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A detailed analytical and numerical analysis of a simple reaction-diffusion model of the source
of non-homogeneities and arrhythmias in an originally homogeneous reaction system is pre-
sented. Solution, bifurcation and evolution diagrams are used to describe the behaviour of the
model. It is shown that under certain conditions steady and/or oscillatory nonhomogeneous states
are the only stable solutions of the model. These phenomena are essentially not dependent on a
particular reaction kinetics. A possible relevance to some biological situations is discussed.

I. Introduction

Cell systems with intercellular communication
and properly defined set of chemical reactions
occurring in individual cells serve as widely studied
models of tissues and cell populations. Thus Turing
[1] has formulated well known reaction-diffusion
model of morphogenesis on the basis of coupled cell
systems with mutual mass exchange by diffusion.
Gmitro and Scriven [2] and Othmer and Scriven [3]
have studied various problems of stationary and
dynamic patterns in cellular networks and started a
renewal of interest in the theoretical aspects of
Turing’s theory. A model of chemical oscillators
confined to two boxes coupled by diffusion through
a semipermeable membrane has been used by
Tyson and Kauffman [4] to describe biochemical
control of the mitotic cycle in the acellular slime
mold Physarum polycephalum. The kinetic mechan-
ism of chemical oscillations was described by a set
of equations used by Prigogine and Lefever [5] in
the original study of two box diffusion problem
(Brusselator model). Tyson and Kauffman have
found that both homogeneous and inhomogeneous
(different in the two cells) steady states and limit
cycles can exist for specific values of reaction and
diffusion parameters. The authors have stressed that
the existence of inhomogeneous limit cycles is of
considerable theoretical significance in the under-
standing of cellular differentiation, which requires
both “a map”, to provide positional information
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and “a clock™ to coordinate activities of the cell
system in time [6]. Tyson [7] has used a special case
of coupling between two boxes, somewhat similar to
our model. Landahl and Licko [8] also studied
coupled cells with other kinetic systems.

Ashkenazi and Othmer [9] discussed the effects
of diffusion on the dynamics of biochemical oscil-
lators for general kinetic mechanism and for a
simplified model of glycolysis. They have found
that if the diffusion is sufficiently rapid, the popu-
lation of oscillators relaxes to a globally synchron-
ized oscillation, but if the diffusion is slow enough,
the synchronized oscillation can be unstable and a
nonuniform (inhomogeneous) steady state or an
asynchronous oscillation can arise. The authors have
stressed the significance of these results for models
of contact inhibition and for the formation of zona-
tion patterns. The effects of cell density and meta-
bolic flux between cells on the collective dynamics
of a cell population have been studied by Othmer
and Aldrige [10]. For diffusion coupled glycolysis
see also [21—23]. Shapiro and Horn [l1] have
studied analytical criteria relating statics and
dynamics of a reaction-diffusion cell system to the
algebraic structure of the underlying reaction
mechanism. Ross and coworkers [12] discussed co-
operative instability phenomena in arrays of catalytic
sites. They have also used Prigogine-Lefever Brus-
selator reaction mechanism and predicted condi-
tions necessary for occurrence of oscillations. Ex-
perimental results on oscillatory behaviour in the
system of two coupled cells with mutual mass ex-
change and the complex Belousov-Zhabotinski



I. Schreiber et al. - Impaired Diffusion Coupling-Source of Arrhythmia in Cell Systems 1171

reaction have been reported by Marek and Stuchl
[13]. Relative stability of coexisting steady states in
two coupled cells has been investigated recently
[14], and coexistence of various inhomogeneous
steady states in the hexagonal system of seven
reaction-diffusion cells has been established ex-
perimentally [15].

II.1. The Model

In this paper we study a special case of the
reaction-diffusion cell system, i.e. that of a single
compartment with diffusional coupling to a homo-
geneous environment. We assume that large number
of reaction cells with intensive mutual coupling
surround a single cell or a small assemblage of cells
with low (impaired) linear diffusion coupling to the
environmental cells. This model corresponds, for
example, to the appearance of an inhomogeneity in
otherwise homogeneous tissue, cf. [16]. We study
particularly an appearance of non-homogeneous
solutions in the cells with low coupling, assuming
that the transport of reaction components from the
inhomogeneity will not affect the course of concen-
trations in the homogeneous environment.

Let us assume that no spatial gradients of con-
centrations of characteristic reacting components
exist among the cells within a homogeneous envi-
ronment of volume V and also within an inhomo-
geneity of volume ¢. Then the system can be
described as two compartments with a mutual mass
exchange characterized by a mass transport coef-
ficients, with the rates of reactions dependent on
concentrations U= (U,,...,U,) and u= (u,,...,uy),
cf. Fig. I

: ]
U=j () +— K@~ 1), (la)

u =f(u) +LK(U——u). (1b)
"

Fig. 1. Two-compartment model of inhomogeneity.

Here U is an n-vector of concentrations in the
environment (medium), u is an n-vector of con-
centrations of the same chemical components in the
inhomogeneity, f includes kinetic relations and in-
lets of the reacting components, and K = {k;;j is a
diagonal n x n matrix of transport (diffusion) coef-
ficients.

If the volume V of the environmental compart-
ment is large and the mass transport relatively weak
(ie. 0 <k;;<1), then K/V — 0 and we obtain the
model equations in the form

U=f(U); (lc)

i =fu)+DU—u). (1d)
Here non-zero elements of the diagonal matrix D,
d;; = k;i;/v need not be necessarily small as both the
volume ¢ and k;; can be comparable.

The boundary between the compartments can be
formed, for example, by a semipermeable mem-
brane or by a scar in the tissue, etc.

Our objective is to follow the behaviour of the
solution of systems of Eqns. (1¢,d) in dependence
on the change of the matrix of transport coeffi-
cients D. The change in D can be, for example,
interpreted in the following way: the transport
coefficients d;; can be written in the form d;; =
ki/v =kiS/v ~ 17", i=1,...,n; here k| describes
the permeability of the boundary between the in-
homogeneity and the environment, S denotes the
inhomogeneity surface area, ¢ inhomogeneity
volume and / is a characteristic dimension (S/v is
proportional to 1//); the change in d;; can thus
originate either from the change of the character-
istic dimension / (caused e.g. by growth of the
inhomogeneity) or from the change in the perme-
ability k! of the boundary.

I1.2. Kinetic Mechanism

We have chosen Brusselator kinetic mechanism,
because it has been widely used in the studies of
dissipative structures, both steady state and oscil-
latory behaviour are possible in a single compart-
ment, and it is sufficiently simple to enable us to
obtain at least part of the results analytically. The
Egns. (1¢, d) are with the Brusselator mechanism in
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the form
X=A4A-B+1)X+XY;
Y=BX-X?Y; (2a)
Xx=A-B+1)x+x*y+D,(X=x):
y =Bx—x?y+D,(Y—y). (2b)

Here U= (X, Y) are concentrations of two chemical
components in the homogeneous medium, u = (x, )
concentrations in the inhomogeneity, 4, B reaction
parameters and D, and D, diffusion coefficients
for the components x and y, respectively. The ratio
D\/D, = g will be assumed constant.
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If three steady state solutions of Eqns. (2) exist, then
in addition to SH also a pair of nonhomogeneous
solutions SN, SN, exists. They are determined as:

XS =4;
YS =B/A;
x$2=[( D;B/(D,+1)A
+ V(D,B/(D,+ 1)A)?—4D,))/2;
¥a=(Dy+1)(4—x%,)/D,+B/A.

(3b)

IIL.1.1. Stability of Steady States

Using linearization of Eqns. (2) in the neighbour-
hood of SH and SN,, SN,, we obtain the charac-

£ (2) = det B-1-14 A? teristic equation in the form
Gl -B  —4—}
-(B+1)+2x5yS-D; -4 x5)?
I et N N "
B—-2x>y —(x*)"=D,— 4

III.1. Steady State Solutions

Steady state (S) and periodic (P) solutions which
occur for model (2) are summarized in Table I. One
or three steady state solutions can exist.

Single steady state solution is homogeneous (SH)
and it holds

Xo=x8=4,

YS=)S=B/4. (3a)

Four eigenvalues 4,,...,44 (roots of Eqn. (4))
determine stability of the steady state solution in
question. If the real parts of all eigenvalues are
negative, the steady state solution is stable. Two
eigenvalues 4, , are determined from the quadratic
equation

P4+ A—-B+1)i+A2=0. (5a)

Table . Possible steady-state and periodic solutions of the model (2).

Steady-state solutions Existence
homogeneous solution SH exists for all
A, B, D\, q
pair of non-homogeneous exists for
solutions SN, SN, 24V (D, + 1)
B> —r——
VD,

Periodic solutions

Stability
stable or
unstable

stable or
unstable

A: Synchronized oscillations in the medium and the inhomogeneity with zero or small constant

phase shift.

homogeneous solution PH exists for stable or
B>1+A4? unstable

pair of non-homogeneous necessary condition stable or

solutions PN, , PN, of existence B > 1 + A? unstable

B: Medium is in a steady state and inhomogeneity oscillates

a) Stable steady state in the medium and oscillations in the inhomogeneity have not been
found.

b) Unstable steady state in the medium and stable or unstable oscillations in the inhomo-
geneity exist (¢f. complex bifurcations in bifurcation diagram, Fig. 2). These solutions are
unstable as a whole.




I. Schreiber e al. - Impaired Diffusion Coupling-Source of Arrhythmia in Cell Systems

T o T

10

0

Fig. 2. Bifurcation diagram; real bifurcations;
————— complex bifurcations; A=2, ¢g=0.1, m—n, m—
number of steady state solutions, » — number of stable
steady state solutions.

These eigenvalues determine the stability of steady
states in the medium. The eigenvalues are the same
as are those for a single reaction cell. When
B> 1+ A% the steady state is unstable and stable
periodic solution bifurcates via Hopf bifurcation.
For B < 1 + 4% the steady states are stable.

The remaining two eigenvalues 4; 4 can be ob-
tained by solving another quadratic equation result-
ing from the second determinant in Eqn. (4). The
eigenvalues are determined for homogeneous solu-
tions from the relation.

J2+[A2—B+1+(D,+ Dy]i

+(D,+1)(4*+ Dy)— D,B=0. (5b)

These two eigenvalues will have negative real parts
if the conditions
. (Dy + 1) (4> + D»)
D,
B< 1+ A+ (D, + D, 6)
are satisfied simultaneously.

If the conditions (6) hold and B < 1+ 42 the
homogeneous solution SH is stable. Then the second
condition in (6) is satisfied always, while the first
condition is satisfied only for properly chosen
values of D; and D,. If it holds

D +1
—]D—(A2+D2)<B<1+A2, (7)
2

B

then the diffusion interaction causes instability of
SH even if B <1+ 4% Small perturbations of the
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system will then cause transition to a non-homo-
geneous solution (SN).

II1.1.2. Real Bifurcations from SH

The situation, where a branch of non-homo-
geneous solutions crosses a branch of homogeneous
solutions will occur if at least one of the eigenvalues
in (5) is zero (we shall call it “real bifurcation”),
e if
_ (D))
=D,

At the points determined by (8) either the branch of
solutions SN, or the branch SN, pass through the
branch of homogeneous solutions SH. Both branches
SN, and SN, join at the limit points (cf. Fig. 2). The
limit points satisfy the condition of zero discriminant
in Eqn. (3b),

B=24(D,+ 1)/} D, . 9)

Stability of non-homogeneous solutions SN; and
SN, can be determined, e.g., numerically from
Eqn. (4) after substitution from (3b). It has been
found that for B < | + 4% either unique and stable
SH solution exists or there are three steady states
SH, SN, , SN, and two of them are stable.

B (42 + D) . (8

II1.2. Hopf (Complex) Bifurcations

Bifurcation of periodic solutions from SH, SN,
and SN, takes place when a pair of complex con-
jugate eigenvalues crosses the imaginary axis (Hopf
or “complex bifurcation”).

Bifurcation from SH occurs if one of two condi-
tions is satisfied. The first one follows from Eqn. (5a)

B=1+ 4%, (10a)
and from Eqn. (5b) we obtain second condition

D, +1
B=1+A42+D,+D,, B<—

4%+ D,). (10b)
2
If condition (10a) is satisfied, homogeneous periodic
solution PH (X' =x, Y=y) appears. When D, and
D, are chosen in such a way that the condition (7) is
not satisfied, then PH bifurcates supercritically
from the stable SH and PH is stable. If the condi-
tion (7) 1s fulfilled, then in a certain range of values
of D,y and D, SH is unstable and therefore the
homogeneous periodic solution PH is also unstable.
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For B> 1+ 4> SH (and generally all steady state
solutions) is unstable (¢f. Eqn. (5a)) and thus peri-
odic solutions appearing through condition (10b)
are also unstable.

Complex bifurcations from non-homogeneous
solutions SN and SN, (secondary bifurcations) can
be of two types:

a) Direct bifurcations, caused by passing of a pair
of eigenvalues in the second determinant in Eqn. (4)
through imaginary axis. Concentrations in the homo-
geneous medium are in a steady state (which can be
either stable or unstable), and only the concentra-
tions x and y in the inhomogeneity oscillate. How-
ever, periodic solutions thus obtained for model (2)
are limited to small intervals of the values of D, and
D, and, moreover, are unstable.

b) Induced bifurcations; here concentration oscil-
lations in the inhomogeneity are induced by the
oscillations in the medium. These oscillations are
nonhomogeneous (X # x and Y =+ y) and bifurcate
from SN, and SN, when the condition (10a) is
satisfied. The solutions are stable if they branch
from stable SN, or SN, as this bifurcation is always
supercritical.

II1.3. Bifurcation, Solution and Evolution Diagrams

As a “bifurcation diagram” we denote the dia-
gram, where the points of real bifurcations and the
points of complex bifurcations are depicted in
dependence on one or more parameters. An ex-
ample of such a diagram is shown in Fig. 2. The
parameters 4 and ¢ = D,/D, are fixed at 4 =2 and
g =0.1, respectively, and the values of B and D,
are varied. The points of real bifurcation (cf. condi-
tions (8) and (9)) are here depicted in the parameter
plane B — D, as full lines. Hopf bifurcations from
SH (¢/. Egns. (10a, b)), numerically determined
Hopf bifurcations from SN, and SN,, and points
of induced bifurcations of periodic solutions are
all shown as dash-and-dotted lines. The choice
A=2 and ¢=0.1 satisfies the inequality (7) for
a certain region in the B — D, plane. (This is
important for bifurcation of induced oscillations,
see below.)

The curves of real and complex bifurcations
divide the plane B — D, into parts, where different
number of steady state and periodic solutions exist.
The first number written in the sectors of Fig. 2
denote the total number of steady state solutions
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and the second one denotes the number of stable
ones. When the curve of the complex bifurcations is
crossed, stability of certain solution can change;
when the curve of the real bifurcations is crossed,
both the stability and the total number of solutions
may change.

The condition for complex bifurcation given by
(10a) defines the straight line parallel to the axis D,
in Fig. 2. This line divides the plane B — D, into
two parts, in the upper part all steady state solutions
are unstable. The curve of complex bifurcations
given by (10b) ends at the curve of real bifurcations
defined by the condition (8), where the correspond-
ing eigenvalues have zero imaginary parts (the point
Vi in Fig. 2).

At this point starts one of the two curves of the
secondary bifurcations (the second curve of second-
ary bifurcations starts at the point V,, close to the
curve of the limit points).

The curve of induced complex bifurcations from
the non-homogeneous solutions SN, and SN, cor-
responds to the abscissa LP, LP, , coinciding with
the line B=1+ 4%

“Solution diagrams” — dependences of steady
state solutions (here characterized by values of x)
on the values of the parameter D, at constant values
of B are given in Figs. 3a, b, c¢. The curve of non-
homogeneous steady state solutions crosses the
curve of homogeneous steady state solutions at the
points of real bifurcation. When B < 1+ 4%, the
bifurcation is transcritical (c¢f. point BP in Fig. 3a)
and exchange of stability between SH and SN, or
SN, occurs. For B> | + 4% (cf. Fig. 3b, B=6) are
all steady state solutions unstable. At the limit
points (LP in Figs. 3), defined by condition (9),
coalesce the non-homogeneous solutions SN, and
SN,. The curves of non-homogeneous solutions
SN,. SN, are closed (c¢f. Figs. 3a, b, ¢). For suf-
ficiently low values of B is the curve of non-homo-
geneous solutions isolated, i.e. it does not intersect
the curve of homogeneous solutions (c¢f. Fig. 3¢).

From the point of view of formulation of the
models of inhomogeneities and, generally, in any
study of dissipative structures, it is most important
to study the evolution of steady state and periodic
solutions with a change of characteristic parameter
in time [18]. Dependence of a characteristic norm of
the solution on a changing parameter is then called
“evolution diagram”. The example of such an
evolution diagram is shown in Fig. 4, which cor-
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Fig. 3. Steady state solution diagram; stable solu-

tions, ---- unstable solutions, 4=2, ¢g=0.1. a) B=4,
b) B=6, ¢) B=2.65; BP — bifurcation point; LP — limit
point, CB — complex bifurcation point.
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Fig 4. Evolution diagram; 4=2, B=4, ¢=0.1; 1 — in-
crease of Dy; 2 — decrease of D, .
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responds to the situation shown in the solution
diagram 3a. We can observe hysteresis, i.e. different
course of the concentration in the inhomogeneity
when D, increases with time (curve 1) and when D,
decreases with time (curve 2). The decrease of D,
may, for example, correspond to the cell growth
(increase of linear dimension /, ¢f. section II). Iso-
lated solutions SN (cf. solution diagram 3 c¢) can be
reached in the course of evolution only if suf-
ficiently large perturbations around SH occur.

IV. Periodic Solutions

Periodic solutions of Eqn. (2) can be either homo-
geneous (X (1)=x(t), Y(1)=y(r)) or non-homo-
geneous. The uni-directional coupling in the model
(2) causes that oscillations in the medium and the
inhomogeneity will be always periodic and syn-
chronized with a small phase-shift in the case of
non-homogeneous oscillations. Only in the case
where the values of parameters 4 and B differ in
the medium and the inhomogeneity, we may expect
quasiperiodic and chaotic behaviour. Different
combinations of oscillatory and steady state solu-
tions which can exist in the medium and the in-
homogeneity are summarized in the Table I. Numer-
ical analysis of the case B in the Table (i.e. periodic
solutions) has shown that only unstable solutions
can occur for model (2). We shall not present any
results for this alternative, as these are of theoretical
interest only.

Homogeneous periodic solution PH bifurcates
from the steady state solution (SH) under condition
(10a). The regions of existence and stability of
homogeneous solutions are schematically shown in
the bifurcation diagram B — D, (c¢f. Fig.5). The
periodic solution PH exists always when B > 1 + A2
and it can be stable or unstable. It was found
numerically that for higher values of B this solution
is always stable.

Non-homogeneous periodic solutions PN, and
PN, arise via an induced Hopf bifurcation from
SN, and SN,.

As they are induced by the oscillations occurring
in the medium, they bifurcate for B> 1+ A%
Similarly as in the case of PH it holds that only
bifurcations from the stable SN, and SN, give
stable periodic solutions (supercritical bifurcation),
¢f. Fig. 6. As all three periodic solutions PH, PN,
and PN, are generated through the same pair of
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stoble PH

m
W

stable SH

B=1+A2

Dy
Fig. 5. Regions of existence and stability of homogeneous
solutions in a schematic bifurcation diagram; A =2,
q=0.1, PH — periodic homogeneous solution, SH — sta-
tionary homogeneous solution.

amplitude

Fig. 6. Schematic solution diagram with bifurcations of
non-homogeneous periodic solutions. PN, and PN, bi-
furcate via induced bifurcation at B, = 1 + 4°.

purely imaginary eigenvalues corresponding to
Hopf bifurcation in the medium (see Eqn. (5a)),
they have the same period. The course of oscilla-
tions in the medium is the same for PH, PN, and
PN,, ie. XPH()=X"™(t)=X"™(r) (the same
holds for Y(r)); however, the periodic solutions
differ in the time course of oscillations in the in-
homogeneity. When SH is unstable the bifurcated
PH is also unstable and system must switch to one
of the non-homogeneous states PN, or PN,. The
phase shift between the oscillations in the medium
and the inhomogeneity is constant and relatively
small.

However, the amplitudes 4 of oscillations in
the inhomogeneity APN:z= xPlrz— xPhaz 4PNz =

yPNiz PNz may  differ substantially from the
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amplitudes of oscillations in the medium. The
periodic solutions are shown in Figs. 7a, b (y ~ x
plot and x ~ ¢ plot). PN, has lower amplitude of
oscillations than PH (and at the same time also
lower than has the medium). The other non-homo-
geneous solution PN, has far higher amplitude of
the component x (45N+> APH) while the amplitude
A™r of the component y is very low.

To obtain more complete picture of the be-
haviour of periodic solutions far from the bifurca-
tion point, an algorithm for continuation of a
branch of (stable or unstable) periodic solutions in
dependence on a characteristic parameter has been
used [19]. We have chosen two paths, corresponding
to line B=6 and D, =0.5 in the B — D, parametric
plane (c¢f Fig.2) and continued periodic solutions
PH, PN, and PN, along these paths. The results are
given in Figs. 8 and 9 in the form of the dependence
of A4, on D, and B, respectively. Let us consider
dependence on D, shown in Fig. 8, first. The branch
of PN, (oscillations with large amplitude in the
inhomogeneity) is stable; the solution PN, is stable
only if solution PH is unstable. Both periodic solu-
tions, PH and PN,, exchange their stability at two
transcritical branching points. The non-homo-
geneous solutions PN; and PN, coalesce at the limit
points.

Similar situation can be observed in Fig. 9, where
dependence 4, on B is shown. Stable non-homo-

0

Fig. 7. Projection of periodic solutions into the phase plane
x—yp and time dependence of x; 4=2, B=6, ¢g=0.1,
D, =0.5.
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Fig. 8. Dependence of the amplitude of PH, PN, and PN,

onD;;A=2, B=6, q=0.1; stable periodic solu-
tions; - - - - unstable periodic solutions.

0

Fig. 9. Dependence of the amplitude of PH, PN, and PN,
on B; 4=2, D =0.5, ¢g=0.1; stable solutions;
- -- - unstable solutions.

geneous periodic solutions PN; and PN, and un-
stable PH bifurcate at the critical point B =1 + 42
The branch PN, crosses transcritically the branch of
PH with the exchange of stability. The amplitude
A1 increases sharply with the increasing value of B
and the oscillations become relaxational (for relaxa-
tion oscillations regime in a single Brusselator cell
see e.g. [7]).

According to our computations both branches
PN, and PN, will not join for some value of B as
might be expected. We have followed these solu-
tions in dependence on B for several values of D,
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and found no limit points for reasonably high values
of B. The overall picture of existence of periodic
solutions in B— D, plane is (together with re-
presentative solution diagrams) shown in Fig. 10.
All steady state solutions in the region B < 1 + A2
(this condition admits some of them to be stable)
are also shown, for comparison. Stability of solu-
tions in individual regions is given in Table II.

V. Evolution of Non-Homogeneous
Periodic Solutions-Arrhythmias

We have discussed the existence of non-homo-
geneous periodic solutions with amplitudes which
can be considerably different from the amplitudes
of homogeneous periodic solutions. The non-homo-

Fig. 10. Regions of existence of steady state solutions SH,
SN, and SN, for B <1+ 4% and periodic solutions PH,
PN, and PN,, schematically; for stability of solutions in
regions A, B, C, D, E, F see Table II. Three possible types
of a periodic solution diagram are schematically shown for
cross-section 1, 2 and 3.

Table II. Stability of stationary and periodic solutions in
the bifurcation diagram B~ D, (see Fig. 10). S-stable,
N-nonstable.

A B C

B>1+4 PN, N S S
PN, S S N

PH S N S

D E F

B<l+A4 SN, N S S
SN, S S N

SH S N S
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geneity thus can become a source of high ampli-
tude concentration pulses which can have effects on
some other properties of the inhomogeneity-en-
vironment system (i.e. the properties which have
not been modelled by the present model). One of
the important questions to answer is then the
following one: What will be the behaviour of the
system in the course of change of the parameter
(i.e. evolution) and under what conditions the large
amplitude oscillations in the inhomogeneity can
settle in. These questions can be answered by a
construction of appropriate evolution diagram. We
have considered, as an example, the effect of the
change of the size / of the inhomogeneity associated
with the change of D, in time (D, is proportional to
I~y on the oscillatory behaviour of the system. We
have chosen the following time dependence of D :

(11)

Here ¢ is the time interval for doubling (or halving)
of the diffusion coefficients. This exponential
change has the property that relative changes of the
parameter D; are constant over the same time
intervals.

D\(t)=D\g2%"¢, D,=D\/q.

A |9

Fig. 11. Evolution diagram — dependence of the amplitude
of oscillations in the non-homogeneity on D,. D,(r) is
changed in time according to Eqn. (I11) with ¢=1500.
A=2, B=6, g=0.1, noise level 0.05. a) D, increasing in
time, b) D, decreasing in time.
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In the real biological system we have to consider
effects of noise, i.e. concentration fluctuations. In
our modelling studies we have subjected the right
hand sides of the Eqn. (2) to an additional random
noise with an amplitude ranging from 10™* to 107"

The results for high noise level are shown in
Figs. 11a, b. Both for D, increasing (Fig. 11a) and
for D, decreasing (Fig. 11b) large amplitude oscil-
lations of x in the inhomogeneity settle in. Evolu-
tion of the behaviour of the system (2) with noise
level close to 107* is somewhat indeterminate.
System sometimes jumps from PH to PN, but some-
times undergoes a smooth transition from PH to
PN,. However, when the noise level is higher, the
jumps from PH to PN, are preferred.

VI. Conclusions

Reaction-diffusion model of the formation of
steady state (SN, ;) and oscillatory (PN, ;) inhomo-
geneities has been studied and the conditions of
existence of non-homogeneous solutions have been
determined. Construction of bifurcation, solution
and evolution diagrams has been used to illustrate
the effects of parameter variations on the behaviour
of the model system. Choice of the simple reaction
model — Brusselator — has enabled us to perform at
least part of the analysis analytically. The results are
not specific for this kinetic scheme; any scheme
with proper feed-back mechanism will render
similar results. The entire analysis can be also
performed numerically [20].

Evolution of non-homogeneous oscillations in an
originally homogeneous system caused by a change
of permeability of the boundary of a certain region
(e.g. by a change of D)) can be for example, taken
as one of the possible mechanisms of generation of
arrhythmias in excitable tissues.
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