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A detailed analytical and numerical analysis of a simple reaction-diffusion model of the source 
of non-homogeneities and arrhythmias in an originally homogeneous reaction system is pre­
sented. Solution, bifurcation and evolution diagrams are used to describe the behaviour of the 
model. It is shown that under certain conditions steady and/or oscillatory nonhomogeneous states 
are the only stable solutions of the model. These phenomena are essentially not dependent on a 
particular reaction kinetics. A possible relevance to some biological situations is discussed.

I. Introduction

Cell systems with intercellular communication 

and properly defined set of chemical reactions 

occurring in individual cells serve as widely studied 

models of tissues and cell populations. Thus Turing

[1] has formulated well known reaction-diffusion 

model of morphogenesis on the basis of coupled cell 

systems with mutual mass exchange by diffusion. 

Gmitro and Scriven [2] and Othmer and Scriven [3] 

have studied various problems of stationary and 

dynamic patterns in cellular networks and started a 

renewal of interest in the theoretical aspects of 

Turing’s theory. A model of chemical oscillators 

confined to two boxes coupled by diffusion through 

a semipermeable membrane has been used by 

Tyson and Kauffman [4] to describe biochemical 

control of the mitotic cycle in the acellular slime 

mold Physarum polycephalum. The kinetic mechan­

ism of chemical oscillations was described by a set 

of equations used by Prigogine and Lefever [5] in 

the original study of two box diffusion problem 

(Brusselator model). Tyson and Kauffman have 

found that both homogeneous and inhomogeneous 

(different in the two cells) steady states and limit 

cycles can exist for specific values of reaction and 

diffusion parameters. The authors have stressed that 

the existence of inhomogeneous limit cycles is of 

considerable theoretical significance in the under­

standing of cellular differentiation, which requires 

both “a map”, to provide positional information
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and “a clock” to coordinate activities of the cell 

system in time [6]. Tyson [7] has used a special case 

of coupling between two boxes, somewhat similar to 

our model. Landahl and Licko [8] also studied 

coupled cells with other kinetic systems.

Ashkenazi and Othmer [9] discussed the effects 

of diffusion on the dynamics of biochemical oscil­

lators for general kinetic mechanism and for a 

simplified model of glycolysis. They have found 

that if the diffusion is sufficiently rapid, the popu­

lation of oscillators relaxes to a globally synchron­

ized oscillation, but if the diffusion is slow enough, 

the synchronized oscillation can be unstable and a 

nonuniform (inhomogeneous) steady state or an 

asynchronous oscillation can arise. The authors have 

stressed the significance of these results for models 

of contact inhibition and for the formation of zona- 

tion patterns. The effects of cell density and meta­

bolic flux between cells on the collective dynamics 

of a cell population have been studied by Othmer 

and Aldrige [10]. For diffusion coupled glycolysis 

see also [21-23]. Shapiro and Horn [11] have 

studied analytical criteria relating statics and 

dynamics of a reaction-diffusion cell system to the 

algebraic structure of the underlying reaction 

mechanism. Ross and coworkers [12] discussed co­

operative instability phenomena in arrays of catalytic 

sites. They have also used Prigogine-Lefever Brus­

selator reaction mechanism and predicted condi­

tions necessary for occurrence of oscillations. Ex­

perimental results on oscillatory behaviour in the 

system of two coupled cells with mutual mass ex­

change and the complex Belousov-Zhabotinski
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reaction have been reported by Marek and Stuchl

[13]. Relative stability of coexisting steady states in 

two coupled cells has been investigated recently

[14], and coexistence of various inhomogeneous 

steady states in the hexagonal system of seven 

reaction-diffusion cells has been established ex­

perimentally [15].

II. 1. The Model

In this paper we study a special case of the 

reaction-diffusion cell system, i.e. that of a single 

compartment with diffusional coupling to a homo­

geneous environment. We assume that large number 

of reaction cells with intensive mutual coupling 

surround a single cell or a small assemblage of cells 

with low (impaired) linear diffusion coupling to the 

environmental cells. This model corresponds, for 

example, to the appearance of an inhomogeneity in 

otherwise homogeneous tissue, cf. [16]. We study 

particularly an appearance of non-homogeneous 

solutions in the cells with low coupling, assuming 

that the transport of reaction components from the 

inhomogeneity will not affect the course of concen­

trations in the homogeneous environment.

Let us assume that no spatial gradients of con­

centrations of characteristic reacting components 

exist among the cells within a homogeneous envi­

ronment of volume V and also within an inhomo­

geneity of volume v. Then the system can be 

described as two compartments with a mutual mass 

exchange characterized by a mass transport coef­

ficients, with the rates of reactions dependent on 

concentrations U= ( U\, U„ )  and u = (ux,.. . ,  un), 

cf Fig. 1:

U =f(U )+ -^K (u-U ),  ( la )

ü =f(u) + — K (U -u) .  ( lb )

Fig. 1. Two-compartment model of inhomogeneity.

Here U is an «-vector of concentrations in the 

environment (medium), u is an «-vector of con­

centrations of the same chemical components in the 

inhomogeneity, f  includes kinetic relations and in­

lets of the reacting components, and K = {&,,} is a 

diagonal n x n matrix of transport (diffusion) coef­

ficients.

If the volume V of the environmental compart­

ment is large and the mass transport relatively weak 

(i.e. 0 < &jj 1), then K/V -*■ 0 and we obtain the 

model equations in the form

U=f(U)- (lc)

ü =f(u) + D (U —u). (Id )

Here non-zero elements of the diagonal matrix D, 

du = k\Jv need not be necessarily small as both the 

volume v and ku can be comparable.

The boundary between the compartments can be 

formed, for example, by a semipermeable mem­

brane or by a scar in the tissue, etc.

Our objective is to follow the behaviour of the 

solution of systems of Eqns. (lc , d) in dependence 

on the change of the matrix of transport coeffi­

cients D. The change in D can be, for example, 

interpreted in the following way: the transport 

coefficients du can be written in the form d^ = 

kvJv = k[S/v ~ /“ ', i=\,...,n\ here k[ describes 

the permeability of the boundary between the in­

homogeneity and the environment, S denotes the 

inhomogeneity surface area, v inhomogeneity 

volume and / is a characteristic dimension (S/v is 

proportional to 1//); the change in dVl can thus 

originate either from the change of the character­

istic dimension / (caused e.g. by growth of the 

inhomogeneity) or from the change in the perme­

ability k\ of the boundary.

II.2. Kinetic Mechanism

We have chosen Brusselator kinetic mechanism, 

because it has been widely used in the studies of 

dissipative structures, both steady state and oscil­

latory behaviour are possible in a single compart­

ment, and it is sufficiently simple to enable us to 

obtain at least part of the results analytically. The 

Eqns. (1 c, d) are with the Brusselator mechanism in



X = A-(B + 1 )X + X 2Y\

y = b x - x 2y -

x = A-(B+ \)x + x2y + Dx (X 

y = Bx — x2y + D2(Y — y ) .

Here U = (X, Y) are concentrations of two chemical 

components in the homogeneous medium, u = (x, >>) 

concentrations in the inhomogeneity, A, B reaction 

parameters and Z), and D2 diffusion coefficients 

for the components x and y, respectively. The ratio 

D\/D2 = q will be assumed constant.
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/  (/) = det
B -  1 - 

-B

A2 

-A2-A

If three steady state solutions of Eqns. (2) exist, then 

in addition to SH also a pair of nonhomogeneous 

solutions SN), SN2 exists. They are determined as:

(2 a) X s = A;

* ) ;  F s = B /A ;

(2 b) * i ,2 = [( D2B/(Dx + I)A

± ]J{D2B/(D\ + \)A)2 — 4 /)2)]/2 ; 

yf,2 = (/),+ 1) (A - x l 2)/D2 + B/A . (3 b)

ffl.1.1. Stability of Steady States

Using linearization of Eqns. (2) in the neighbour­

hood of SH and SNi? SN2, we obtain the charac­

teristic equation in the form

det
- (5+  l) + 2 .vs/ - Z ) ,  - A (xs)2

B - 2 x sys ~(xs)2- D 2
= 0 . (4)

III.l. Steady State Solutions

Steady state (S) and periodic (P) solutions which 

occur for model (2) are summarized in Table I. One 

or three steady state solutions can exist.

Single steady state solution is homogeneous (SH) 

and it holds

Xs = x* = A,

Ys=ys = B/A . (3 a)

Four eigenvalues A i,...,A 4 (roots of Eqn. (4)) 

determine stability of the steady state solution in 

question. If the real parts of all eigenvalues are 

negative, the steady state solution is stable. Two 

eigenvalues Aii2 are determined from the quadratic 

equation

/} + {A2 — B + \)A + A2 = 0 . (5 a)

Table I. Possible steady-state and periodic solutions of the model (2).

Steady-state solutions 

homogeneous solution SH

pair of non-homogeneous 
solutions SN ,, SN2

Existence 

exists for all 
A, B, Du q

exists for

2A ][q (D, + 1)

Stability 

stable or 
unstable

stable or 
unstable

B >
fD ;

Periodic solutions

A: Synchronized oscillations in the medium and the inhomogeneity with zero or small constant 
phase shift.

homogeneous solution PH exists for stable or
B > 1 + A2 unstable

necessary condition 
of existence B > 1 + A2

stable or 
unstable

pair of non-homogeneous 
solutions PN ,, PN2

B: Medium is in a steady state and inhomogeneity oscillates

a) Stable steady state in the medium and oscillations in the inhomogeneity have not been 
found.

b) Unstable steady state in the medium and stable or unstable oscillations in the inhomo­
geneity exist (cf complex bifurcations in bifurcation diagram, Fig. 2). These solutions are 
unstable as a whole.
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-----complex bifurcations; A = 2, <7 = 0.1, m — n, m —
number of steady state solutions, n - number of stable 
steady state solutions.

These eigenvalues determine the stability of steady 

states in the medium. The eigenvalues are the same 

as are those for a single reaction cell. When 

B>  \ + A2, the steady state is unstable and stable 

periodic solution bifurcates \ia Hopf bifurcation. 

For B < 1 -I- ̂ 42 the steady states are stable.

The remaining two eigenvalues / 3 4 can be ob­

tained by solving another quadratic equation result­

ing from the second determinant in Eqn. (4). The 

eigenvalues are determined for homogeneous solu­

tions from the relation.

?2 + [a2- b + 1 + (d, + /)2) u

+ (Z)| + 1) (A2 + D2) — D2 B = 0 . (5 b)

These two eigenvalues will have negative real parts 

if the conditions

b < (D^\)(A> + D2) and

D~>

(6)B <  1 + A2 + (D\ + D 2)

are satisfied simultaneously.

If the conditions (6) hold and B < 1 + A2, the 

homogeneous solution SH is stable. Then the second 

condition in (6) is satisfied always, while the first 

condition is satisfied only for properly chosen 

values of Z), and D2. If it holds

- (A2 + D2) < B  <\ + A 2, (7)

then the diffusion interaction causes instability of 

SH even if B <  1 + A2. Small perturbations of the

system will then cause transition to a non-homo- 

geneous solution (SN).

III. 1.2. Real Bifurcations from SH

The situation, where a branch of non-homo- 

geneous solutions crosses a branch of homogeneous 

solutions will occur if at least one of the eigenvalues 

in (5) is zero (we shall call it “real bifurcation”),

i.e. if

(£>, + !) ,
B = — ---- (A2 + D 2) .

D-, ’
(8)

At the points determined by (8) either the branch of 

solutions SN] or the branch SN2 pass through the 

branch of homogeneous solutions SH. Both branches 

SN! and SN2 join at the limit points (cf. Fig. 2). The 

limit points satisfy the condition of zero discriminant 

in Eqn. (3 b),

B = 2A{D\ + \)/]/lh ■ (9)
Stability of non-homogeneous solutions SNj and 

SN2 can be determined, e.g., numerically from 

Eqn. (4) after substitution from (3 b). It has been 

found that for B < 1 -I- A2 either unique and stable 

SH solution exists or there are three steady states 

SH, SN!, SN2 and two of them are stable.

m.2. Hopf (Complex) Bifurcations

Bifurcation of periodic solutions from SH, SN] 

and SN2 takes place when a pair of complex con­

jugate eigenvalues crosses the imaginary axis (Hopf 

or “complex bifurcation”).

Bifurcation from SH occurs if one of two condi­

tions is satisfied. The first one follows from Eqn. (5 a)

B=\ + A 2, (10a)

and from Eqn. (5 b) we obtain second condition

B=\ + A 2 + D\ + D2, B < — --1 (A2 + D2) . (10 b)
D2

If condition (10a) is satisfied, homogeneous periodic 

solution PH (X = x, Y = y) appears. When Z), and 

D2 are chosen in such a way that the condition (7) is 

not satisfied, then PH bifurcates supercritically 

from the stable SH and PH is stable. If the condi­

tion (7) is fulfilled, then in a certain range of values 

of Dj and D2 SH is unstable and therefore the 

homogeneous periodic solution PH is also unstable.
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For B >  1 + A2 SH (and generally all steady state 

solutions) is unstable (cf. Eqn. (5 a)) and thus peri­

odic solutions appearing through condition (10 b) 

are also unstable.

Complex bifurcations from non-homogeneous 

solutions SN, and SN2 (secondary bifurcations) can 

be of two types:

a) Direct bifurcations, caused by passing of a pair 

of eigenvalues in the second determinant in Eqn. (4) 
through imaginary axis. Concentrations in the homo­

geneous medium are in a steady state (which can be 

either stable or unstable), and only the concentra­

tions .y and y in the inhomogeneity oscillate. How­

ever, periodic solutions thus obtained for model (2) 

are limited to small intervals of the values of Z), and 

D2 and, moreover, are unstable.

b) Induced bifurcations; here concentration oscil­

lations in the inhomogeneity are induced by the 

oscillations in the medium. These oscillations are 

nonhomogeneous (X 4= x and Y =1= y) and bifurcate 

from SN, and SN2 when the condition ( 10a) is 

satisfied. The solutions are stable if they branch 

from stable SN, or SN2 as this bifurcation is always 

supercritical.

III.3. Bifurcation, Solution and Evolution Diagrams

As a “bifurcation diagram” we denote the dia­

gram, where the points of real bifurcations and the 

points of complex bifurcations are depicted in 

dependence on one or more parameters. An ex­

ample of such a diagram is shown in Fig. 2. The 

parameters A and q = D x/D 2 are fixed at A = 2 and 

<7 = 0.1, respectively, and the values of B and D x 

are varied. The points of real bifurcation (cf. condi­

tions (8) and (9)) are here depicted in the parameter 

plane B - D x as full lines. Hopf bifurcations from 

SH (cf. Eqns. (10 a, b)), numerically determined 

Hopf bifurcations from SN, and SN2, and points 

of induced bifurcations of periodic solutions are 

all shown as dash-and-dotted lines. The choice 

A = 2 and <7 = 0.1 satisfies the inequality (7) for 

a certain region in the B — D x plane. (This is 

important for bifurcation of induced oscillations, 

see below.)

The curves of real and complex bifurcations 

divide the plane B — D x into parts, where different 

number of steady state and periodic solutions exist. 

The first number written in the sectors of Fig. 2 

denote the total number of steady state solutions

and the second one denotes the number of stable 

ones. When the curve of the complex bifurcations is 

crossed, stability of certain solution can change; 

when the curve of the real bifurcations is crossed, 

both the stability and the total number of solutions 

may change.

The condition for complex bifurcation given by 

(10a) defines the straight line parallel to the axis Dx 

in Fig. 2. This line divides the plane B — Dx into 

two parts, in the upper part all steady state solutions 

are unstable. The curve of complex bifurcations 

given by (10 b) ends at the curve of real bifurcations 

defined by the condition (8), where the correspond­

ing eigenvalues have zero imaginary parts (the point 

V\ in Fig. 2).

At this point starts one of the two curves of the 

secondary bifurcations (the second curve of second­

ary bifurcations starts at the point V2, close to the 

curve of the limit points).

The curve of induced complex bifurcations from 

the non-homogeneous solutions SN, and SN2 cor­

responds to the abscissa LPX LP2 , coinciding with 

the line B = 1 + A2.

“Solution diagrams” — dependences of steady 

state solutions (here characterized by values of x) 

on the values of the parameter Dx at constant values 

of B are given in Figs. 3 a, b, c. The curve of non- 

homogeneous steady state solutions crosses the 

curve of homogeneous steady state solutions at the 

points of real bifurcation. When B < 1 + A2, the 

bifurcation is transcritical (cf. point BP in Fig. 3 a) 

and exchange of stability between SH and SN, or 

SN2 occurs. For B > 1-1-A2 (cf. Fig. 3b, B = 6) are 

all steady state solutions unstable. At the limit 

points (LP in Figs. 3), defined by condition (9), 

coalesce the non-homogeneous solutions SN, and 

SN2. The curves of non-homogeneous solutions 

SN,, SN2 are closed (cf Figs. 3a, b, c). For suf­

ficiently low values of B is the curve of non-homo­

geneous solutions isolated, i.e. it does not intersect 

the curve of homogeneous solutions (cf. Fig. 3 c).

From the point of view of formulation of the 

models of inhomogeneities and, generally, in any 

study of dissipative structures, it is most important 

to study the evolution of steady state and periodic 

solutions with a change of characteristic parameter 

in time [18]. Dependence of a characteristic norm of 

the solution on a changing parameter is then called 

“evolution diagram”. The example of such an 

evolution diagram is shown in Fig. 4, which cor-
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Fig. 3. Steady state solution diagram;-----  stable solu­
tions, ---unstable solutions, A = 2, # = 0.1. a) B = 4,
b) B = 6, c) B = 2.65; BP — bifurcation point; LP — limit 
point, CB - complex bifurcation point.

Fig. 4. Evolution diagram; A = 2, 5  = 4, q = 0.1; 1 — in­
crease of D\; 2 — decrease of D , .

responds to the situation shown in the solution 

diagram 3a. We can observe hysteresis, i.e. different 

course of the concentration in the inhomogeneity 

when D , increases with time (curve 1) and when D x 

decreases with time (curve 2). The decrease of Dx 

may, for example, correspond to the cell growth 

(increase of linear dimension /, cf. section II). Iso­

lated solutions SN| (cf solution diagram 3 c) can be 

reached in the course of evolution only if suf­

ficiently large perturbations around SH occur.

IV. Periodic Solutions

Periodic solutions of Eqn. (2) can be either homo­

geneous (X(t) = x(t), Y ( t )= y ( t )) or non-homo- 

geneous. The uni-directional coupling in the model

(2) causes that oscillations in the medium and the 

inhomogeneity will be always periodic and syn­

chronized with a small phase-shift in the case of 

non-homogeneous oscillations. Only in the case 

where the values of parameters A and B differ in 

the medium and the inhomogeneity, we may expect 

quasiperiodic and chaotic behaviour. Different 

combinations of oscillatory and steady state solu­

tions which can exist in the medium and the in­

homogeneity are summarized in the Table I. Numer­

ical analysis of the case B in the Table (i.e. periodic 

solutions) has shown that only unstable solutions 

can occur for model (2). We shall not present any 

results for this alternative, as these are of theoretical 

interest only.

Homogeneous periodic solution PH bifurcates 

from the steady state solution (SH) under condition 

(10 a). The regions of existence and stability of 

homogeneous solutions are schematically shown in 

the bifurcation diagram B - D, (cf. Fig. 5). The 

periodic solution PH exists always when B > 1 + A2 

and it can be stable or unstable. It was found 

numerically that for higher values of B this solution 

is always stable.

Non-homogeneous periodic solutions PN| and 

PN2 arise via an induced Hopf bifurcation from 

SNj and SN2.

As they are induced by the oscillations occurring 

in the medium, they bifurcate for B > 1 + A2. 

Similarly as in the case of PH it holds that only 

bifurcations from the stable SN] and SN2 give 

stable periodic solutions (supercritical bifurcation), 

cf. Fig. 6. As all three periodic solutions PH, PN, 

and PN2 are generated through the same pair of
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Fig. 5. Regions of existence and stability of homogeneous 
solutions in a schematic bifurcation diagram; A = 2, 
q = 0.1, PH — periodic homogeneous solution, SH - sta­
tionary homogeneous solution.

Fig. 6. Schematic solution diagram with bifurcations of 
non-homogeneous periodic solutions. PN) and PN2 bi­
furcate via induced bifurcation at Bc = 1 + A2.

purely imaginary eigenvalues corresponding to 

Hopf bifurcation in the medium (see Eqn. (5 a)), 

they have the same period. The course of oscilla­

tions in the medium is the same for PH, PN] and 

PN2, i.e. X PH(/) = ^ PNl(/) = X PN2(0 (the same 

holds for K(/)); however, the periodic solutions 

differ in the time course of oscillations in the in­

homogeneity. When SH is unstable the bifurcated 

PH is also unstable and system must switch to one 

of the non-homogeneous states PN] or PN2. The 

phase shift between the oscillations in the medium 

and the inhomogeneity is constant and relatively 

small.

However, the amplitudes A of oscillations in 

the inhomogeneity /*xNl-2 = Xmax2 — ^ PNl-2 =

>max2 “ V’mn2 may differ substantially from the

amplitudes of oscillations in the medium. The 

periodic solutions are shown in Figs. 7 a, b (y ~ .x 

plot and -Y ~ t plot). PN2 has lower amplitude of 

oscillations than PH (and at the same time also 

lower than has the medium). The other non-homo- 

geneous solution PN] has far higher amplitude of 

the component .t (^PNl ^  ^xH)> while the amplitude 

v4PNl of the components is very low.

To obtain more complete picture of the be­

haviour of periodic solutions far from the bifurca­

tion point, an algorithm for continuation of a 

branch of (stable or unstable) periodic solutions in 

dependence on a characteristic parameter has been 

used [19]. We have chosen two paths, corresponding 

to line B = 6 and D\ = 0.5 in the B - D\ parametric 

plane (cf. Fig. 2) and continued periodic solutions 

PH, PN, and PN2 along these paths. The results are 

given in Figs. 8 and 9 in the form of the dependence 

of Ax on D\ and B, respectively. Let us consider 

dependence on D| shown in Fig. 8, first. The branch 

of PN] (oscillations with large amplitude in the 

inhomogeneity) is stable; the solution PN2 is stable 

only if solution PH is unstable. Both periodic solu­

tions, PH and PN2, exchange their stability at two 

transcritical branching points. The non-homo­

geneous solutions PN] and PN2 coalesce at the limit 

points.

Similar situation can be observed in Fig. 9, where 

dependence Ax on B is shown. Stable non-homo-

Fig. 7. Projection of periodic solutions into the phase plane 
x—y and time dependence of .v; A = 2, 5 = 6, <7 = 0.1, 
Z), =0.5.
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Fig. 8. Dependence of the amplitude of PH, PN, and PN2 
on Dx\ A = 2, B = 6, <7 = 0.1;-----  stable periodic solu­
tions; ---unstable periodic solutions.

Fig. 9. Dependence of the amplitude of PH, PN, and PN2
on B\ A = 2, £>i=0.5, <7 = 0.1; -----  stable solutions;
---unstable solutions.

geneous periodic solutions PN, and PN2 and un­

stable PH bifurcate at the critical point B =  1 + A2. 

The branch PN2 crosses transcritically the branch of 

PH with the exchange of stability. The amplitude 

increases sharply with the increasing value of B 

and the oscillations become relaxational (for relaxa­

tion oscillations regime in a single Brusselator cell 

see eg. [7]).

According to our computations both branches 

PN, and PN2 will not join for some value of B as 

might be expected. We have followed these solu­

tions in dependence on B for several values of Dx

and found no limit points for reasonably high values 

of B. The overall picture of existence of periodic 

solutions in B - Dx plane is (together with re­

presentative solution diagrams) shown in Fig. 10. 

All steady state solutions in the region B < 1 + A2 

(this condition admits some of them to be stable) 

are also shown, for comparison. Stability of solu­

tions in individual regions is given in Table II.

V. Evolution of Non-Homogeneous 

Periodic Solutions-Arrhythmias

We have discussed the existence of non-homo- 

geneous periodic solutions with amplitudes which 

can be considerably different from the amplitudes 

of homogeneous periodic solutions. The non-homo-

Fig. 10. Regions of existence of steady state solutions SH, 
SN, and SN2 for B < 1 + A2 and periodic solutions PH, 
PN, and PN2, schematically; for stability of solutions in 
regions A, B, C, D, E, F see Table II. Three possible types 
of a periodic solution diagram are schematically shown for 
cross-section 1, 2 and 3.

Table II. Stability of stationary and periodic solutions in 
the bifurcation diagram ß~Z), (see Fig. 10). S-stable, 
N-nonstable.

A B C

b > :1 +A2 PN, N S s
p n 2 S s N
PH s N S

D E F

B <  1I +A2 SN, N S S
SN2 S s N
SH S N S
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geneity thus can become a source of high ampli­

tude concentration pulses which can have effects on 

some other properties of the inhomogeneity-en- 

vironment system (i.e. the properties which have 

not been modelled by the present model). One of 

the important questions to answer is then the 

following one: What will be the behaviour of the 

system in the course of change of the parameter 

(i.e. evolution) and under what conditions the large 

amplitude oscillations in the inhomogeneity can 

settle in. These questions can be answered by a 

construction of appropriate evolution diagram. We 

have considered, as an example, the effect of the 

change of the size / of the inhomogeneity associated 

with the change of Z), in time (Z), is proportional to 

/-') on the oscillatory behaviour of the system. We 

have chosen the following time dependence of Z),:

D,(0 = ü|02±'/ t , D2 = D,/q. (11)

Here c is the time interval for doubling (or halving) 

of the diffusion coefficients. This exponential 

change has the property that relative changes of the 

parameter Z), are constant over the same time 

intervals.

Fig. 11. Evolution diagram — dependence of the amplitude 
of oscillations in the non-homogeneity on Z),. D\(t) is 
changed in time according to Eqn. (11) with c = 500. 
A = 2, B = 6, <7 = 0.1, noise level 0.05. a) D, increasing in 
time, b) Z), decreasing in time.

In the real biological system we have to consider 

effects of noise, i.e. concentration fluctuations. In 

our modelling studies we have subjected the right 

hand sides of the Eqn. (2) to an additional random 

noise with an amplitude ranging from 10~4 to 10-1.

The results for high noise level are shown in 

Figs. 11a, b. Both for Z), increasing (Fig. 11 a) and 

for Z), decreasing (Fig. lib ) large amplitude oscil­

lations of .X in the inhomogeneity settle in. Evolu­

tion of the behaviour of the system (2) with noise 

level close to 1(T4 is somewhat indeterminate. 

System sometimes jumps from PH to PN, but some­

times undergoes a smooth transition from PH to 

PN2. However, when the noise level is higher, the 

jumps from PH to PN, are preferred.

VI. Conclusions

Reaction-diffusion model of the formation of 

steady state (SN, 2) and oscillatory (PN,,2) inhomo­

geneities has been studied and the conditions of 

existence of non-homogeneous solutions have been 

determined. Construction of bifurcation, solution 

and evolution diagrams has been used to illustrate 

the effects of parameter variations on the behaviour 

of the model system. Choice of the simple reaction 

model - Brusselator - has enabled us to perform at 

least part of the analysis analytically. The results are 

not specific for this kinetic scheme; any scheme 

with proper feed-back mechanism will render 

similar results. The entire analysis can be also 

performed numerically [20].

Evolution of non-homogeneous oscillations in an 

originally homogeneous system caused by a change 

of permeability of the boundary of a certain region 

(e.g. by a change of /),) can be for example, taken 

as one of the possible mechanisms of generation of 

arrhythmias in excitable tissues.
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