

Occurrence of Jasmonic Acid in the Red Alga *Gelidium latifolium*

Marina V. Krupina

Moscow State University "M. W. Lomonosov",
Biological Faculty, Section of Biological Monitoring,
Leninskij Gori, 139445 Moscow, USSR

and

Wilfried Dathe

Institut für Biochemie der Pflanzen, Weinberg 3,
D-4050 Halle/Saale, Bundesrepublik Deutschland

Z. Naturforsch. **46c**, 1127–1129 (1991);
received June 27, 1991

Jasmonic Acid, Plant Growth Regulator,
Gelidium latifolium, Rhodophyta

The growth regulators (–)-jasmonic acid (JA) and its 7-isomer were identified by GC-MS in the red alga *Gelidium latifolium*. The ratio of JA:7-iso-JA was approximately 93:7. The endogenous level amounted to 0.7 µg JA/g fresh weight.

Introduction

The plant growth regulator (–)-jasmonic acid (JA), isolated as a plant growth inhibitor from the pericarp of *Vicia faba* [1], and its methyl ester, a potent senescence promotor from *Artemisia absinthium* [2], are widely distributed within higher plants [3]. However, there are very few reports of its occurrence in lower plants. Aldridge *et al.* [4] described JA as a product of the fungus *Lasiodiplodia theobromae* (Pat.) Griff. *et* Maubl. and Miersch *et al.* [5] isolated from the same fungal species (synonym *Botryodiplodia theobromae* Pat.) its isomer (+)-7-iso-jasmonic acid (7-iso-JA). The green alga *Chlorella pyrenoidosa* (strain 211/8 b) possesses the complete enzyme system for JA biosynthesis, but JA could not be found as native compound in this organism [6].

Recently, Ueda *et al.* [7] isolated minute quantities of JA (1.5 ng/g dry weight) from *Euglena gracilis* Z., an eukaryotic algal flagellate (Chlorophyta). Minute levels of JA and JAMe were also detected in a *Chlorella* sp. and JA was found in the

Abbreviations: JA, (–)-jasmonic acid; 7-iso-JA, (+)-7-iso-jasmonic acid; CA, (+)-cucurbitic acid; 6-epi-CA, (+)-6-epi-cucurbitic acid; 7-iso-CA, (+)-7-iso-cucurbitic acid; 6-epi-7-iso-CA, (+)-6-epi-7-iso-cucurbitic acid; Me, methyl ester of the corresponding compound.

Reprint requests to Dr. W. Dathe.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen
0939–5075/91/1100–1127 \$ 01.30/0

prokaryotic *Spirulina maxima* (Cyanophyceae), too [7, 8]. Furthermore, JA and related compounds were also identified in several *Equisetum* species (Pteridophyta) [9].

Within our research programme on the physiology of macrophytic algae [10, 11] we have begun to investigate the endogenous levels of plant growth regulators, including JA and related compounds. Here we describe the identification of JA and its 7-isomer in the red alga *Gelidium latifolium*.

Materials and Methods

The branched red alga *Gelidium latifolium* Born. (Rhodophyta) was collected from the Black Sea (Bay of Sewastopol, Krim peninsula) to a depth of 50 cm. The algae (length: 3–5 cm, 45 g fresh weight) were frozen, homogenized with MeOH using a blender, filtered and the remaining tissue extracted twice with 80% MeOH. The combined MeOH extracts were evaporated to aqueous, acidified to pH 3.0, partitioned with EtOAc and evaporated to dryness. This extract was subsequently chromatographed on a column of DEAE-Sephadex A-25 (1.1 × 45 cm; [12]). The fractions eluted with 0.25 and 0.5 M HOAc in 80% MeOH were monitored by TLC ($\frac{1}{2}$ of each fraction, silica gel GF₂₅₄, CHCl₃:EtOAc:acetone:HOAc = 40:10:5:1). The JA-containing fractions were combined, methylated with ethereal diazomethane, purified on Adsorbex RP 18 (40 µm, 400 mg, Merck) with an increasing gradient of MeOH in water (5% steps, from 40% MeOH) and again monitored by TLC (hexane:EtOAc:HOAc = 60:40:1). The JA fractions (60–65% MeOH) were evaporated to dryness and analyzed by GC and GC-MS applying the following conditions: GC – steel column (2 m × 4 mm), Supelcoport (100–120 mesh) coated with OV 225 (3%), carrier gas: N₂ 45 ml/min, column temperature: 180 °C. GC-MS – steel column (1.5 m × 2 mm), Gaschrom Q (100–120 mesh) coated with OV 225 (3%), carrier gas: He 15 ml/min, column temperature: 180 °C; 70 eV.

For GC the sample was dissolved in 10 µl benzene and $\frac{1}{20}$ injected (8 replicates), for GC-MS $\frac{1}{10}$ was injected. The remaining sample was reduced by NaBH₄ [13] and again analyzed by GC (conditions as above, except: column temperature – 190 °C, N₂ – 35 ml/min) to determine the ratio between JA and its 7-stereoisomer (JAMe is reduced

to 6-epi-7-iso-CAMe ($R_t = 7.8$ min) and 7-iso-CAMe ($R_t = 7.8$ min), 7-iso-JAMe is reduced to 6-epi-CAMe ($R_t = 9.3$ min) and CAMe ($R_t = 10.2$ min); the structural data and natural occurrence of which were recently reported [14]).

Results and Discussion

After chromatography of the EtOAc extract on DEAE-Sephadex A-25 we detected in fractions eluted with 0.25 M HOAc a JA like spot by monitoring on TLC ($R_f = 0.43$). After methylation, purification on Adsorbex RP 18 and TLC (1%) we detected JAMe in fractions eluted with 60–65% MeOH. In GC two peaks occurred, the first one ($R_t = 9.3$ min) corresponded to authentic JAMe (32 µg; 0.7 µg/g fresh weight) and the second peak ($R_t = 11.1$ min) to authentic 7-iso-JAMe (1.85 µg; 0.04 µg/g fresh weight). The ratio between JAMe and 7-iso-JAMe amounted to 94.3:5.7. The identity with JAMe [1] and 7-iso-JAMe [5] was proved by GC-MS ($R_{tJAMe} = 4.0$ min, $R_{t7\text{-iso-JAMe}} = 4.6$ min). MS (JAMe) m/z (rel. int.): 224 (M^+ , 30), 206 (6), 193 (14), 156 (24), 151 (36), 135 (17), 109 (22) and 83 (100). MS (7-iso-JAMe) m/z (rel. int.): 224 (M^+ , 17), 206 (8), 193 (7), 156 (16), 151 (29), 135 (11), 109 (23) and 83 (100).

The ratio between JAMe and 7-iso-JAMe determined from the NaBH_4 -reduced sample, in order to avoid isomerization of 7-iso-JAMe to JAMe during GC [15], was 93.4:6.6 (6-epi-7-iso-CAMe +

7-iso-CAMe and 6-epi-CAMe + CAMe) and corresponded very well to the GC determination of JAMe and 7-iso-JAMe. The ratio of JA:7-iso-JA in young fruits of *Vicia faba* was determined to be about 65:35 [13], and in black and green tea between 30:70 and 70:30 depending on the tea type [15]. A fungal strain of *Botryodiplodia theobromae* isolated from orange fruits forms exclusively 7-iso-JA [5]. The biosynthetic pathway of JA in plants should logically yield 7-iso-JA [16, 17]. Isomerization to the JA configuration may take place after any of the β -oxidation steps following the formation of phytodienic acid. In comparison to JA the 7-iso-JA is the more active compound in bioassays [18–20], and its methyl ester seems to be the essential odoriferous agent [21]. Possibly, only 7-iso-JA is the important biologically active compound, and it is therefore necessary to quantify it simultaneously to JA.

The occurrence of JA in *Gelidium latifolium*, *Euglena gracilis* Z., *Chlorella* sp. and in *Spirulina maxima* [7, 8] indicates that in addition to being present in higher plants [3] it is also distributed in lower plants, or at least these lower plants are capable of forming JA [6].

Acknowledgements

We thank Mrs. Christine Kuhnt for GC and GC-MS analyses and Mrs. Monika Krohn for reliable technical assistance.

- [1] W. Dathe, H. Rönsch, A. Preiss, W. Schade, G. Sembdner, and K. Schreiber, *Planta* **155**, 530–535 (1981).
- [2] J. Ueda and J. Kato, *Plant Physiol.* **66**, 246–249 (1980).
- [3] A. Meyer, O. Miersch, C. Büttner, W. Dathe, and G. Sembdner, *J. Plant Growth Regul.* **3**, 1–8 (1984).
- [4] D. G. Aldridge, S. Galt, D. Giles, and W. B. Turner, *J. Chem. Soc. (C)* **1971**, 1623–1627.
- [5] O. Miersch, A. Preiss, G. Sembdner, and K. Schreiber, *Phytochemistry* **26**, 1037–1039 (1987).
- [6] B. A. Vick and D. C. Zimmerman, *Plant Physiol.* **90**, 125–132 (1989).
- [7] J. Ueda, K. Miyamoto, T. Sato, and Y. Momotani, *Agric. Biol. Chem.* **55**, 275–276 (1991).
- [8] J. Ueda, K. Miyamoto, M. Aoki, T. Hirata, T. Sato, and Y. Momotani, *Bull. Univ. Osaka Prefecture, Ser. B* **43**, 103–108 (1991).
- [9] W. Dathe, O. Miersch, and J. Schmidt, *Biochem. Physiol. Pflanzen* **185**, 83–92 (1989).
- [10] K. S. Burdin, W. V. Gusev, M. V. Krupina, and I. B. Saveljev, *Vestnik Moscow Univ., Ser. 16 Biol.*, No. 3, 3–10 (1980).
- [11] K. S. Burdin, M. V. Krupina, and F. B. Saveljev, *Vestnik Moscow Univ., Ser. 16 Biol.*, No. 2, 35–42 (1990).
- [12] R. Gräbner, G. Schneider, and G. Sembdner, *J. Chromatogr.* **121**, 110–115 (1976).
- [13] O. Miersch, A. Meyer, S. Vorkefeld, and G. Sembdner, *J. Plant Growth Regul.* **5**, 91–100 (1986).
- [14] W. Dathe, C. Schindler, G. Schneider, J. Schmidt, A. Porzel, E. Jensen, and I. Yamaguchi, *Phytochemistry* **30**, 1909–1914 (1991).
- [15] A. Kobayashi, M. Kawamura, Y. Yamamoto, K. Shimizu, K. Kubota, and T. Yamanishi, *Agric. Biol. Chem.* **52**, 2299–2303 (1988).
- [16] B. A. Vick and D. C. Zimmerman, *Biochem. Biophys. Res. Commun.* **111**, 470–477 (1983).
- [17] B. A. Vick and D. C. Zimmerman, *Plant Physiol.* **75**, 458–461 (1984).
- [18] A. Meyer, O. Miersch, S. Vorkefeld, and G. Sembdner, *Acta Univ. Agric. (Brno), Fac. Agron.* **33**, 471–474 (1985).
- [19] O. Miersch and G. Sembdner, *Acta Univ. Agric. (Brno), Fac. Agron.* **33**, 101–107 (1985).
- [20] G. Herrmann, H.-M. Kramell, R. Kramell, R. Weidhase, and G. Sembdner, in: *Conjugated Plant Hormones, Structure, Metabolism and Function* (K. Schreiber, H. R. Schütte, G. Sembdner, eds.), pp. 315–322, VEB Deutscher Verlag der Wissenschaften, Berlin 1987.
- [21] T. E. Acree and R. Nishida, *Semiochemistry: Flavors and Pheromones*, pp. 33–45, Walter de Gruyter & Co., Berlin, New York 1985.