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A simulated network for controlling a six-legged, insect-like walking system is proposed. 
The network contains internal recurrent connections, but important recurrent connections 
utilize the loop through the environment. This approach leads to a subnet for controlling the 
three joints of a leg during its swing which is arguably the simplest possible solution. The 
task for the stance subnet appears more difficult because the movements of a larger and 
varying number of joints (9-18: three for each leg in stance) have to be controlled such that 
each leg contributes efficiently to support and propulsion and legs do not work at cross 
purposes. Already inherently non-linear, this task is further complicated by four factors: 
1) the combination of legs in stance varies continuously, 2) during curve walking, legs must 
move at different speeds, 3) on compliant substrates, the speed of the individual leg may 
vary unpredictably, and 4) the geometry of the system may vary through growth and injury 
or due to non-rigid suspension of the joints. This task appears to require some kind of „motor 
intelligence“. We show that an extremely decentralized, simple controller, based on a combi­
nation of negative and positive feedback at the joint level, copes with all these problems by 
exploiting the physical properties of the system.

Introduction

The ultimate goal of neurobiological investiga­
tions is to understand how the brain contributes to 
the control of behavior. Brains, in particular mam­
malian brains, are considered to be the most com­
plex systems in the world. Therefore, reaching this 
goal is surely not a simple task. Even so-called 
“simple” brains, for example those of insects, are 
far from understood. Important progress has been 
made with respect to specific, typically low-level 
questions by following a reductionistic approach. 
In our research, this approach is represented by 
the use of standard methods of behavioral physiol­
ogy and neurophysiology to study aspects of insect 
walking. However, essential progress in under­
standing the whole system can only be expected if 
these reductionist methods are accompanied by 
the synthetic tools of simulation. By simulation 
studies, the separately investigated elements of the
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system can be put together in order to examine 
system properties which emerge from their inter­
actions. Typically these syntheticstudies are done 
using computer simulations. However, many prop­
erties of the system including those of the environ­
ment in which the system is acting, cannot easily 
be simulated. Therefore in recent years so-called 
hardware simulations have assumed a more im­
portant role which means that the simulation takes 
the form of a real, physical robots. In our research 
on insect walking, we use both software and hard­
ware simulations which, however, are always 
based on extensive experimental investigation of 
the biological system.

One important problem for the control of be­
havior is often neglected: the number of degrees 
of freedom provided by the body is usually greater 
than necessary for solving the task at hand. In this 
case, the task is ill-posed or underdetermined. This 
means that the control system can select among 
different alternatives, giving it some degree of au­
tonomy. This problem appears in practically all 
natural control tasks, even apparently simple ones. 
For example, grasping a cup can be performed 
using very different arm postures and different 
movement trajectories of the hand to the cup. Or 
think of a bird building its nest. The general goal, 
i.e. the general form of the nest may be prescribed.
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But how a particular twig has to be fixed on a 
particular branch, cannot be determined in ad­
vance; it has to be decided in the actual situation. 
In other words, the system needs to have some 
“motor intelligence”. This makes the investigation 
of such systems interesting, but also challenging. 
Because of the autonomy of a behaving animal, 
the experimenter has little direct influence on its 
behavior, and such a system is therefore not very 
appropriate for the traditonal input-output anal­
ysis.

Walking in a Natural Environment Requires 
Motor Intelligence

In this paper we concentrate on a seemingly 
simple behavior, namely the control of walking in 
insects. This is an ill-posed problem. Each of the 
six legs typically has three joints, which means that 
there are 18 degrees of freedom. The movement 
of 18 joints has to be coordinated in a sensible way 
in an environment which may change its proper­
ties drastically from one moment ot the next. 
Therefore, the control system has to react in an 
adaptive way to disturbances in order to perform 
a given task such as straight walking, for example. 
Comparable problems occur in human motor con­
trol. We are, however, usually not aware of these 
problems, because we do not usually consciously 
think about how to move the elbow or the shoul­
der when grasping a cup. Therefore the task seems 
to be simple. The difficulties, however, become im­
mediately evident when one tries to construct a 
robot to solve this task. Even walking on a simple 
flat horizontal surface cannot be performed by 
present-day robots with the ease and elegance of 
“simple” insects.

Results from a large number of behavioral and 
neurophysiological studies suggest that the flexi­
bility of the system controlling walking in insects 
is based on a far reaching decentralisation of the 
control structure. This decentralization has the ad­
vantage that two important questions can be con­
sidered separately. One refers to the control of the 
single leg and the other to the spatio-temporal co­
ordination among the legs.

To date, the vast majority of investigations of 
the mechanisms underlying insect walking has fo­
cused on the behavior. The neuronal implementa­
tion of the reported control features is known only

to a very limited extent. Therefore, in this paper 
the control system is described in the form of a 
model which summarizes the findings obtained 
from behavioral experiments. Although the model 
uses concepts and methods from the field of artifi­
cial neural networks, this should not be misunder­
stood asapplying to real neurons in the insect un­
less otherwise stated.

These simulations will show that the intelligence 
required to control complex behavior is not neces­
sarily based on a complex control system. On the 
contrary, the control systems are quite simple and 
the “intelligence” relies on the exploitation of the 
physics of the system and the environment. These 
results may also be appropriate to help to under­
stand other more complex behaviors.

Different Local Mechanisms Control the 
Coordination of Legs

It is known from the work of v. Holst (1943) and 
Wendler (1964) that the movements of individual 
legs are governed by independent control systems 
(for Crustaceans see Chasserat and Clarac (1980)). 
Each indvidual leg can step with its own rhythm. 
If the legs are only weakly coupled this leads to 
a behavior von Holst called relative coordination. 
Subsequent investigations (Wendler, 1964; review 
Bässler, 1983) showed that the whole system, that 
is, the leg and the accompanying neural control 
structures, forms a relaxation oscillator. During 
stance, the leg is on the ground, supports the body 
and, in the forward walking animal, moves back­
wards with respect to the body. The posterior tran­
sition point is called the posterior extreme position 
(PEP); it is determined in part by the position of 
the leg. At this transition, the behavior switches 
from stance to swing. During swing, the leg is lifted 
off the ground and moved in the direction of walk­
ing to where it can begin a new stance.

Although the legs are independent in principle, 
in the absence of strong disturbance during walk­
ing an insect typically shows a well defined step­
ping pattern. The tripod gait -  front and rear leg 
of one side swing together with the contralateral 
middle leg -is usually said to be typical for insects. 
Graham (1985) has shown in detailed investiga­
tions of stick insects, that slowly walking animals 
or animals walking under load, generally adopt the 
tetrapod gait (Fig. 1). This appears to be also true
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Fig. 1. The step patterns of a tripod (a) and a tetrapod 
(b) gait as produced by a stick insect. The six traces rep­
resent the six legs. Black bars correspond to swing move­
ment. Legs are designated as left (L) or right (R) and 
numbered from front to rear. Left and right legs on each 
segment (e.g., LI and R l) always have a phase value of 
approximately 0.5. The phase value of adjacent ipsilat- 
eral legs (e.g., LI and L2) is 0.5 in the tripod gait but 
differs in the tetrapod gait (after Graham, 1985).

for insects other than stick insects. The tetrapod 
gait can be described as a wave of swing move­
ments travelling along the body from rear to front.

How does this coordination occur and how is 
it stabilized after disturbances? Results from stick 
insects and other arthropods show that the cou­
pling between neighboring legs can be described 
by simple rules (Cruse, 1990).

In all, six different coupling mechanisms have 
been found in behavioral experiments with the 
stick insect. These are summarized in Fig. 2. One 
mechanism (5 in Fig. 2a) serves to correct errors 
in leg placement; another (6 ) has to do with dis­
tributing propulsive force among the legs. These 
will not be considered here. The other four are 
used in the present model. The beginning of a 
swing movement, and therefore the end-point of 
a stance movement (PEP), is modulated by three 
mechanisms arising from ipsilateral legs: ( 1 ) a 
rostrally directed inhibition during the swing 
movement of the next caudal leg (Fig. 2b), (2) a 
rostrally directed excitation when the next caudal 
leg begins active retraction (Fig. 2c), and (3) a cau- 
dally directed influence depending upon the posi­
tion of the next rostral leg (Fig. 2d). Influences (2) 
and (3) are also active between contralateral legs. 
The end of the swing movement (AEP) in the ani­
mal is modulated by a single, caudally directed in­
fluence (4) depending on the position of the next 
rostral leg. This mechanism is responsible for the
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anterior
leg

posterior
leg

anterior
leg

posterior
leg
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Fig. 2. (a) Summary of the coordination mechanisms op­
erating between the legs of a stick insect. The leg con­
trollers are labelled R and L for right and left legs and 
numbered from 1 to 3 for front, middle, and hind legs. 
The different mechanisms (1 to 6) are explained in the 
text and in (b -d ). (b, c, d) Coordination between two 
ipsilateral legs. The upper trace of each panel shows the 
anterior leg. The influencing leg is drawn only once. Sev­
eral traces for the influenced leg are presented to show 
the effect of the coordinating mechanisms at different 
phase relations. The durations and the intensities of the 
influences are roughly indicated by the length and the 
thickness of the bars and wedges, respectively, (b) the 
rostrally directed inhibitory influence is active during the 
swing of the posterior leg. (c) The rostrally directed ex­
citatory influence is active at the beginning of the stance 
of the posterior leg (d) The caudally directed excitatory 
influence is active during the stance of the anterior leg.
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targeting behavior -  the placement of the tarsus 
at the end of a swing close to the tarsus of the 
adjacent rostral leg.

These interleg influences are mediated in two 
parallel ways. The first pathway comprises the di­
rect neural connections between the step pattern 
generators. The second pathway arises from the 
mechanical coupling among the legs. That is, the 
activity of one step pattern generator influences 
the movements and loading of all legs and there­
fore influences the activity of their step pattern 
generators via sensory pathways. This combination 
of mechanisms adds redundancy and robustness to 
the control system of the stick insect (Dean and 
Cruse, 1995).

The simulations shown below demonstrate that 
these mechanisms deduced from behavioral ex­
periments are sufficient to produce walks of the 
tripod or the tetrapod type and to stabiliz the 
coordinatione against disturbances. This result 
means that the gaits are not explicitly calculated, 
but emerge from the cooperation of these local 
rules.

The Control of the Quasirhythmic Movements 
of the Single Leg

An insect leg typically has three joints. The 
coxa-trochanter and femur-tibia joints, the two dis­
tal joints, are simple hinge joints with one degree 
of freedom corresponding to elevation and exten­
sion of the tarsus, respectively (Fig. 3). The sub- 
coxal joint is more complex, but most of its move­
ment is in a rostrocaudal direction around the 
nearly vertical axis. The additional degree of free-

Fig. 3. Schematic model of a stick insect leg showing the 
arrangement of the joints and their axes of rotation.

dom allowing changes in the alignment of this axis 
is little used in normal walking, so the leg can be 
considered as a manipulator with three degrees of 
freedom for movement in three dimensions. As al­
ready mentioned above, the step cycle of the walk­
ing leg can be divided into two functional states, 
stance and swing. Already in 1911 based on his 
studies in cats, Brown proposed a simple system, 
for what is now called a central pattern generator, 
to control the switching between the two states, 
namely two mutually inhibitory neurones. Later 
this idea was expanded to include sensory input 
(Land, 1972; Bässler, 1986). By applying simple 
learning rules we found an alternative circuit 
which shows better stability against disturbances. 
The essential difference is replacing mutual inhibi­
tion with positive feedback for the stance subsys­
tem and for the swing subsystem (Fig 4, selector 
net). To avoid unlimited growth of excitation, two 
neurones are provided with a nonlinear character­
istic. For insects there are no physiological experi­
ments to decide between the positive and negative 
feedback alternatives for controlling the stepping 
phases. Nevertheless, we decided to use the posi­
tive feedback version in our simulation for two 
reasons. First, indirect evidence of positive feed­
back in other systems exists for the leech (Kristan 
et al., 1996) and for the stick insect (Kittmann 
et al., 1996), and similar circuits are assumed to 
exist in mammalian brains (Houk et al., 1993). Sec­
ond, and more importantly, the positive feedback 
version provides better stability.

The selector net decides which of the two 
“microbehaviors”, stance or swing movement, will 
be performed. Two modules (or “agents”) are re­
sponsible for the detailed realisation of these be­
havior, the swing net and the stance net. The task 
of finding a network that produces a swing move­
ment seems to be easier than finding a network to 
control the stance movement because a leg in 
swing is mechanically uncoupled from the envi­
ronment and therefore, due to its small mass, 
essentially uncoupled from the movement of the 
other legs. Therefore, we first will concentrate on 
the control of the swing movement.

The Swing Movement Can Be Controlled by an 
Extremely Simple Network

As a basis for the simulation, first the swing 
movements of walking animals have been investi­

coxa

leg plane

tarsus

rostral caudal

thorax
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gated (Cruse and Bartling, 1995). The measured 
spatio-temporal trajectories of the tarsi have then 
been used to train an artifical neural network.

The geometry of the leg is shown in Fig. 3. As 
there are three joints to be controlled, the control 
network must have at least three output channels, 
one for each leg joint. A simple, two-layer, feed­
forward net with three output units and six input

Fig. 4. The leg controller consists of three parts: the 
swing net, the stance net, and the selector net which de­
termines whether the swing or the stance net can control 
the motor output, i.e., the velocity of the three joints, a, 
ß, and y. The selector net contains four units: the PEP 
unit signalling posterior extreme position, the GC unit 
signalling ground contact, the RS unit controlling the re­
turn stroke (swing movement), and the PS unit con­
trolling the power stroke (stance movement). The target 
net transforms information on the configuration of the 
anterior, target leg (dj, ßi, and y^  into angular values 
for the next caudal leg which place the two tarsi close 
together. These desired final values (a t, ßt, yt) and the 
current values (a, ß, and y) of the leg angles are input 
to the swing net together with a bias input (1) and sen­
sory inputs (r l-r 4 )  which are activated by obstructions 
blocking the swing and thereby initiate avoidance move­
ments. A non-linear influence (NL) modulates the veloc­
ity profile. For details see Cruse et al. (1996).

units can produce movements which closely re­
semble the swing movements observed in walking 
stick insects. The inputs correspond to three coor­
dinates defining the actual leg configuration and 
three defining the target -  the configuration de­
sired at the end of the swing. In the simulation, 
the three outputs, interpreted as the angular veloc­
ities of the joints, da/d t, dß/d?, and dy/dr, are fed 
into an integrator (not shown in Fig. 4) to obtain 
the joint angles. (In the animal, the movement of 
the leg itself can be considered as an integration 
of the muscle activities.) The actual angles result­
ing from the integration and any external dis­
turbance are measured and fed back into the net.

Through optimization, the network can be sim­
plified to only 8  (front and middle leg) or 9 (hind 
leg) non-zero weights (for details see Cruse et al.,
1996). We believe this represents the simplest pos­
sible network for the task; it can be used as a 
standard of comparison with physiological results 
from stick insects. Despite its simplicity, the net 
not only reproduces the trained trajectories, it is 
able to generalize over a considerable range of un­
trained situations, demonstrating a further advan­
tage of the network approach. Moreover, the 
swing net is remarkably tolerant with respect to 
external disturbances. The learned trajectories 
create a kind of attractor to which the disturbed 
trajectory returns. This compensation for dis­
turbances occurs because the system does not 
compute explicit trajectories, but simply exploits 
the physical properties of the world. The proper­
ties of this swing net can be described by the 3D 
vector field in which the vectors show the move­
ment produced by the swing net at each tarsus po­
sition in the workspace of the leg. Fig. 5 shows the 
planar projections of one parasagittal section (a) 
and one horizontal section (b) through the work 
space. The complete fields are similar to those 
shown by Bizzi et al. (1995) for the frog.

This ability to compensate for external distur­
bances permits a simple extension of the swing net 
in order to simulate an avoidance behavior ob­
served in insects. When a leg strikes an obstacle 
during its swing, it initially attempts to avoid it by 
retracting and elevating briefly and then renewing 
its forward swing from this new position. In the 
augmented swing net, additional inputs similar to 
a tactile or force sensor signal such mechanical 
disturbances (Fig. 4, r l - r4 ) .  These units are con­
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Fig. 5. Vector field representing the movement of the 
tarsus of a left front leg produced by the swing net.
(a) Projection of a parasagittal section (y  = 12 mm).
(b) Projection of a horizontal section slightly below the 
leg insertion (z = - 3  mm). Left is posterior; right is ante­
rior. The average posterior extreme position (start of 
swing movement) and the average anterior extreme po­
sition (end of swing movement) are shown by open and 
closed circles, respectively.

nected by fixed weights to the three motor units 
in such a way as to produce the brief retraction 
and elevation seen in the avoidance reflexes.

In the model, the targeting influence (coordi­
nating mechanism no. 4) reaches the leg control­
ler as part of the input to the swing net (Fig. 4). 
These signals can be generated by a simple feed­
forward net with three hidden units and logistic 
activation functions (Fig. 4, “target net”) which 
directly associates desired final joint angles for 
the swing to current joint angles of a rostral leg 
such that the tarsi of the two legs are at the same 
position (Dean, 1990). There is no explicit calcu­
lation of either tarsus position. Physiological re­
cordings from local and intersegmental interneu­
rons (Brunn and Dean, 1994) support the hypo­
thesis that a similar approximate algorithm is im­
plemented in the nervous system of the stick in­
sect.
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The Control Problems for the Stance Movement

The control of the stance movement appears to 
be more difficult. It is not enough simply to specify 
a movement for each leg on its own as in the case of 
the swing movement: the mechanical coupling 
through the substrate means that efficient locomo­
tion requires coordinated movement of all the 
joints of all the legs in contact with the substrate, 
that is, a total of 18 joints when all legs of an insect 
are on the ground. The task is a nonlinear problem, 
because we have to deal with rotational move­
ments. This is even more the case when the rota­
tional axes of the joints are not orthogonal, as is 
often the case for insect legs and for the basal leg 
joint in particular. A nother nonlinearity arises from 
the fact that the number and combination of me­
chanically coupled joints varies from one moment 
to the next, depending on which legs are lifted.

For straight walks, one could simplify the prob­
lem by assuming that the trajectories of the leg 
endpoint follow a straight line parallel to the long 
axis of the body. This assumption, however, is only 
approximately the case in normal walking. It defi­
nitely does not hold when the animal negotiates a 
curve, which requires the different legs to move 
along different arcs at different speeds. Superim­
posed on all these problems we have the above 
mentioned problem that the control system has to 
deal with extra degrees of freedom. This means 
that the control system has to decide, by applying 
some criteria, which of the possible solutions 
should be selected.

In machines, these problems can be solved using 
traditional, though computationally costly, meth­
ods, which consider the ground reaction forces of 
all legs in stance and seek to optimize some addi­
tional criteria, such as minimizing the tension or 
compression exerted by the legs on the substrate. 
Due to the nature of the mechanical interactions 
and inherent in the search for a globally optimal 
control strategy, such algorithms require a single, 
central controller; they do not lend themselves to 
distributed processing. This makes real-time con­
trol difficult, even in the still simple case of walk­
ing on a rigid substrate. Taking into account the 
much smaller bandwidth and the much slower 
computational speed of the biological systems 
compared to the technical ones makes real time 
control even more difficult.



Further complexities arise in more irregular, 
natural walking situations, making solution diffi­
cult even with high computational power. These 
problems arise, for example, when an animal or a 
machine walks on a slippery surface or on a com­
pliant substrate, such as the leaves and twigs en­
countered by stick insects. Any flexibility in the 
suspension of the joints further increases the de­
grees of freedom that must be considered and the 
complexity of the computation. Further problems 
for an exact, analytical solution occur when the 
length of leg segments changes during growth or 
their shape changes through injury. In such cases, 
knowledge of the geometrical situation is incom­
plete, making an explicit calculation difficult, if not 
impossible. Such problems already arise during 
normal walking: the positions and orientations of 
the axes in the non-rigid joints may change due to 
load changes elicited by different orientation with 
respect to gravity.

Local Positive Feedback -  the Solution?

Despite the evident complexity of these tasks, 
they are mastered even by insects with their “sim­
ple“ nervous systems. Hence, there has to be a so­
lution that is fast enough that on-line computation 
is possible even for slow neuronal systems. How 
can this be done? Several authors (e.g. Brooks, 
1991) have pointed out that some relevant param­
eters do not need to be explicitly calculated by the 
nervous system because they are already available 
in the interaction with the environment. This 
means that, instead of an abstract calculation, the 
system can directly exploit the dynamics of the in­
teraction and thereby avoid a slow, computation­
ally exact algorithm. To solve the particular prob­
lem at hand, we propose to replace a central 
controller with distributed control in the form of 
local positive feedback (Cruse et al., 1996). Com­
pared to earlier versions (Cruse et al., 1995), this 
change permits the stance net to be radically sim­
plified. The positive feedback occurs at the level 
of single joints: the position signal of each is fed 
back to control the motor output of the same joint 
(Fig. 4, stance net). How does this system work? 
Let us assume that any one joint is moved actively. 
Then, because of the mechanical connections, all 
other joints begin to move passively, but in exactly 
the proper way. Thus, the movement direction and
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speed of each joint does not have to be computed 
because this information is already provided by 
the physics. The positive feedback then transforms 
this passive movement into an active movement.

This idea is supported by an earlier finding of 
Bässler (1976) showing a reflex reversal for the 
femur tibia joint which could be interpreted as a 
positive feedback (see also Schmitz et al., 1995). 
Therefore, we decided to implement this solution 
for the control of the stance movement. There are, 
however, several problems to be solved. The first 
is that positive feedback using the raw position sig­
nal would lead to unpredictable changes in move­
ment speed, not the nearly constant walking speed 
which is usually desired. This problem can be 
solved by introducing a kind of band-pass filter 
into the feedback loop. The effect is to make the 
feedback proportional to the angular velocity of 
joint movement, not the angular position. In the 
simulation, this is done by feeding back a signal 
proportional to the angular change over the pre­
ceding time interval.

The second problem is that using positive feed­
back for all three leg joints leads to unpredictable 
changes in body height, even in a computer simu­
lation neglecting gravity. In the stick insect, body 
height is controlled by a distributed system in 
which each leg acts like an independent, propor­
tional controller (Cruse, 1976; Cruse et al., 1993). 
However, maintaining a given height via negative 
feedback appears at odds with the proposed local 
positive feedback for forward movement. How 
can both functions be fulfilled at the same time? 
To solve this problem we assume that during walk­
ing positive feedback is provided for the a  joints 
and the y joints (Fig. 4, stance net), but not for the 
ß joints. The ß joint is the major determinant of 
the separation between the substrate and the leg 
insertion in the body, which determines body 
height.

A third problem inherent in using positive feed­
back is the following. Let us assume that a station­
ary insect is pulled backward by gravity or by a 
brief tug from an experimentor. With positive 
feedback control as described, the insect should 
then continue to walk backwards even after the 
initial pull ends. This has never been observed. 
Therefore, we assume that a supervisory system 
exists which is not only responsible for switching 
on and off the entire walking system, but also

of Complex Movements Using Artificial Neural Networks
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specifies walking direction (normally forward for 
the insect). This influence is represented by apply­
ing a small, positive input value (Fig. 4, “walking 
on”) which replaces the sensory signal if it is larger 
than the latter (the box “max” in Fig. 4, stance 
net).

To permit the system to control straight walking 
and to negotiate curves, a supervisory system was 
introduced which, in a simple way, simulates opto­
motor mechanisms for course stabilisation that are 
well-known from insects and have also been ap­
plied in robotics. This supervisory system uses in­
formation on the rate of yaw (“d0 yaw sens/dr”, 
Fig. 4, stance net), such as visual movement detec­
tors might provide. It is based on negative feed­
back of the deviation between the desired turning 
rate and the actual change in heading over the last 
time step. The error signal controls additional im­
pulses to the a  joints of the front and hind legs 
which have magnitudes proportional to the devia­
tion and opposite signs for the right and left sides. 
In earlier versions, this bias was given to the front 
legs only. A much better behavior can be found 
when the bias is also given to the hind legs. With 
this addition and d 0 yaw ref/dt set to zero, the sys­
tem moves straight (Fig. 6 a) with small, side-to- 
side oscillations in heading such as can be ob­
served in walking insects. To simulate curve walk­
ing (Fig. 6 b), the reference value is given a small 
positive or negative bias to determine curvature 
direction and magnitude.

Finally, we have to address the question of how 
walking speed is determined in such a positive 
feedback controller. Again, we assume a central 
value which represents the desired walking speed 
vref. This is compared with the actual speed, which 
could be measured by visual inputs or by monitor­
ing leg movement. This error signal is subject to a 
nonlinear transformation and then multiplied with 
the signals providing the positive feedback for all 
a  and y joints of all six legs (Fig. 4, stance net ).

Local Positive Feedback Solves These as Well as 
Further Problems

As is shown in Fig. 6 a for the case of straight 
walking, this network is able to control proper co­
ordination. Steps of ipsilateral legs are organized 
in triplets forming “metachronal waves”, which 
proceed from back to front, whereas steps of the

b)
Fig. 6. Simulated walk by the basic six-legged system 
with negative feedback applied to all six ß joints and 
positive feedback to all a  and y  joints as shown in Fig. 4. 
M ovement direction is from left to right (arrow). Leg 
positions are illustrated only during stance and only for 
every second time interval in the simulation. Each leg 
makes about five steps. Upper part: top view, lower part: 
side view, (a) Straight walking ( d9yaw ref/df = 0). (b) 
curved walking ( d0yaw ref/dr 0).

contralateral legs on each segment step approxi­
mately in alternation. With increasing walking 
speed, the typical change in coordination from the 
tetrapod to a tripod-like gait is found. For slow 
and medium velocities the walking pattern corres­
ponds to the tetrapod gait with four or more legs 
on the ground at any time and diagonal pairs of 
legs stepping approximately together; for higher 
velocities the gait approaches the tripod pattern 
with front and rear legs on each side stepping to­
gether with the contralateral middle leg. The coor­
dination pattern is very stable. For example, when 
the movement of one leg is interrupted briefly 
during the power stroke, the normal coordination 
is regained immediately at the end of the pertur­
bation. Furthermore, the model can cope with ob-
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stacles higher than the normal distance between 
the body and the substrate. It continues walking 
when a leg has been injured, such that, for exam­
ple, half of the tibia is removed.

What about curve walking? The typical engi­
neer’s solution is to determine the curve radius 
and the center of the curve. With these values the 
trajectories of the different legs are calculated and 
then, using inverse kinematics, the trajectories for 
the joint angles are determined. In our case, too, 
a value is required to determine the tightness of 
the curve. This, however, does not need to quanti­
tatively correspond to the curve radius. The value 
is only used as an amplification factor for the feed­
back loop of front and hind legs. This value can 
deliberately be changed from one moment to the 
next. No further calculations are necessary.

The introduction of the local band-pass filtered 
positive feedback in 1 2  of the 18 leg joints pro­
vides a control system which as far as we can see 
cannot be further simplified, because it is decen­
tralized down to the level of the single joints. This 
simplification has the side effect that computation 
time can be minimized. The essential advantage, 
however, is that, by means of this simplification 
and the consideration of physical properties of the 
body and the environment, all problems men­
tioned above can easily be solved, although they, 
at first sight, seemed to be very difficult.

Unexpectedly, the following interesting beha­
vior was observed. A massive perturbation, for ex­
ample by clamping the tarsi of three legs to the 
ground, can make the system fall (Fig. 7). A l­
though this can lead to extremely disordered ar­
rangements of the six legs, the system was always

a) c)
Fig 7. Righting behavior, (a) By clamping the tarsi to the 
ground (arrowheads), the system is made to fall leading 
to disordered arrangement of the legs (b). Nevertheless, 
the system stands up without help and resumes proper 
walking (c).

able to stand up and resume proper walking with­
out any help. This means that the simple solution 
proposed here also eliminates the need for a spe­
cial supervisory system to rearrange leg positions 
after such an emergency.

Conclusion
Considering all the problems a walking system 

already has to deal with under seminatural condi­
tions, one is inclined to attribute such a system 
quite a high motor intelligence to such a system. 
We have, however, seen that the control system 
neither has to be very complicated nor does it re­
quire a centralized architecture. On the contrary, 
the seemingly most difficult problems are solved 
by the structurally most simple subsystems. This 
simplification is possible because the physical 
properties of the system and its interaction with 
the world are exploited to replace an abstract, ex­
plicit computation. No explicit internal world 
model is required. Thus, “the world” is used as “its 
own best model” (Brooks, 1991). This principle is 
implemented at several places in the control sys­
tem.

(i) The quasi-rhythmic leg movements are not 
produced by a endogenous central oscillator. In­
stead they result from the interaction of the neuro­
nal control system and the environment.

(ii) No explicit computation of the complete tra­
jectory is necessary for the generation of the swing 
movement. Instead the instantaneous continuation 
of a movement is determined on the basis of the 
current sensory input values.

(iii) The discrepancy between the complexity of 
the task and the simplicity of the solution is most 
obvious in the case of the control of the stance 
movement.

Furthermore, the Walknet simulation shows that 
simple local rules can produce unexpected proper­
ties at the level of the whole system:

(a) the four local coordinating mechanisms pro­
duce tripod or tetrapod gaits which are stabile 
against disturbances, and (b) a combination of 
positive and negative feedback permits the control 
system to maintain body height and to right the 
body after a fall.

Outlook
The results presented are based mainly on be­

havioral experiments and software simulations. An
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earlier version has also been successfully tested 
using the six-legged TUM walking machine (Pfeif­
fer et al., 1994; Pfeiffer and Cruse, 1994). One ma­
jor disadvantage of our present simulation is its 
pure kinematic nature. To test the principle of lo­
cal positive feedback at least for straight walking, 
we have performed a dynamic simulation for the 
six-legged system under positive feedback control 
during stance. The basic software was kindly pro­
vided by F. Pfeiffer, TU Munich. No problems oc- 
cured. Nevertheless, a hardware test of the walk­
ing situations is necessary and is planned with 
M. Frik, University of Duisburg, and his robot 
TARRY (Frik and Amendt, 1995).

To date, learning the weights in the different 
subnets of Walknet has been done off-line. After 
being adjusted once, the weights cannot be 
changed by the system through online learning. As 
we have found such learning capabilities in the an­
imals, we plan to introduce corresponding proper­
ties in Walknet. Another point is to add new be­
havioral modules for other body movements, such 
as feeding, body cleaning, or camouflage rocking 
(Pflüger, 1977) for example. This requires the in­
troduction of an architecture which allows the sys­
tem to decide between such modules. In a simple 
form this problem had to be solved for the swing- 
stance decision. Although not explicitely designed 
as such, the units of the selector net could be inter­
preted as a simple motivational system. Such moti­
vational structures (see Maes, 1991) may help 
solve these problems. In other cases (e.g. rocking 
and walking), a decision may not be necessary and 
a simple summation, such as proposed by Steels 
(1994), may suffice.

All these structures are based on purely sensory 
driven subsystems. Many approaches, in particular 
those used in traditional AI, presuppose the exis­
tence of an explicit world model as a prerequiste 
to planning behavioral actions and deciding 
among different possible actions. Although it is 
very possible that truly cognitive systems require 
a kind of internal world model, it is an open ques­
tion as to the complexity of behavior that can be 
produced without having a cognitive system. 
Therefore, we first concentrate on purely data- 
driven systems which have no explicit world 
model. However, this restriction will be relaxed in

later stages. For example, a planned first step to­
ward a world model will be to implement an in­
ternal model of the body. We argue that this is 
justified because the body is the nearest and the 
most important part of the external world of a 
brain. A special type of neural network to be used 
as a body model is already available (Steinkühler 
and Cruse, 1998), but up to now has been used 
here only as a technical device to simulate the 
kinematics of the body.

Neurophysiological investigations have not been 
considered above in detail. However, a compari­
son between the artificial neural system presented 
here and the results of neurophysiological investi­
gations is desirable. What is known so far? Apart 
from the relatively well investigated motoneu- 
rones and a huge number of sensory neurons there 
are several groups of spiking interneurones, which 
presumably represent the first integrational layer 
for the sensory input (Burrows and Laurent, 
1989). As a rough estimate each thoracic hemigan- 
glion contains about 700 to 1000 spiking and non­
spiking interneurones. About 50 nonspiking in­
terneurons have been investigated in the context 
of walking movements. Fifteen of these neurons 
are also documented morphologically (Schmitz 
et al., 1991; Büschges et al., 1994; Wolf and Büsch- 
ges, 1995). About 30 more interneurones have 
been shown to be activated in different ways dur­
ing standing and walking (Kittmann et al., 1996). 
The different neurones show quite different tem­
poral behavior such as saw-tooth like, sinusoidal, 
or very short, pulse like activations or inactiv­
ations extending during the stance. A relatively 
large percentage of the neurones known up to now 
are coupled to the transitions between stance and 
swing. However, general principles, much less a 
functional circuit, are still unclear. Therefore, any 
attempt to directly correlate the artificial neurons 
of the Walknet with the neurons known from the 
neurophysiological investigations still appears 
very premature. However, we hope that these 
modelling studies will guide neurophysiological 
experiments and interpretation of the results.
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