A 5,6-Dihydro-isopyoverdin from Azomonas macrocytogenes*

R. Michalke, K. Taraz, H. Budzikiewicz^a, Ph. Thonart, Ph. Jacques^b

a Institut für Organische Chemie der Universität zu Köln, Greinstr. 4, D-50939 Köln, Germany
b Centre Wallon de Biologie Industrielle, Faculté Universtaire des Sciences Agronomiques, B-5030 Gembloux et Université de Liège Bâtiment B 40, B-4000 Liège, Belgique

Z. Naturforsch. **52c**, 855–857 (1997); received September 3, 1997

Azomonas macrocytogenes, Biogenesis, Isopyoverdin, Siderophore

From the culture medium of Azomonas macrocytogenes a 5,6-dihydro-isopyoverdin could be isolated which includes the same peptide chain as the accompanying isopyoverdins (azoverdins). As analogous pairs had been encountered in the pyoverdin series where a dihydro derivatives are considered to be the immediate precursors of the pyoverdins, the same biogenetic sequence can thus be assumed for the iso-series.

Introduction

In preceding publications we obtained evidence that the pyoverdin chromophore 1 is derived from the ferribactin chromophore 2 which in turn is a condensation product of D-Tyr and L-Dab (Böckmann et al., 1997). 2 should also be the branching point for the formation of the recently discovered isopyoverdins 3. If the assumption is correct that 1 and 3 are formed by analogous biogenetic steps starting from 2, the same type of intermediates should be found and the stereochemistry of the chiral center at C-3 of 3 should be S. The correct stereochemistry was proved recently (Michalke et al., 1997). We wish now to report the isolation of a 5,6-dihydro-isopyoverdin (dihydro-azoverdin) 4 from the culture medium of Azomonas macrocytogenes ATCC 12334.

Abbreviations: Common aminoacids, 3-letter code; Dab, 2,4-diaminobutyric acid; Hse, homoserine; (OH)Orn, N⁵-hydroxy Orn; FAB-MS, fast atom bombardement mass spectrometry.

Reprint requests to Prof. Dr. H. Budzikiewicz. Telefax No. +49-221-470-5057.

Experimental Procedures

For bacterial growth, spectroscopy, amino acid analysis, decomplexation, details of chromatography, etc. see Michalke *et al.*, 1996.

Isolation and characterization of 5,6-dihydroazoverdin G

The culture filtrate was worked up as described earlier (Michalke et al., 1996). After separation of azoverdin A by chromatography on DEAE Sephadex A-25 the fraction containing azoverdin and azoverdin G was rechromatographed on CM Sephadex C-25 with a 0.02 N pyridinium acetate buffer (pH 5.0, isocratic), detection at 340 and 405 nm. After a brown fraction (azoverdin and azoverdin G) a violet fraction containing ferri-5,6dihydro-azoverdin G could be eluted which was rechromatographed under the same conditions. The Fe3+-complex shows absorption maxima at 250, 318 and 535 nm (pH 3.0) and 250, 318 and 517 nm (pH 6.8), resp., while the free dihydrocompound shows a pH-independent absorption at 301 nm. The molecular mass of 4 was determined by FAB-MS as 1122 u, that of the Fe³⁺-complex as 1175 u. From an aminoacid analysis follows the presence of L-Dab, L-Glu, D- and L-Hse, D- and L-(OH)Orn and D-Ser as had been observed for azoverdin G.

Transformation of dihydro-azoverdin G (4) into azoverdin G.

 $10\ mg$ 4 were dissolved in 5 ml H_2O and stirred for 24 hrs with $10\ mg$ PtO_2 . The color of the solution changed from violet to brown. The resulting azoverdin G was purified and de-complexed as described above. It was found to be identical with authentic azoverdin G by all spectroscopic evidence

Results and Discussion

4 has the same aminoacid composition as azoverdin G and both the ¹H- and ¹³C-NMR data of the amino acid portion and of the Glu side chain correspond to those of the latter. Hence the structure of these parts of **4** and of azoverdin G are identical. However, the molecular mass of **4** is 2

^{*} Part LXXIV of the series "Bacterial constituents". For part LXXIII see Budzikiewicz et al. (1997).

856 Notes

units higher and the UV/Vis data correspond to those of 5,6-dihydro-pyoverdins. Accordingly, the ¹H- and ¹³C-data (Tables I and II) of the positions 4a to 10a of the chromophore match those of the 5,6-dihydro-pyoverdin Pp2 (Gwose *et al.*, 1992) while those of the positions C-1 to C-3 agree with those of azoverdin G (Michalke *et al.*, 1996) in accordance with the position of the carboxyl group

Table I. 1H NMR data of the chromophores of 5,6-dihydro-azoverdin G (4), (H₂O, pH 3.0) azoverdin G (H₂O, pH 4.3) and 5,6-dihydro-pyoverdin Pp2 (D₂O, pH 3.0).

	5,6-dihydro- azoverdin G (4)	azoverdin G	5,6-dihydro- pyoverdin Pp2
Chr-1	3.71/4.01	3.86/4.40	5.28
Chr-2	2.48	2.58	2.50/2.57
Chr-3	4.59	4.60	3.23/3.68
Chr-5	5.10	_	5.50
Chr-6	3.03	7.81	3.03/3.06
Chr-7	6.80	6.88	6.81
Chr-10	6.85	6.94	6.85

Table II. ¹³C NMR data of the chromophores of 5,6-dihydro-azoverdin G (4), (H₂O, pH 3.0) azoverdin G (H₂O, pH 4.3) and 5,6-dihydro-pyoverdin Pp2 (D₂O, pH 3.0).

	5,6-dihydro- azoverdin G (4)	azoverdin G	5,6-dihydro- pyoverdin Pp2
CO	172.0	173.3	171.2
Chr-1 Chr-2	43.2 23.5	43.9 22.9	56.6 23.4
Chr-3 Chr-4a	51.9 160.4	51.2 149.2	37.3 161.1
Chr-5	48.5	117.1	48.3
Chr-6a	29.0 117.1	139.6 115.3	29.1 117.4
Chr-7	117.1	113.0	117.6
Chr-8 Chr-9	143.8 145.2	146.3 152.6	143.4 145.1
Chr-10	106.2	101.7	105.7
Chr-10a	129.9	133.9	129.2

at C-3 rather than at C-1. From these data it follows that **4** has the structure of a 5,6-dihydro-isopyoverdin. This could be confirmed by the oxidative transformation of **4** into azoverdin G.

5,6-Dihydro-pyoverdins were found to co-occur with the corresponding pyoverdins in the fermentation broth especially when a high cell density and consequently a certain lack of oxygen prevails. They are the immediate biogenetic precursors of the pyoverdins. On the currently accepted biogenetic scheme (Böckmann *et al.*, 1997) the branching point for the formation of isopyoverdins are the ferribactin intermediates 2 preceding the ring closure. The discovery of the first 5,6-dihydro-isopyoverdin shows that the subsequent biogenetic steps are the same in both series.

Böckmann M., Taraz K. and Budzikiewicz H. (1997), Biogenesis of the pyoverdin chromophore. Z. Naturforsch. **52c**, 319–324.

Budzikiewicz H., Kilz S., Taraz K. and Meyer J.-M. (1997), Identical pyoverdines from *Pseudomonas fluorescens* 9AW and from *Pseudomonas putida* 9BW. Z. Naturforsch. **52c**, 721–728.

Gwose I. and Taraz K. (1992), Pyoverdine aus *Pseudomonas putida*. Z. Naturforsch. **47c**, 487–502.

Acknowledgement

The research was supported by the European Commission DG XII under the project "Cell factories for the production of bioactive peptides from *Bacillus subtilis* and *Pseudomonas*" (Bio4-CT95-0176) and by the Fonds pour la Recherche Fondamontale Collective (FRFC N° 2.4557.95).

Michalke R., Taraz K., Budzikiewicz H., Thonart Ph. and Jacques Ph. (1997), Absolute configuration of the isopyoverdin chromophore. Z. Naturforsch. **52c**, 549–550.

Michalke R., Taraz K. and Budzikiewicz H. (1996), Azoverdin – an isopyoverdin. Z. Naturforsch. 51c, 772-780.