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The galvanotropic response of the mycelial fungus Neurospora crassa is investigated. The
angle distribution function of growing hyphae is described by a generating function which
contains two non-trivial terms; one for directional growth and one for bidirectional growth.
The following results were obtained. (i) Germ tubes grew towards the anode. (ii) The cellular
response was linear for small sized cells and weaker electric fields. The galvanotropic constant,
Ksrow» Which describes the linear response, was small for short germ tubes or hyphae

Kgrow ' = —20 V-cm™' for [, = 10 um) and large for longer cells (Kggow ™' = —1.7 V-cm™! for
l, = 100 um). The growth coefficient K, of (—18.5 mV) describes the response independent
of cell size. The linear response is explained by the field-induced distribution of charged mem-
brane-bound proteins essential for galvanotropism. (iii) For £ > E; = 3.8 V-cm™!, the linear
response is inhibited (inhibition coefficient K; = 1.11). The inhibition is explained by field-in-
duced changes of the membrane potential. (iv) The galvanotropic response of longer hyphae
was bidirectional. The cells grew on average perpendicular to the applied field. The bidirec-
tional response is proportional to E? with a bidirectional growth coefficient K, of —(0.25 V).
The bidirectional growth is explained by the inhibition of the directed growth process. The
transition from anode-directed to bidirectional growth was a function of the applied electric
field as well as of the tube length (directed growth for E?-/,<4.4 V2-cm™! and bidirectional

growth for £2-/,>4.4 VZ-cm™).

Introduction

A variety of cells including leukocytes, macro-
phages, fibroblasts, amoebae, slime molds, etc.
have the ability to direct their movement in an
electric field. Some cell types like granulocytes,
monocytes, etc. migrate towards the anode and
other cell types like fibroblasts, neural crest cells,
growth cones of neurones, grow towards the cath-
ode [1]. The phenomenological description of these
directed movements are quite well developed,
however, the mechanisms behind the responses
remain obscure.

The orientation or the average drift movement
towards the anode or cathode can be predicted if
(1) the magnitude of the applied electric field
strength and (ii) intrinsic cellular properties quan-
tified by the galvanotactic or galvanotropic coeffi-
cients, are known [2, 3]. In this paper we will show
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that these phenomenological descriptions, already
successfully applied to galvanotaxis [2, 3], chemo-
taxis [2, 3] and contact guidance [4] can also be
applied to galvanotropism.

Galvanotropism is the ability of cells to direct
their growth in an applied electric field. As in posi-
tive and negative galvanotaxis some cell types
grow towards the cathode others to the anode [5].
For example, developing neurones [6], rhizoids of
zygotes of Fucus serratus [7], hyphae and branches
of Aspergillus nidulans [5], and of Mucor mucedo
[5] grow towards the cathode. But rhizoids of zy-
gotes of Ulva and Fucus inflatus [8—10], and the
hyphae and branches of Neurospora crassa, and of
Achlya bisexualis [5] grow towards the anode.
Hyphal tips and germ tubes of Phycomyces blakes-
leeanus grow towards the cathode at high electric
field strengths (E>5V-cm™') and towards the
anode at low field strengths [11]. A similar obser-
vation was made by McGillivray and Gow [5] for
the mycelial growth of Trichoderma harzianum.
The hyphae grew towards the cathode but the
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branches were formed towards the anode. A sim-
ple model is presented which can explain these dif-
ferent cellular responses.

Before a molecular model for galvanotaxis and
galvanotropism can be formulated it is necessary
to have an accurate description of the directed
growth and directed movement of the cells under
investigation. Our mathematical analysis of direct-
ed movement and of directed growth is based on
experimentally determined angle distribution
functions. The method will be demonstrated for
the galvanotropism of growing mycelial fungi
where the angle distribution functions are already
published [5]. This kind of mathematical analysis,
however, is neither restricted to these types of cells
nor to the analysis of electric fields. Other cell
types growing in ordering fields such as magnetic
fields, illumination by light, the concentration gra-
dients of ions and of molecules, can be analyzed in
an analogous way.

Materials and Methods

In order to perform this analysis a detailed
knowledge of how the data were obtained from the
experiments and then stored in form of a distribu-
tion function is necessary. In this context it is also
preferable to have the whole distribution function
for all cells in a population since a large amount of
information is lost if the response of all the indi-
vidual cells is averaged.

McGillivray and Gow [5] investigated the
growth of hyphae Neurospora crassa RL21a un-
der the influence of an electric field. Conidia and
agarose were mixed and poured onto a gel plate
and electric fields were applied using a small DNA
electrophoresis cell. (The low conducting media
(<5mS-cm™") contained 2% (w/v) malt extract
and 20 mM-potassium phosphate buffer, pH 6.5).
At the end of an experiment the gel was removed
and fixed in formalin before examination.

Data Collection

The fixed specimens were observed within the
gels using a microscope at low magnification
(100X). The angle, ®, of a germ tube or of a ma-
ture hypha with respect to the applied electric field
was determined as long as the whole germ tube or
a significant portion of the hyphae was in the focal
plane. The frequency of the angles were represent-
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ed in histograms N(®) for every growth process as
shown in [5].

Before these histograms N(®) are analyzed in
detail we have to know the accuracy of the meas-
ured angle ©. It is not the statistical error of ®
which is of most concern but rather the systematic
error in ®. The problem is that the angle in a pro-
jection plane (focal plane) is determined in two di-
mensions, however we need the angle between the
germ tube or hypha and the electric field in three
dimensional space. A relationship between the ac-
tual angle @ in the three dimensional space and the
angle © determined in the projection plane can be
determined in the following way. First let us as-
sume that a germ tube of length 1 is within the pro-
jection plane so that the angle is determined by 1
and by the radical distance, r, of the hyphal tip to
an electric field line, which extends to the conidium
at the neck of the germ tube (see Fig. 1a). If the
projection plane is rotated around the electric field
vector where the conidium/germ tube junction is a
fixed point then the lengths / and »" and the angle
©® as seen in the new projection plane (see Fig. 1 b)
are altered. The angle @ of the three-dimensional
space can be expressed from the projected germ
tube if #, /' and Ax are measured (a similar ap-
proach can be used for hyphae).

o 5 r?+ Ax?
sin?d = T AL (1)
How far the germ tubes deviate from the projec-
tion plane is described by Ax. This equation can be
approximated for4x </'to
sin’> @ = sin’ O +<AI,X> *
... (higher order terms). 2)

Ax/l' can be estimated from the depth of focus and
the tube length, to be smaller than 0.1. This means

-pole
growth
vector

+pole

Fig. 1. Schematic representation of a germ tube in the
viewing field. a) The germ tube is within an optical plane
as seen in the light microscope. b) This coordinate sys-
tem is rotated so that the germ tube makes an angle to
the plane.
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the angle determined from the projection plane (®)
can be regarded as the real angle (®) between the
oriented germ tube or hypha and the direction of
the electric field.

Symmetry of the assay

The normalized histogram of the angle distribu-
tion function f{®) is the number of cells, N(®), in
every segment of the histogram divided by the to-
tal number of cells ZN(®). The experimental re-
sults have the following symmetry since the physi-
cal state described by ® cannot be distinguished
from the state described by —®.

A®) = f(-D). 3)
Therefore it is not necessary to consider the whole
distribution between —180" and +180". It is suffi-
cient to consider f(®) between 0 and +180°. The
advantage of this procedure is that the number of
cells in every segment in the histogram can be in-
creased by reassigning all negative angles to posi-
tive ones. Therefore the statistical error decreases
since each segment now containes twice the num-
ber of measurements.

Every assay is checked for systematic errors by
quantifying the deviation from the symmetry rela-
tion mentioned above. For example if the electric
field vector is altered in its original direction then
the mean of sin @ is no longer equal to zero. (sin
@) is zero if the distribution is symmetrical (Eqn.
[3]). The control parameter |(sin ®)| was in all ex-
periments less than 0.05.

Generating function

The angle distribution function, f{®), is always
positive, and therefore it can be expressed by a new
function, V(®), — the generating function — with-
out losing information [12].

AD@) = . 4)

In the next step, V(®) is described by a Fourier
series [2, 3].

In physical systems the generating function has
a theoretical background: the Boltzmann factor
which is the integrated force or torque divided by
the thermal energy. In biological systems the ge-
nerating function is equivalent to the integrated
primary cellular signal divided by the square of the
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noise amplitude in the signal transduction system
[13].

One obtains after applying the symmetry opera-
tion (Eqn. (3)).

V(D; E) = ay(E) + a)(E)-cos® +
a(E)-cos 2D + --- (%)

The unknown coefficients ay(E), a,(E), ---, are de-
termined by fitting Eqn. (4) and (5) to the experi-
mentally determined distribution function. For
this fit the natural logarithm of the experimentally
determined angle distribution function is plotted
versus cos O.

The calculation of In f{®) often presents some
problems when the number of data points is low
since then it is not uncommon to find several seg-
ments of the histogram unoccupied. In f{®) would
be undefined (—0) for such segments. One simple
procedure is to replace the value of each segment
with the average of that segment and its two clos-
est neighbours. Then, only if all three segments
have an “N” of zero will the average be zero. In
most cases this will provide a non-zero value, and
will also smooth out the distribution. If there are
still sharp discontinuities in the distribution, this
procedure can be repeated a second time. For
highly oriented distributions, it is not uncommon
to find large regions with N(®) = 0. In these in-
stances the distribution can only be evaluated over
the non-zero region. After data smoothing is per-
formed, the natural logarithm of each segment, In

S(®D), is calculated and plotted versus cos @ to de-

termine ay(E), a,(E), a,(E), ---. These coefficients
can be interpreted as follows:

(i) The coefficient a,(E) is the least important
term describing only the calibration of the distri-
bution function.

(11) The coefficient «,(E) describes the mean di-
rected growth. For examplea, > 0and a, = 0, a; =
0, ---, represent cells growing on average parallel
to and in the direction of the electric field vector
and ¢, < 0 and a, = 0, -+, represent cells growing
on average parallel to but opposite to the electric
field vector. The plot of In f{®) vs. cos D is a
straight line in this case. The slope of the line yields
the coefficent ;. When |a,| is large the angle distri-
bution is narrow; when |g,| is small the distribution
is broad.

(i11) The coefficient a,(E) describes the mean bi-
directional growth. For example ¢, > 0 and a, = 0,
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a; =0, ---, the cells grow on average with the same
probability parallel and antiparallel to the electric
field vector and for a, < Oand @, = 0, a; = 0, ---,
the cells grow on average perpendicularly to the
electric field. The plot of In /(®) vs. cos @ is a para-
bola in these cases. The curvature or more accu-
rately the second derivative of this curve yields the
coefficient a,. The angle distribution is norrow
when |a,| is large and broad when |a,| is small.

DOS(’-VESPOHS@ curve

The directed growth process can be quantified
by the average of cos @ (= (cos @) = (P,))[5].
(cos @) = [cos D - f(D) - d . (6)
Eqn. (6) quantifies the average directed growth
process in a plane (equivalent to the focal plane of
the microscope). (cos @) is + 1, when all cells grow
parallel to E and towards the cathode. (cos @) is
—1 when all the cells grow opposite to E towards
the anode. (cos @) is zero when the cells grow
with random orientation. McGillivray and Gow
[5] multiplied {cos (® —180")) by 100 and calling
this “percentage polarization”. The angle was de-
fined with respect to the positive pole (anode). @ is
the angle between the growth vector and the elec-
tric field vector. Another frequently used defini-
tion measures the angle towards the cathode. The
magnitude of (cos @) is the same irrespective of
whether angles are measured with respect to the
positive or the negative poles.

Eqn. (6) can be equated with Eqn. (4) by assum-
ing that the angle distribution function has only
one non-trivial term @, # 0 and @, = 0,a; = 0, -+~
il ()

= Nl
(cos @) Iiay)
I,(a;) and I(a,) are hyperbolic Bessel functions
which are tabulated in many mathematical hand-
books (as e.g. Abramowitz and Stegun [14]). A
program (ratio of the Bessel functions) is available
from one of the authors (H.G.).

If one is interested in the directed growth proc-
ess in the three-dimensional space then the Eqns.
(6) and (7) have to be replaced by

+m/2

(cos D) 5 4im =27 [ cos@-f(D)-sin®-d D

-n/2

(N

=cotha, — —

®)
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The bidirectional growth process in a plane
(focal plane of the microscope) can be quantified
as the average of cos 2®

(cos 2@) = [cos 2d - (D) - d D. 9)
(cos 2®) is +1, when all cells grow parallel or an-
tiparallel to E. (cos 2®) is —1 when all the cells
grow perpendicularly to E. (cos 2®) is zero when
the cells grow randomly.

The bidirectional growth process in three-di-
mensional space can be quantified as the average
of the second Legendre polynomial P, (cos @)

/2 ]
(Py)y =21 | 7(3coszd) - 1) f(®) sind-d].
-n/2 (10)

Results and Discussion
Directed growth

Short germ tubes of N. crassa growing in an
electric field are nearly straight. This means that
when a spore outgrows in a certain direction the
germ tube maintains this direction for some time.
The orientation of the germ tubes in an electric
field can therefore be measured readily, and the
average cos @, as a function of the applied electric
field, can be determined. A plot of these measure-
ments can be regarded as the dose-response curve.
The electric field strength £ which is applied to the
cells is the dose and the cellular response is quanti-
fied by the average cos ® (Fig. 2a). The experi-
mental data can be fitted to a theoretical curve
(Egn. (7)) if one knows the relationship between
the coefficient @, and the applied electric field
strength.

In weak electric fields ¢, is linear in E.

a,(E) = Kgrow " E. (11)
The linear response of the cells to the applied elec-
tric field is described by K;row- The dose-response
curve of short germ tubes is shown in Fig. 2a. All
the measured values can be approximated to a
linear function (Eqn. (11)) in connection with
Eqn. (7).

The galvanotropic constant, K;gow. describes
how sensitive the spores are to the exogenous elec-
tric field. The best fit to the data of N. crassa pro-
vides a value of Kgrow = (=20 V-em )", The
negative sign of K;row indicates that the germ
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Fig. 2. Dose-response curve of a) spores (Kgrow ' =
—20V-cm™', [, = 10um), b) parental hyphae (Kgrow ' =
-23V-em™!, K; = 1.106, /[, = 100um, and E, =
3.8V-cm™'). The data are taken from McGillivray and
Gow [5]. The lines are theoretical predictions (Eqns. (7),
(11),and (13).

tubes grow in general towards the anode, in the
opposite direction to the electric field vector.
Ksrow 1s also a function of the germ tube length
since Kgrow 18 (=20 V-ecm™)7! for 10 pm germ
tubes and (—1.7 V-cm™')"! for 100 pm germ tubes.
To describe this effect another coefficient, Kp
(P for polar), is introduced as
ly
7([_)— s
where /; is the size of the cell. K}, has the dimension
of volts and its absolute value is proportional to
the voltage drop along the membrane induced by
the applied electric field. This means the actual pri-
mary cellular signal is proportional to the applied
electric field strength times a characteristic length
of the cell. K is —18.5 mV for conidia of N. crassa.
It is worth while noting that the galvanotactic
responses of granulocytes [15] is very similar in
its description to the galvanotropism of fungal
spores. These experiments can also be described by
a linear term and the coefficient is defined in the
same way as for galvanotropism (Eqn. (12)): The

Korow = (12)

H. Gruler and N. A. R. Gow - Growth of Fungal Hyphac

galvanotactic constant is (=2 V-cm™')"'. A volt-
age of —2 mV is obtained by taking 10 um as a typ-
ical cell length [15].

The galvanotropic response of germ tubes long-
er than 100 um cannot be described by a linear re-
sponse in E. The dose-response curve for long
germ tubes is shown in Fig. 2b. At low electric
field strengths the average of cos ® increases with
increasing £ and at high electric fields the average
of cos @ decreases with increasing £. The average
cos @ can be used to determine the a, value by
using Eqn. (7). (They are identical with those
shown in Fig. 3.) g, increases linearly with increas-
ing field strength but above a threshold value, E|
(= 3.8 V-em™ ), g, then decreases with increasing
field strength.

g = %.(E_KI(E—EO)) for E> E,. (13)

The low field strength (E < E; = 3.8 V-cm™! or
Iy E, = 38 mV) are approximated by Eqn. (13)
yielding a coefficient, Kp of (—18.5 mV). The inhi-
bition coefficient, K|, describing the response
above the threshold field, £, is 1.11. Galvanotaxis
of granulocytes and neural crest cells at high electric
field strengthsis also described by Eqn. (13).

The galvanotropic response of the directed
growth changes sign at a critical field strength E,
(= Ey-K;*(K,—1)""). This critical field strength
was observed in several experiments. It seems that
the response of N. crassa changes sign at a field

“strength of about 40 V-cm™! (see Fig. 3). For hy-
phal tips and germ tubes of Phycomyces this criti-
cal field was actually observed. They grow towards
the anode below 5 V-cm ™! and toward the cathode
above 5 V-cm '[11].

The linear response and the inhibition of anodo-
tropic growth at high electrical field strengths indi-

3 v
| S
a1 Ir/ °
B, ok 10 20 30 40
T
5 — Ef—
-1 \ .
-2 . a,\-

Fig. 3. Directed (a,) and bidirectional (a,) growth coeffi-
cient as a function of the applied electric field strength.
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cates that the electric field can interact with the cell
in two different ways. (i) The applied electric field
may create an electric field parallel to the mem-
brane surface so that charged membrane-bound
proteins which are essential for galvanotropism
are caused to migrate by lateral electrophoresis or
electroosmosis. The distribution of the charged
membrane-bound particles can be regarded as the
primary cellular signal. The concentration differ-
ence of these particles at two parts of the mem-
brane would then depend on the potential differ-
ence between these two points. This potential dif-
ference is proportional to the applied field strength
and to the size of the cell and consequently one
would expect that galvanotropism would be de-
scribed by a coefficient which has the dimension of
a voltage as actually found in this analysis. (ii)
The applied electric field may also induce a change
in the transmembrane potential difference. The
disturbance would again be proportional to the
applied field strength and to the size of the cell.
The membrane potential difference and the ion
concentrations inside and outside the cell act as a
driving force for ion transport. If the membrane
potential difference is altered when the ion concen-
trations in the cell are constant then there would
exist a value where the flux of one type of ion can
change its direction of movement. Substantial
changes in the ion fluxes could occur when the
membrane potential difference is altered by /,- E,
(inhibition) as well as /- £, (when the response to
the field is changed in direction).

Bidirectional growth

The generating function can be obtained from
the measured histograms which characterize the
growth in an electric field. First the histograms for
N. crassa were smoothed then the symmetry oper-
ation (Eqn. (3)) was applied in order to minimize
the statistical error. In the last step the natural log-
arithm of the angle distribution function was plot-
ted versus cos ®@. The results are shown in Fig. 4.
All the histograms can be described using three
coefficients ay(E), a,(E), and a,(E). The non-trivial
parameters, @)(E) and a,(E), are shown in Fig. 3.
a,(E) can be described by Eqns. (11), (12), and
(13). The bidirectional growth described by a, can
be approximated by

a(E) = K, (l,- E)". (14)
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The exponent, n, describes the type of response.
For example when n = 1, a direct interaction is ob-
tained where the electric field can immediately in-
teract with the cell. An induced interaction is ob-
tained for n = 2 where the electric field induces a
change in the cell and this cellular change estab-
lishes a new type of interaction with the electric
field. The function of the exponent, n, is obvious in
a physical system; for example with permanent
and induced dipole interactions with electric fields.
The direct interaction is due to the permanent elec-
tric dipole interaction with the applied field, yield-
ing a linear dependency in E, and the induced in-
teraction occurs when the electric field induces an
electric dipole and this dipole interacts in turn with
the applied electric field resulting in a £* depend-
ence. Unfortunately the uncertainty in the data
points is so large that we can not determine the ex-
ponent n. But below we will give some arguments
which support an exponent of two. The bidirec-
tional galvanotropic coefficient, K,, is —(0.25 V)2
for /, = 100 um. The negative sign indicates that
the bidirectional growth is perpendicular to the ap-
plied field. K, describes the natural sensitivity of
the bidirectional state of the growing cells in an
electric field. It is obvious that the directed and the
bidirectional growing states of the parental hyphae
have completely different sensitivities.

Transition from directional to bidirectional growth

On can predict the transition from the direction-
al to bidirectional growth from the magnitude of
the coefficients ¢, and a,. If la,1>1a,| the directed
growth is more pronounced than the bidirectional
one. However, if la,1<la,| then the bidirectional
growth is more pronounced than directed growth.
The transition is postulated when la, | equals la,|.
From Eqns. (13) and (14) we obtain for K; ~ 1

KIEO
KKy

where E7 is the electric field strength at the transi-
tion point. This result is obtained assuming that
the bidirectional growth is an induced effect (n =
2). Eqn. (15) predicts that the transition is a func-
tion of the applied electric field strength as well as
the size of the cells. If we use the values of the
above determined coefficient (K, = —18.5mV,
K, =1.11,E,=3.8V-cm ',and K, = —(0.25V)™?)
we obtain for /,- E; = 14 V2-cm™!. McGillivray

Iy Ex? = (15)
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Fig. 4. Natural logarithm of the angle distribution of
fungal hyphae in electrical fields between 0 and
40 V-cm™" as a function of cosine®. a) 0 V-cm .
b)2.5V-ecm!, ¢) 50V-ecm!, d) 10 V-cm™',
€)20V-em ', ) 30 V-cm ™' and g) 40 V-cm~'. The data
are taken from McGillivray and Gow [5]. The fitting
parameters a, and a, are shown in Fig. 3.
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and Gow [5] determined this transition from direc-
tional to bidirectional growth for different hyphal
lengths. From their experiments one finds that the
square of the transition field strength times the size
of the cell describes the relation between the length
at which the change in response occurred at differ-
ent electrical field strengths as predicted by Eqn.
(15). This suggests that the exponent, n, is two
since the dimensions of the theoretical prediction
and the experimental result are the same. The bidi-
rectional growth of N. crassa is an induced effect.
The experimentally determined value of /;- £7? is
4.4V?-cm™! (Fig. 5 of ref. [5]). The model does not
predict very well the absolute value of /,- £;2.

Bidirectional orientation is also observed in gal-
vanotaxis of fibroblasts [1] and of neural crest cells
[16]. The exponent, n, for the bidirectional orienta-
tion of fibroblast is two [1] and therefore the orien-
tation is also an induced cellular response as in the
bidirectional growth of N. crassa.

A possible model for the bidirectional orienta-
tion and growth can be proposed based on an ac-
cumulating inhibition of the directed migration or
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growth as the electric field is increased. For sim-
plicity let us assume the cells are spherical. The
field-induced changes in the transmembrane po-
tential difference is greatest at the membrane areas
facing the anode and the cathode, and consequent-
ly we expect in these zones the greatest inhibition.
There is no change in the transmembrane potential
difference in those areas where the applied electric
field is perpendicular to the normal of the mem-
brane. We suggest that the strong electric fields
may push the membrane areas with maximum sen-
sitivity from the pole towards the equator. The
electric field therefore act first in a direct way and
then in an induced way on the cell. From this one
predicts a response with a square dependence on
the magnitude of the electric field.
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