 901–911.
- Tanaka T., Ohyama M., Iinuma M., Shirataki Y., Komatsu M. and Burandt C. L. (1998), Isoflavonoids
- from Sophora secundiflora, S. arizonica and S. Gypsophila. Phytochemistry 48, 1187–1193.

 Tsukayama M., Kawamura Y. and Tahara H. (1992), Synthesis of 4',5- and 3',4',5-oxygenated pyranoisoflavones: alpinumisoflavone and related compounds, and a revised structure of derrone. Heterocycles **34**, 505–516.