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Over the last decade an intensive research on the regulation o f gene expression in viral and 

anim al systems has led to the discovery o f  m -ac ting  regulatory sequences, the identification 
o f sequence-specific D N A -binding proteins (trans-acting factors), the characterization o f p ro ­
tein dom ains involved in D N A -pro tein  recognition and binding as well as in protein-protein 
interactions, and the cloning and sequencing o f genes encoding regulatory proteins. The tre­
m endous progress in this field is now  being com plem ented by advances in our understanding 
o f how plan t genes are regulated. A w ealth o f da ta  has accum ulated in the past few years w it­
nessing basic similarities in the transcrip tional regulation o f various eukaryotic genes, but also 
specific features o f p lant genes. This article collects presently available data, focusses on D NA - 
protein interactions in p lan t genes, particularly  in light-regulated and “constitutively express­
ed” genes, reports on the isolation o f p lan t genes encoding regulatory proteins, and is m eant to 
induce further activities in plant gene research.

Introduction

Eukaryotic transcrip tional initiation is regu­
lated by complex interactions between cw-acting 
D N A  motifs and /ran.9-acting protein factors 
[1 -3]. Am ong the cw-regulatory regions, prom ot­
ers are located close to the transcrip tion  initiation 
site and usually consist o f proxim al (e.g. the 
TA TA  box) and m ore distal elements (e.g. that 
CCA A T box). Enhancers, on the o ther hand, can 
be located far up- and dow n-stream  from  the initi­
ation site (or even in trans [4]) and may act inde­
pendently o f their position and orientation. P ro­
m oters and enhancers are usually com posed of 
several discrete, often redundant elements [5], each 
of which may be specifically recognized by one or 
more trans-aclmg  proteins. A t least three separate 
dom ains have been identified w ithin such regula­
tory proteins. One is necessary for sequence-specif- 
ic D N A  recognition, one for activation o f tran ­
scriptional initiation, and one for the form ation of 
protein-protein interactions (e.g. dim erization). 
F our “m otifs” involved in D N A  sequence recogni­
tion an d /o r factor dim erization have been charac­
terized: zinc fingers [6], helix-turn-helix [7], leu- 
cine-zipper [8, 9] and  helix-loop-helix m otifs [10]. 
Since leucine-zipper and helix-loop-helix proteins
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form hom o- or heterodim ers as a prerequisite for 
D N A  binding, the com bination o f factors tha t dif­
fer in their activating capacity provides a flexible 
tool for the fine-tuning o f transcriptional regula­
tion [11, 12]. “A ctivating” dom ains are rich in 
either proline, glutam ine, or acidic am ino acids 
[1 -3]. They are thought to interact with the TA TA  
box-binding transcription factor T F IID  [13], 
RN A  polymerase [14], or another protein o f the 
general transcription apparatus, either directly or 
via an “ad ap to r” protein not directly attaching to 
D N A  [15, 16]. Developm ent- and tissue-specific 
gene expression is thought to be regulated by the 
interaction of enhancer- and prom oter-bound, 
general and tissue-specific factors with D N A , with 
one another, and possibly with interm ediary fac­
tors, thereby forming a preinitiation complex with 
properties com parable to a jigsaw puzzle [3].

W hile most o f our current knowledge on tran ­
scriptional regulation derives from  w ork on yeast, 
Drosophila, and m am m alian cells, it is now com ­
plemented by considerable progress in plant sys­
tems. Trans-acting factors binding to cw-regulato- 
ry D N A  sequences o f a variety o f plant genes have 
been characterized in vivo and in vitro. Genes cod­
ing for regulatory proteins have already been iso­
lated and are currently being characterized. In 
some instances, m am m alian and yeast transcrip­
tion factors were shown to function in plants and 
vice versa.
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D NA-protein interactions in plant genes

A variety o f in vitro m ethods has been developed 
for the analysis o f protein-D N A  interactions. A ft­
er perform ing the initial binding reaction (nuclear 
extracts are mixed with D N A  fragm ents carrying 
the native or m utagenized sequence o f interest in 
the presence o f specific or nonspecific com peti­
tors), resulting complexes can be characterized by 
gel re tardation  [17], nitrocellulose filter binding 
[18], or “foo tprin ting” , i.e. limited digestion with 
D N ase I, exonuclease III, or treatm ent with DNA- 
reactive chemicals followed by the analysis o f the 
protected D N A  “footprin ts” on a sequencing gel. 
A factor th a t binds D N A  in vitro will not necessar­
ily do so in the in tact cell. To test for in vivo in ter­
actions, in vivo footprin ting  procedures based on 
the genomic sequencing technique have been de­
veloped [20, 21],

Non-sequence-specific interactions

D N A  interacts m ore or less unspecifically with a 
variety o f nuclear proteins. F o r example, the core 
histones build up the basic unit o f eukaryotic chro­
m atin, the nucleosome, and histone H I  is in part 
responsible for higher order chrom atin  structure. 
H istone-D N A  interactions and their role in active 
plant chrom atin  form ation have been reviewed ex­
tensively [22, 23] and will not be discussed here.

High-mobility-group- ( H M G -)proteins also bind 
D N A  with little sequence preference. These p ro ­
teins are m ajor constituents o f eukaryotic chrom a­
tin and have also been characterized in some plant 
species (reviewed in [22, 23]). In m am m als, several 
classes o f these proteins are known. Am ong these, 
H M G  14 and 17 are thought to be involved in the 
form ation o f active chrom atin, and H M G  I, a p ro ­
tein tha t binds preferentially to AT-rich D N A  se­
quences, was suggested to function in nuclear m a­
trix attachm ent o f D N A  [24], Interestingly, two 
nuclear factors (LAT 1 and N A T 1) tha t have 
recently been characterized in different organs of 
soybean fulfill the operational criteria for an 
H M G  I-like protein: they are released from chro­
m atin with a low-salt buffer, are soluble in 2%  
trichloroacetic acid, and bind to AT-rich regions 
in soybean nodulin gene prom oters [25]. A lthough 
no clear function could be assigned to LAT 1 and 
N A T 1, a role in m odulating the chrom atin con­
form ation o f nodulin prom oters as a prerequisite

for the organ-specific in teraction  w ith o ther fac­
tors was suggested [25]. H M G -like proteins b ind­
ing to AT-rich p rom oter regions o f a m em ber of 
the zein gene family have also been found in maize 
nuclear extracts [26].

A nother category o f nuclear factors interacting 
with D N A  non-sequence-specifically comprises 
proteins recognizing m ethylated D N A . Cytosine 
m ethylation, especially if it occurs in the sequence 
context o f C pG  or C pX pG , is thought to be re­
sponsible for gene inactivation in m ost eukaryotes 
including plants (reviewed in [27]). In m am m als, a 
protein was identified th a t binds unspecifically to 
any cluster o f m ethylated CpG  [28], Binding o f this 
protein supposedly stabilizes the 30 nm solenoid 
fiber, so tha t the D N A  is inaccessible for transcrip­
tion factors. This would result in general repres­
sion o f genes th a t possess m ethylated C pG  islands 
in their prom oters [29]. A recent report provides 
evidence th a t sim ilar proteins may also exist in 
p lants [30]. Gel re tardation  experim ents with nu ­
clear extracts from  pea seedlings revealed tha t a 
factor (DBP-m ) recognizes 5-methylcytosine resi­
dues in D N A  w ithout appreciable D N A  sequence 
specificity. F u tu re  research on p lant factors b ind­
ing to m ethylated D N A  m ight shed light on the 
m echanism  o f transcrip tional regulation o f plant 
genes by D N A  m ethylation and help to  answer the 
question as to  why p lan t D N A  is so m uch richer in
5-methylcytosine than  m am m alian D N A  [31].

Non-sequence-specific in teractions with D N A  
could also occur w ith conform ation-specific regu­
latory proteins recognizing D N A  sequence ele­
ments in a non-B -conform ation (e.g. Z -D N A  and 
H -D N A ). The detection o f nuclear factors in ter­
acting with S 1 nuclease-sensitive polypurine/poly­
pyrim idine stretches was reported for several 
m am m alian prom oters (e.g. [32]). However, no 
such da ta  do yet exist for plants.

Sequence-specific interactions

In recent years, m uch w ork has been devoted to 
the sequence-specific in vivo and in vitro in terac­
tions between nuclear p lan t factors and  cw-regula- 
tory sequences from  p lant, viral and T -D N A  
prom otors and enhancers (sum m arized in T a­
ble I). Several conserved m otifs o r “boxes” were 
recognized, and com plex patterns o f interactions 
were observed in m any cases. We confine the pres-



K. Weising and G . K ahl • T rends Article: Tow ards an U nderstanding o f Plant G ene R egulation 3

Table I. In vitro and in vivo in teractions between nuclear proteins and plant-, p lant virus- and T -D N A -derived up­
stream  D N A  sequence elements.
A bbreviations o f m ethods: G R  (gel retardation), D F (in vitro D N ase I footprinting); C F  (in vitro chemical footprin t- 
ing); D M S (in vitro dim ethyl sulfate binding interference); EP (in vitro exonuclease protection); G F  (in vivo genomic 
footprinting). The sources o f  nuclear extracts are m entioned only if isolated from a species different from  the origin of 
the investigated genes.

Origin o f gene(s) and 
nuclear extract

M ethod Recognized motif(s) Binding
factor

Reference

Cauliflower m osaic virus 
(CaM V) 35 S prom oter, 
tobacco extracts

G R , D F, 
D M S

2x T CA C G 85

CaM V 35 S; pea extracts G R , D F 2x T CA C G ASF-1 86
CaM V 35 S; w heat and 
sunflower extracts

G R , D F A C G TCA HBP-1 87

CaM V 35 S; tobacco 
extracts

G R , D F, 
DM S

G A T G T G A T A ASF-2 79

MSV upstream  activating 
sequence; maize extracts

G R 77

T -D N A  octopine synthase 
(ocs) gene; tobacco and 
maize extracts

G R , CF A C G T A A G C G C T T A C G T  
(ocs enhancer)

O CSTF
OCSBF-1

88
89
90 
92

T -D N A  ocs gene; tobacco extract G R ocs enhancer ASF-1 91
T -D N A  nopaline synthase 
(nos) gene; tobacco

G R , D F T G A G C T A A G C A C A T A C G T C A G  
(nos enhancer)

ASF-1 93

T -D N A  nos gene; w heat and 
sunflower extract

G R , D F A CG TCA HBP-1 87

W heat histone H 3 and H 4 
genes

G R , D F, 
D M S

A C G TCA HBP-1 94
97

W heat histone H 3 genes G R H SBF 93

M aize alcohol dehydrogenase 1 
(Adh 1) gene 
(anaerobically induced)

G F A: G G T G T C C G C C  
B l: G T G G  
B2: C C C C G G  
C: G G T G C

119

Maize Adh 1 gene G R B2: C C C C G G A R F -B 2 120

A rabidopsis A dh gene G F , G R , 
D F

C C C C -m otif 
C C A C G T G G  (G-box)

G B F 47
48
49

Rice ra b -16 A gene 
(ABA-responsive)

G R , D F I: T A C G T G G  (G-box) 
11: C C G C C G C G C C T

53

W heat Em gene 
(ABA-responsive)

G R ,
D M S

C A C G T G G C
(G-box)

EmBp-1 54

T om ato  E 4 and E 8 gene 
(ethylene-responsive)

G R ,
D M S

AT-rich motifs 67
68

Rice alpha-am ylase gene 
(gibberellin-responsive)

G R , EP 75

C arro t extensin gene 
(w ound-responsive)

G R , EP AT-rich m otif 

T G A C G T

EGBF-1 69
70
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O rigin o f gene(s) and 
nuclear extract

M ethod Recognized motif(s) Binding
factor

Reference

P o tato  proteinase inhib itor II 
gene (w ound-responsive), tom ato  
extract

G R A A G C T A A G T 121

Parsley chalcone synthase 
(chs) gene (U V-induced)

G F AACCT A A CCT 
T C C A C G T G G C  (G-box) 
A C G T G G A  (G-box) 
C T T C A C T T G A TG T A T C

45
51
52

Snapdragon chs gene; 
snapdragon, petunia, tobacco and 
A rabidopsis extracts

G R C A C G TG  (G-box) CG-1 50

Snapdragon chs gene G R 47 bp repeat 122

French bean chs gene G R , D F 2x C CTA CC (N 7) CT 123

Parsley phenylalanine 
am m onia-lyase and 
4 -coum ara te : CoA  ligase 
genes (UV- o r elicitor- 
induced)

G F ,
D M S

2 constitutive:
TCTC C A C ; T G T C C A C G T
3 inducible:
C TC C A A C A A A C C C C TTC  
C CTA CC, C CG TCC

124

Pea ribulose-bisphosphate 
carboxylase small 
subunit (rbcS)
3 A gene (light-induced)

D R , D F, 
D M S

G T G T G G T T A A T A T G  
(box II)
A TC A TTTTC A C T 
(box III)

GT-1 35
36
37
38
39

Pea rbcS 3 A gene; 
tobacco extracts

G R , D F AT-rich m otif 3A F1 59

Pea rbcS 3 A gene; 
tobacco extracts

G R A TG A T A A G G  (I-box) G AF-1 33

Pea, tom ato  and A rabidopsis 
rbcS genes

G R , D F T C T T A C A C G T G G C A
(G-box)

G B F 40

Pea rbcS-3.6 gene G R A A T A T T T TT A TT AT-1 41

Lem na rbcS gene G R , D F G A T A A G  (I-box) LRF-1 78

A rabidopsis rbcS gene; 
yeast extract

G R ,
D M S

C A C G T G G C  (G-box) 
G A T A A G  (I-box)

G B F
GA-1

57

Rice phytochrom e gene 
(light-repressed)

G R 2 G G TTA A -m otifs GT-1 44

Petunia chlorophyll a/b-binding 
protein  (cab) gene (light-induced)

G R , D F 
D M S

G A T A T A G A TA
(I-box?)

A SF-2 79

Tobacco cabE gene G R A TA A A A A TA A TT AT-1 34

T obacco cabE gene G R G A T A T A G A TA  
G A T A A G  (I-box)

GA-1 34

T obacco cabE gene G R G G G C C G G GC-1 34

Tobacco cabE gene G R ,
D M S

A G A C G T G G  (G-box) G B F 34

T obacco cabE gene G R ,
DM S

7 G G TTA A -like motifs GT-1 34

Soybean nodulin N 23 gene 
(nodule-specific)

G R , D F AT-rich motifs LAT1 
N A T  1 
N A T  2

25
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Origin o f gene(s) and 
nuclear extract

M ethod Recognized motif(s) Binding
factor

Reference

Soybean leghem oglobin (lbc 3) 
gene (nodule-specific)

G R A T-rich motifs 71
72

Sesbania rostra ta  leghem oglobin 
gene; soybean, alfalfa and 
Sesbania extracts

G R A T-rich motifs 72
73

French bean glutam ine synthetase 
gene (nodule-specific subunit)

G R A T-rich motifs PRF-1
PNF-1

74

Soybean ß-conglycinin gene, 
alpha-subunit (em bryo-specific)

G R , EF 2 A A C C CA -m otifs 
A T-rich motifs

SEF-3
SEF-1

62

Sunflower helianthinin gene 
(embryo-specific)

G R , C F A T-rich motifs 61

Soybean lectin gene 
(embryo-specific)

G R , D F 2 A T-rich m otifs 60

French bean ß-phaseolin gene 
(embryo-specific)

D R , D F, 
C F

A T-rich motifs 63

French bean ß-phaseolin gene; 
carro t extract

G R A T-rich motifs 64

French bean phytohem agglutinin 
genes (embryo-specific)

G R A T-rich motifs 65

C arro t DC 59 gene 
(embryo-specific)

G R , D F A T-rich motifs 66

M aize sucrose synthase gene 
(transcribed in 
various tissues)

G R , D F, 
DM S

A T-rich motifs
C A G C A T A T G C T A
T T G C C G A T C A

MNP-1
M N P-2

76
125

M aize zein gene pM S 1 
(endosperm-specific)

G R , N C, 
D F

A T-rich motifs
C A C A T G T G T A A A G G T
A A A G G T A A A G G T G T G T

126
127
26

M aize ribosom al D N A G R , D F, 
E F, N C

possible hairpin 128

M aize En-1 transposon D M S 2 x C C G A C A C TC T TA tnpA 129
130

Pea ferredoxin gene 
(Fed-1)

G R BC1
BC2

131

ent discussion to  some w ell-characterized elements 
originally detected 5' to the transcrip tional start 
site o f some light-regulated genes, and the cauli­
flower mosaic virus 35 S gene. Some o f these 
m otifs, however, occur in a variety o f o ther, and 
sometimes seemingly unrelated, p rom oter and  en­
hancer elements.

Light-regulated genes: a variety o f  cis- and trans­
acting elements

A t least five different factor-binding m otifs have 
been detected 5' to  the transcrip tion  start site o f

light-regulated genes, e.g. w ithin the prom oters o f 
rbcS (ribulose-bisphosphate carboxylase) and cab 
(chlorophyll-a/b-binding protein) genes from  dif­
ferent species (reviewed in [33, 34]):

-  “box II” and “box I I I” bind a factor called
GT-1 [35-39];

-  the “G -box” binds a factor called G B F [34, 40];
-  A T-rich elements bind a factor called AT-1 [34, 

41];
-  a G C-rich element binds a factor called GC-1

[34];
-  the “I-box” binds a factor called GA-1 [34],
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GT-1 binds to redundant box II- and box III-ele- 
ments o f the pea rbcS3 A gene prom oter and may 
be involved in both  positive and negative pho to ­
regulation o f the gene [42, 43]. Critical spacing re­
quirem ents for GT-1 binding sites have been ob­
served for G T-1-m ediated reporter gene transcrip­
tion in transgenic plants [37]. Changing the 
distance between box II and III had a profound ef­
fect on transcrip tion, but not on GT-1 binding. 
Obviously, GT-1 binding may be productive or 
nonproductive. The factor is thus necessary, but 
not sufficient for light-regulated transcription. Al­
though itself being probably  involved in light regu­
lation [38], GT-1 binding requires o ther factors for 
the form ation o f a stable transcription initiation 
complex. Interestingly, GT-1 binds also to p ro ­
m oter elements o f the rice phytochrom e gene, 
which is negatively regulated by light [44], Binding 
o f one and the same factor may thus exert opposite 
effects in different genes.

A lthough detected first in the prom oter of a to ­
m ato rbcS gene [40] and present in the 5' upstream  
region o f a t least 13 rbcS genes from  different spe­
cies [45] and a cab gene from  Nicotiana plumbagi- 
nifolia [34, 46], “G -box” motifs (C C A C G TG G ) 
are not restricted to photosynthetic genes, and not 
even to  plants. G -box-like sequence elements oc­
cur in the prom oters o f genes responsive to various 
kinds o f stimuli, such as the Arabidopsis alcohol 
dehydrogenase gene [47-49], Antirrhinum  [50] and 
parsley chalcone synthase genes [45, 51, 52], ab- 
scisic acid-responsive genes from  rice [53] and 
maize [54], tissue-specific genes such as the po tato  
patatin  gene [45], the yeast pho4  gene [55] and 
even m am m alian genes [56]. G -box motifs com ­
m only interact with nuclear factors. In vitro studies 
with the tom ato  rbcS prom oter identified a G-box- 
binding protein called G B F [40]. A probably relat­
ed factor called CG-1 was found to bind in vitro to 
a G -box within a UV-responsive element o f a 
snapdragon (Antirrhinum majus) chalcone syn­
thase prom oter [50]. A yeast factor bound in vitro 
to a G -box sequence derived from  an rbcS gene 
o f Arabidopsis [57], M oreover, the presence o f 
G-boxes upstream  o f a truncated  prom oter acti­
vated transcrip tion o f an adjacent gene in trans­
form ed yeast cells [57], Obviously, both the G-box 
and its corresponding binding factor(s) are ubiqui­
tous elements for transcriptional regulation in a 
variety o f evolutionary distant organisms.

The presence o f a G -box-binding factor in a nu­
clear extract, as determ ined by in vitro binding as­
says, does not necessarily implicate its binding to 
the D N A  in vivo. In the in vitro study with the 
snapdragon chalcone synthase gene [50], CG-1 
was present irrespective o f UV induction, and 
binding was disturbed by cytosine m ethylation. 
In contrast, in vivo footprin ting o f the parsley 
chalcone synthase p rom oter region revealed 
UV-inducible factor binding to a G -box sequence 
[45, 51]. In com parative studies on the Arabidopsis 
A dh p rom oter G -box it was shown th a t in vivo 
binding occurred in suspension-cultured cells, but 
not in leaves [48]. However, a factor binding to the 
G -box in vitro was present in nuclear extracts from 
both cell types [48, 49]. The observed differences 
between in vivo and in vitro experim ents m ay be ex­
plained by m ore complex in vivo in teractions with 
accessory factors, and also by in vivo m odifica­
tio n ^ ) o f G BF.

A T-rich elements in pea rbcS and tobacco cab 
genes bind a factor in vitro, called AT-1 [34, 41]. 
Interestingly, a reversible m odulation  o f binding 
capacity by phosphorylation  was observed in this 
case: AT-1 binds in its non-phosphorylated  state 
and loses all D N A -binding capacity upon phos­
phorylation. D eletion o f the AT-1 binding site 
from  the tom ato  rbcS-3A  prom oter abolishes 
transcrip tion  in transgenic p lants [58]. AT-1 may 
therefore be involved in positive contro l o f gene 
activity. On the o ther hand, three AT-1 boxes re­
side w ithin the negative regulatory element o f the 
Nicotiana plumbaginifo/ia cabE  p rom oter [34, 46], 
so that the influence o f AT-boxes on transcription 
in vivo rem ains to be determ ined. A nother 
A T-binding factor called 3 A F  1 was recently iden­
tified in nuclear extracts from  tobacco [59], This 
factor a ttached  to an A T-rich m o tif in the vicinity 
o f the pea rbcS 3 A TA TA  box. Since a tetram er of 
the binding m otif does no t confer light-regulated 
expression in transgenic plants, and extracts from 
roots as well as leaves do show binding capacity, 
factor 3A F 1 is probably  an accessory factor not 
directly involved in light regulation [59].

AT-rich elements tha t bind nuclear proteins in 
vitro are quite com m on am ong non-photosynthet­
ic genes (see Table I). They have been observed 5' 
to the transcrip tion  start site o f a variety o f em ­
bryo-specific genes [60-66], ethylene- and wound- 
responsive genes [67-70], nodule-specific genes
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[25, 71-74], as well as a rice amylase [75] and a 
maize sucrose synthase gene [76]. A lthough cross­
com petition was sometimes observed, e.g. between 
factors binding to A T-rich regions from  sunflower 
helianthinin and French bean phaseolin genes [61, 
63], or from  different nodule-specific genes [25, 
74], the relationship o f all these factors am ong 
each other and to AT-binding factors from  light- 
regulated prom oters is still unclear. W hile strin ­
gent sequence requirem ents for binding were 
sometimes observed (e.g. for PNF-1 binding to the 
T A TTT(T/A )A T-m otif in the French bean glu­
tam ine synthetase prom oter region; [74]), abund­
ance o f AT in a target sequence per se seems to be 
sufficient for binding in o ther cases [63]. Since p ro ­
teins binding to AT-rich p rom oter regions o f a 
soybean nodulin gene [25] and a maize zein gene
[26] were identified as H M G  1-like, this class o f nu ­
clear proteins may also be involved in reported 
A T-binding with limited sequence specificity.

A GC-rich m otif bound by a nuclear factor 
called GC-1 has been detected upstream  o f a Nico- 
tiana plumbaginifolia cab gene [34], N o G C-rich 
motifs have yet been reported  from  other p h o to ­
synthetic genes. A similar motif, however, occurs 
twice in a maize streak virus p rom oter and is 
bound by a maize nuclear protein [77].

G A T A motifs upstream  o f the Nicotiana plum ­
baginifolia cab gene bind GA-1 [34]. A related se­
quence, referred to as “ I-box” [40], occurs in o ther 
prom oters and also binds nuclear factors. A 
G A TA -m otif within an rbcS gene prom oter from  
Lemna gibba binds a factor called LRF-1 [78]. In 
the Lemna rbcS prom oter, the concentration o f the 
factor was dependent on light, and binding could 
be enhanced by a 2-min exposure o f the plant to 
red light. Protein binding to G A TA -related motifs 
may thus be involved in gene regulation by phy to ­
chrome. A nother factor was shown to bind to a 
conserved GA TA  m otif in a petunia cab prom oter 
and, surprisingly, also to a similar m otif between 
position -9 0  and -9 8  o f the cauliflower mosaic 
virus (CaM V) 35 S p rom oter ([79], see below). The 
factor, present in tobacco leaf, but no t in roo t ex­
tracts, was called ASF-2 [79], Finally, a factor 
called GAF-1 has been prepared from  tobacco 
leaves that binds to the I-box (A T G A T A A G G ) o f 
the pea rbcS3A  gene [33]. This factor is present in 
greater abundance in extracts from  light-grown as 
opposed to dark-grow n plants [33]. The structural

and functional relationships between GA-1, G A F-
1, ASF-2 and LRF-1 are as yet unknown.

W hich im plications do all these motifs and their 
binding factors bear for light regulation? W ith the 
exception o f LRF-1 in Lemna  [78], and GAF-1 in 
tobacco [33], all the factors were similarly ab u n ­
dant in nuclear extracts from  light- as well as 
dark-grow n plants. Light-dependent m odification 
m echanisms (e.g. repressor binding or phosphory­
lation) may thus convert a putative light-respon­
sive factor from  an active to an inactive configura­
tion and vice versa. Some factors may not be light- 
responsive a t all, but rather influence tissue specif­
icity or rate o f transcription. The ubiquitous 
G -box may have a general function, and m ay only 
work in concert with gene-specific transcription 
factors. It seems plausible tha t complex in terac­
tions between light-responsive (GT-1? LRF-1?), 
general (GBF?), and accessory factors (3A F1?) 
occur prior to the form ation o f a functional in itia­
tion complex upon light induction. The availabili­
ty o f an increasing num ber o f cloned genes coding 
for plant trans-acting factors (see below), as well as 
o f a p lant in vitro transcription system [33] will 
further accelerate research in tha t area.

“ Constitutive”promoters: TGACG-bindingfactors

One o f the best characterized prom oters func­
tioning in plants is the 35S prom oter from  cauli­
flower mosaic virus that directs the constitutive ex­
pression o f genes in transgenic plants and p ro to ­
plasts [80, 81]. Extended deletion and dissection 
analyses provided evidence tha t this p rom oter is 
com posed o f several functional elements. Each ele­
m ent directs a distinct pattern  o f tissue- and devel­
opment-specific transcription in transgenic plants 
[82-84]. Constitutive expression thus results from  
the com bined action o f all the regulatory units in­
volved [84], A t least two o f these elements were 
shown to bind transacting factors:

-  one element (as-1) contains two TG A C G -m otifs 
between —82 and -6 6 , binds a factor called 
ASF-1, and confers root-specific expression 
[85-87];

-  ano ther element (as-2) contains a G A T G T G A - 
TA -m otif between -9 8  and -9 0 , binds a factor 
called ASF-2 and confers tissue-specific expres­
sion in trichomes, vascular elements, epiderm al 
and mesophyll cells [79],
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Interestingly, both these motifs and the corre­
sponding factors do not only appear in the CaM V 
35S prom oter. G A TA  motifs are present in the 5' 
region o f various light-regulated genes (see above), 
and T G A C G -related motifs that bind nuclear 
proteins have also been found upstream  o f the 
T-D N A -derived octopine [88-92] and nopaline 
synthase genes [93], and a wheat histone 3 gene [87, 
9 4 -9 6 ). All these factors compete specifically with 
each o ther for binding in gel retardation assays 
[89, 96], However, their binding dom ains are p rob ­
ably not identical, since TG A C G -related motifs 
differ considerably in their num ber (m onom er vs. 
dimer binding), distance, and orientation to one 
another [93], Cloning and sequencing of the p u ta ­
tive cD N A s coding for ASF-1 from tobacco [97], 
HBP-1 from wheat [98], and OCSBF-1 from maize 
[92] showed that these factors are members o f the 
group of leucine-zipper proteins, together with a 
variety o f transcription factors derived from yeast 
(e.g. G C N 4) and mammals (e.g. the cAM P- 
responsive element binding protein; CREB). It 
seems likely th a t all these TG A C G -binding factors 
belong to a family of regulatory proteins widely 
distributed in the eukaryotic kingdoms. A recent 
study on a specific factor (EmBP-1), binding to an 
abscisic acid-responsive element from the wheat 
Em gene [54] revealed that TG A C G -binding fac­
tors and G -box binding factors may be related to 
one another. A D N A  fragm ent that contained the 
recognition sequence for wheat HBP-1 com peted 
with the abscisic acid-responsive element for 
EmBP-1 binding. The recognition sequence of 
EmBP-1 (C A C G T G G ), however, perfectly m atch­
es the critical G-box core o f seven bases [52]. By 
aligning G-box- and TG A C G -related motifs (see 
Table I), it is obvious that an ACGT-sequence is 
com m on to both motifs in all cases. The possibility 
o f a close relationship is further supported by the 
fact that both  motifs are recognized by leucine-zip- 
per proteins [54, 92, 97, 98], The binding o f dimeric 
leucine-zipper factors requires binding sites o f 
dyad sym m etry [8, 15, 99], which are represented 
by the perfect G-box as well as, e.g., the ocs enhan­
cer. Substantial evidence for dimer binding was in­
deed obtained in the latter case [91]. It is tem pting 
to speculate that, in analogy to m am m alian and 
yeast leucine-zipper factors [8, 9, 11], families o f 
G -box- and TG A C G -binding factors exist in 
plants that are able to form hom o- and heterodi­

mers. If these protein complexes differ in their ca­
pacity to stim ulate transcription, different com bi­
nations o f a limited num ber o f family members 
may provide the plant cell with a wide spectrum of 
regulatory potentials. Such potentials may be fur­
ther expanded by post-transcrip tional m odifica­
tion o f factors in response to external stimuli, e.g., 
by phosphorylation  [41, 100, 101] or by cytosin 
m ethylation o f target sites which inhibits factor 
binding [50, 102],

The isolation o f  genes encoding plant trans-acting 
factors

Several strategies were applied to identify genes 
coding for plant regulatory proteins. One ap ­
proach was to analyze regulatory m utants of 
maize [103-110]: several maize genes involved in 
the regulation o f the anthocyanin biosynthesis 
pathw ay have been cloned by transposon tagging, 
and their cD N A  or genomic sequences have been 
determ ined. Their deduced protein sequences ex­
hibited considerable similarities to m ammalian 
transcrip tion  factors. F or example, the c 1 regula­
tory locus o f maize encodes a protein with similari­
ties to the D N A  binding dom ain o f hum an p ro to ­
oncoproteins such as c-myb [104], A variety of 
cD N A s from  maize and barley share this similarity 
[105]. B-I and B-peru. two members of the regula­
tory B gene family, as well as Lc, belonging to the 
R gene family, encode proteins tha t exhibit simi­
larities to the helix-loop-helix D N A  binding/di- 
m erization m otif o f hum an L-myc gene products 
[106, 107], B-I, B-peru, c l  and Lc-encoded pro ­
teins possess regions rich in acidic amino acids 
reminiscent o f activation dom ains [1-3]. The ob­
served similarities to known D N A -binding and ac­
tivation dom ains support the proposed role of c 1, 
B and R gene products as /rcws-acting factors re­
gulating the activity o f anthocyanin biosynthesis 
genes. In fact, transactivation  o f these genes lead­
ing to pigm entation o f transgenic maize tissues 
was observed after transfer o f B or Lc regulatory 
genes to  maize cells by particle bom bardm ent [107, 
108]. A nother regulatory gene from maize, the 
opaque-2 gene, that is involved in zein deposition 
in maize endosperm , encodes a protein with struc­
tural similarities to the leucine-zipper class o f 
m am m alian transcrip tion factors [109, 110], A 
ß-gal-opaque-2 fusion protein synthesized in
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E. coli was able to bind to the 5' region o f a genom ­
ic zein gene clone [110].

H om eotic genes involved in development-spe- 
cific gene expression have also been isolated from 
other p lan t species. The Arabidopsis homeotic 
gene agamous was isolated by T -D N A  tagging
[111]. This gene encodes a flower-specific protein 
tha t shares sim ilarities with the hum an serum-re­
sponsive factor, a yeast factor involved in regulat­
ing m ating-type-specific genes, and the gene p rod­
uct o f deficiens (an Antirrhinum majus gene in­
volved in the control o f flower development;
[112]). O bviously, the cloning of regulatory loci by 
transposon  or T -D N A  tagging is a promising 
strategy for identifying and characterizing genes 
coding for p lan t /ra«.y-acting factors.

A nother approach  for the isolation o f genes en­
coding D N A -binding regulatory proteins is just 
as prom ising. It is based on the screening o f an ex­
pression library with a recognition site D N A , i.e., 
a labeled oligonucleotide tha t carries a known cis- 
regulatory D N A  sequence m otif [113, 114]. Using 
this strategy, a variety o f genes encoding plant nu­
clear factors could be isolated and characterized: 
genes for putative leucine-zipper proteins from to ­
bacco [97], w heat [54, 98] and maize [92], as well as 
a putative zinc-finger protein from  tobacco [59], 
The feasibility o f this technique will soon allow the 
isolation o f m any m ore genes encoding plant 
trans-acting factors w ith known recognition se­
quences.

Perspectives

The cloning o f p lan t regulatory genes has thus 
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