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Bacteriochlorophyll a has a maximum at 258 nm previously related to the ring E ester
system interacting with the m-system of the macrocycle. In this work, we compared the effect
of lauryldimethylamine-N-oxide (LDAO) and alkaline pH on both the near infrared and the
ultraviolet region of the LHII spectrum from Ectothiorhodospira sp. While LDAO induces
only a shift of the 850 nm band arising from the Qy transition of the bacteriochlorophyll a,
alkaline pH also causes a concomitant and reversible 10-nm shift from 258 to 248 nm. Both
shifts have similar apparent pKs (12.3 and 12.6, respectively). Interestingly, the presence of

NaCl reduces these pKs values to 11.4 and 11.7.

Introduction

The primary processes of photosynthesis involve
light absorption, excitation energy transfer and
primary charge separation across the photosyn-
thetic membrane. In purple photosynthetic bacte-
ria, light energy is gathered by an extensive system
of light-harvesting (LH) complexes ensuring the
efficient funneling of excitation energy toward the
photochemical reaction centers where the trans-
duction into chemical potential energy takes place
(Sundstrom and van Grondelle, 1996). The LHI or
B880 (Cogdell, 1986; Picorel and Gingras, 1988,;
Sundstom and van Grondelle, 1996) is present in
all purple bacteria and is intimately associated
with the reaction center. The LHII or B800-850
(Clayton and Clayton, 1981; Doi et al., 1991;
Walker et al., 1991) and LHIII or B800-820 (Hay-
ashi and Morita, 1980; Cogdell et al., 1983) are ar-
ranged more peripherally (Monger and Parson,
1977). All of these antenna complexes are
spectrally characterised by one or two strong near
infrared (NIR) electronic absorption bands arising
from the Q, transition of the bacteriochlorophyll
(BChl) a.

An engaging feature in photosynthesis constists
to understand how the local environnement and

Abbreviations: NIR, near infrared; UV, ultraviolet;
BChl, bacteriochlorophyll; LH, light-harvesting; B800,
800-nm absorption band; B850, 850-nm absorption band;
LDAO, lauryldimethylamine N-oxide.

the spatial environnement of the pigments influ-
ence the energy of their lowest-energy electronic
transitions (Qy). In this context, several methods
inducing a reversible blue shift of Ectothiorho-
dospira sp. B850 were recently described. The de-
tergent lauryldimethylamine N-oxide (LDAO)
was reported as inducing a specific blue shift of
B850 from 857 to 839-837 nm, and a hypochro-
mism (Ortiz de Zarate and Picorel, 1994). This ef-
fect was correlated with a loss of one or two H
links between BChl and polypeptides (Ortiz de
Zarate, 1995). Similar results were reported in al-
kaline and to a less extend in acid conditions of
buffer conditions of buffer (Buche and Picorel,
1998; Buche et al., 2000). These pH effects were
attributed to the (de)protonation of some aminoa-
cids. Especially, the chemical modification of Lys
by salicylaldehyde established a correlation be-
tween the Lys deprotonation and alkaline induced
blue shift of B850 (Buche and Picorel, 1998).

The current work was aimed to compare the ef-
fect of LDAO and alkaline pH on the absorption
properties of the antenna complex II of Ectothior-
hodospira sp. The results indicate a shift correla-
tion between B850 and a band around 260 nm
when the B850 blue shift is induced by alkaline
pH. On the other hand, LDAO has no effect on
the UV region of the spectrum. The alkaline in-
duced shift of the 260 nm band is interpreted as a
result of the Lys deprotonation on the ring E ester
system interacting with the st-system of the macro-
cycle.
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Materials and Methods
Preparation of the LHII complex

The photosynthetic bacterium Ectothiorho-
dospira sp. was grown photosynthetically as de-
scribed by Lefebvre er al. (1984). Preparations of
the LHII antenna were obtained as described pre-
viously (Ortiz de Zarate and Picorel, 1994) with
some modifications (Buche and Picorel, 1998).
Several LHII preparations were then concentrated
to obtain an optical density corresponding to an
absorbance of 75 at 800 nm and under 1 cm path
length. After overnight dialysis against 10 mm
(tris-[hydroxymethyl]Jaminomethane)-HCl  (Tris-
HCI) pH 8.0, LDAO 0.5% and NaCl 400 mm 200
ul of concentrated sample were introduced onto
an FPLC column (Pharmacia column HR 10/30)
previously equilibrated with the same buffer. The
sample was eluted using the same buffer.

Sample treatment

Adequate pH was adjusted with convenient vol-
umes of HCI or NaOH solution to 10 mm Tris-HCI
buffer. A few microliters of highly concentrated
solution of LHII antenna complex were then in-
jected into 1 ml buffer solution at chosen pH and
LDAO concentration. Final sample concentration
corresponded to an absorbance of 0.125 and 0.4 at
797 nm of isolated LHII complexe. The pH rever-
sion from alkaline conditions to more neutral pH
was obtained by dialysis against 10 mm Tris-HCI,
pH 8.0.

Spectroscopic measurements

Absorption spectra were measured in a Beck-
man DU-640 spectrophotometer. Spectra of dia-
lysed samples were normalized for volume modifi-
cation. The reproducibility of the results was
verified at least 5 times on different preparations
of the LHII complex.

Pigment extraction and HPLC analysis

Pigments were extracted with an acetone/meth-
anol (7:2, v/v) mixture. After sample sonication for
1 min, the extract was centrifuged in a microfuge
for 2 min to pellet insoluble material and the su-
pernatant recovered for further analyses. The ex-
tracted pigments were analyzed by HPLC basi-
cally as reported (Evans et al., 1988) using the
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System Gold (Beckman Instrument), equipped
with a diode-array detector 168. Pigment separa-
tion was achieved by a reverse-phase column (25
x 0.46 cm) (Beckman Ultrasphere ODS 5 um). A
linear gradient of 0-100% solvent B (ethyl ace-
tate) and 100-0% solvent A (90% acetonitrile/
water, 0.5% triethylamine) was used at a flow rate
of 1 ml min-1 over 25 min.

Results

As mentioned in the Introduction both LDAO
(Ortiz de Zarate and Picorel, 1994) and alkaline
pH (Buche and Picorel, 1998) induce a reversible
blue shift of LHIIB850 from Ectothiorhodospira
sp. Both treatments affect poorly the spectral
properties of the complex in a wavelength range
from the Soret band to B800. However, alkaline
pH affects the UV part of the spectrum (Fig. 1A).
In this region the maximum of absorption shifts
(reversibly) from 258 nm to 248 nm. On the other
hand, LDAO (0.05%) has no effect in this spectral
region (not shown).

The effect of alkaline pH in different conditions
of solvent on B850 and the 258 nm band position
is summarized in Figs. 1 B,C. In standard condi-
tions of solvent the 10 nm pH induced shift of the
258 nm band occurs concomitantly to a 17 nm shift
of B850 from 852 to 835 nm. The apparent pKs
have very close values; 12.6 and 12.3 respectively.
As previously reported (Ortiz de Zarate and Pi-
corel, 1994), LDAO 0.05% induces a 15 nm blue
shift of B850. But the presence of LDAO in the
buffer has a poor effect on the pH induced shift
of the 258 nm band. On the other hand, pH com-
pletes the B850 shift induced by LDAO. In the
presence of NaCl, the apparent pKs are reduced
from 12.3 to 11.4 and from 12.6 to 11.7 for B850
and the 258 nm band, respectively.

Figure 2 represents the second derivative of the
complex spectrum from 240 to 300 nm taken un-
der different conditions of solvent and pH. The
derivative profile of the sample in standard condi-
tions of buffer and at pHS8 shows two bands
around 282-288 nm corresponding to Tyr absor-
bance (Fig.2 A). A maximum of absorption at
258 nm which is related to the ring E ester of the
(B)Chl interacting with the st-system of the macro-
cycle (Wolf and Scheer, 1973). The absorption
spectrum of the HPLC isolated Bchl a (Buche er
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Fig. 1. Electronic absorption spectra LHII from 230 to 600 nm at pH 8 (connected curve) and pH 14 (dashed curve)
(A). Blue shift of the 850 nm band (B850) (B) and of the 258 nm band (B260) (C) without any additive (@) in
presence of 400 mm NaCl (O) and in presence of 0.05% LDAO (A).
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Fig. 2. Second derivative of the UV spectral region of
untreated LHII (A) and treated by LDAO 0.05% (dot-
ted curve) or by NaOH at pH 14 (dashed curve) (B).
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al., 2000) shows effectively a maximum of absorp-
tion around 260 nm (Fig.3). On the other hand,
the sucessive steps of the complex purification, in-
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Fig. 3. Spectrum from 230 to 600 nm of Bchl a extracted
from the complex and analysed by HPLC such a de-
scribed in Materials and Methods.
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cluding a supplementary FPLC procedure, render
highly improbable the presence of contaminants
or degradation products in the sample (see Mate-
rials and Methods). Figure 2 B compares the se-
cond derivative of the UV spectra of samples
treated by LDAO 0.05% and by extreme condi-
tion of alkaline pH. (pH 14). The detergent has no
effect on the UV spectral properties of the com-
plex and the second derivative is thoroughly sim-
ilar to that corresponding to the untreated sample.
In alkaline condition the Tyr’s bands at 282-
288 nm shift to 292 which is characteristic of the
deprotoned Tyr (Buche and Picorel, 1998). Pre-
viously, we demonstrated that this shift does not
occur concomitantly to B850 blue shift (pK = 12.3)
but at pH between 13 and 14 (Buche and Picorel,
1998). So Bchl and Tyr shifts could not be corre-
lated. But at pH 14 it can be observed that the
spectral region from 268 to 278 nm, corresponding
to Trp, remains unchanged. On the other hand, the
258 nm band shifts to 248 nm. So we reported here
for the first time a NIR-UYV correlation suggesting
that the B850 blue shift, induced by alkaline pH
and by detergent, could be a result of different
effects on the porphyrin ring.

Discussion

Previously, several treatments inducing a revers-
ible and specific blue shift of the Ectothiorho-
dospira sp. B850 were reported (Ortiz de Zarate
and Picorel, 1994; Buche and Picorel, 1998; Buche
et al., 2000; Buche, 2000). The detergent LDAO
generates a 19 nm blue shift of this band which
was attributed to the loss of one or two H links
(Ortiz de Zarate and Picorel, 1995). The amino
acid(s) involved in these links are not known.
However, from the sequence of both the o and
(B1 and B2) polypeptides of this complex (unpub-
lished results) we know that both Trp and a Tyr
are close to the B850 binding site. On the other
hand, a strong correlation exists between alkaline
pH and chemical modification of Lys by salicylal-
dehyde (Buche and Picorel, 1998). Both treat-
ments induce a reversible blue shift of B850, to-
tally comparable to that induced by LDAO,
indicating the deprotonation of Lys as the cause
of the alkaline induced blue shift. Because Lys is
poor at H bonding, this observation indicates that
the positive charge of the proton is responsable
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for blue shift control. Consequently, charge or H
bonding modifications could exert the same con-
trol on the red shifting mechanism of B850. Never-
theless, in this work we observed that both LDAO
and alkaline treatments differ in their effect in the
UV region of the complex spectra. While LDAO
induces only a reversible shift of B850, alkaline
pH also causes a concomitant and reversible
10 nm shift from 258 to 248 nm. Both shifts have
similar apparent pKs (12.3-12.6). Interestingly,
the presence of NaCl reduces this pK values to
11.4-11.7 confirming that a charge process related
to the 258 nm band exerts a control on the B850
redshifting mechanism. This 258 nm band is obvi-
ously originated by Bchl a (Fig. 3). While main of
the Bchl absorption bands were ascribed to m-mt*
transitions of the aromatic system isoconjugated
to the [18]-annulene (Wolf and Scheer, 1973; Han-
son, 1988) some of them, located in the UV region
between 220-370 nm, have not been completely
correlated with defined transitions. However, a
comparison of the ORD spectra of the enantio-
meric 10(S) and 10 (R) methoxy pheophorphyrins
shows an inversion of the sign of these bands in-
cluding the 260 nm with is the more important
band between 220 and 300 nm (Wolf and Scheer,
1973). This indicates that the ring E ester system
interacts with the s system and that the 260 nm
band is in fact a manifestation of this interaction.

The fact that NaOH but not LDAO induces this
260 nm band shift suggests that the energetical
level of B850 is under punctual charge(s) control
via the ring E ester. It is worth noting that the
electrochromic effect upon (B)chl chromophores
of charged amino acid residues were modeled by
calculations with point charges (Eccles and Honig,
1983; Pancoska et al., 1983; Hanson et al., 1987
a,b,c; Eccles et al., 1988; Hanson, 1991). For exam-
ple a 70 nm redshift of the Chl a Qy band could
be induced by a single point charge placed 3.5 A
above the macrocycle (Eccles and Honig, 1983).
In this context, it was previously reported in Rb.
sphaeroides that a Lys situated at —17 amino acids
from the putative B850 binding site of the [ poly-
peptide exerts a 17 nm redshift on B850 (Fowler
et al., 1992).

In the case of Ectothiorhodospira sp. LHII,
P1Lys and P2Lys are situated at —17 and -14
amino acids respectively from the His co-ordi-
nated to B850Bchl magnesium (unpublished re-
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sults). These Lys have probably no effect on the
red shifting of B800 because of their central posi-
tion with regard to the porphyrin (Eccles and
Honig, 1983; Pancoska et al., 1983; Eccles et al.,
1988). On the other hand, in view of the structural
data of Mc Dermott and collaborators (1995) on
Rps. acidophila, the distance center to center be-
tween both B800 and B850 Bchls is 17 A. Basi-
cally, the architecture of LH2 from Rsp. molischia-
num was found analogous (Koepke et al., 1996)
and it should be assumed that the distance be-
tween both Bchls rings is similar for LH2 from
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purple bacteria (for review see Leupolds et al.,
2000). Consequently, on Ectothiorhodospira sp.
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view of the electrochromic theories this situation
could perfectly control a 20 nm red shift of B850.
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