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Accumulated experimental information is used to assess the possible significance o f  thermal 
diffusion to mass transport in living matter. Possible thermal gradients across membranes, 
a single living cell, and an ensemble o f such cells (e.g. an organ, tumor, etc.) are estimated. The 
corresponding model calculations, although not describing the biological process in detail, lead to 
conclusions about the possibilities for thermal diffusion as follows. Adequate thermal gradients 
to support substantial thermal diffusion could exist across biological membranes. Thermal 
diffusive flow would become significant when ordinary Fickian diffusion is sufficiently sup­
pressed, e.g. in more concentrated systems near critical points o f solution (i.e. near incipient 
phase separations). Conditions favorable to thermal diffusion functioning as a mechanism for 
active transport appear possible. Thermal diffusion appears much more important for transport 
into and out o f an ensemble o f cells than into or out o f a single cell. Such mass transport by 
thermal diffusion could assume a sizable magnitude for an ensemble o f cells with the dim ensions 
of an organ or a tumor.

Background

Noting that early experiments evidenced unusual 
precipitation and transport phenomena in protein 
solutions subjected to temperature gradients [ 1 ], the 
present work is an attempt to assess the significance 
of thermal diffusion to mass transport in living 
matter.

On the one hand, it is well known that a tem ­
perature gradient operating over a physical system 
(solid, liquid, or gaseous) generally tends to cause a 
flow of matter. This phenomenon, termed thermal 
diffusion or the Soret effect [2], can cause a con­
centration gradient to build up in an initially 
uniform mixture. If the temperature gradient acts 
for a sufficiently long time, a steady state concen­
tration distribution may be established, viz. the so- 
called Soret equilibrium. Both Soret equilibriums 
and moving boundaries, i.e. interfaces between 
solvent and solution and between solutions of differ­
ent concentrations, have been used to determine 
thermal diffusion coefficients [3]. Thermal diffusion 
has been applied to practical problems, e.g. the gas 
phase separation of isotopes [4] and the liquid
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phase separation of macromolecules [5, 6 ]. Con­
comitant convection, an essential factor in some 
separation schemes as for example in Clusius- 
Dickel type columns [4], often remains a significant 
factor even in so-called convectionless thermal 
diffusion cells [7-9].

On the other hand, it is well known that the 
production and removal of heat are im portant to the 
functioning of any living organism. A special and 
rather dramatic example is the case of an over­
stressed marathon runner where rectal temperatures 
can rise from a normal 38 °C to 40 °C and even
45 °C (before death) with large changes in body 
chemistry and organ damage [10]. Some living 
organisms adjust to the temperature of their sur­
roundings; others maintain a characteristic tem per­
ature within narrow limits independent of their sur­
roundings. Irrespective of this, however, there are 
known to be local temperature differences in the 
interior of the organism. Local tem perature gra­
dients could exist in the interior of a cell or an 
ensemble of cells and across membranes of various 
types and in connective tissues, all being situations 
in which the viscosity is high and hence where 
convective flow is impeded. One could also expect 
temperature gradients on the surface of various 
organs, e.g. heart, liver, etc., and where there is
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extensive exposure to the surroundings as in the 
case of eyes and lungs. The local spatial variation in 
temperature is probably primarily caused by m eta­
bolic reactions but other chemical and physical 
processes could contribute. The circulation of blood 
introduces certain temperature differences between 
the moving liquid and the surrounding structures. 
Mechanical energy is dissipated as heat in the 
vicinity of moving joints. Local infections, inflam ­
mations, and other disorders produce locally exag­
gerated temperature variations. Tumors, for ex­
ample, are known to have elevated temperatures 
and to cause temperature perturbations in their sur­
roundings [1 1 ].

Proximity to phase separation often exists in 
living matter, e.g. inside a living cell. With this in 
mind, it is worth noting that considerable enhance­
ment of the thermal diffusion effect has been 
observed under conditions of incipient phase separa­
tion in the vicinity of a critical point of mixing 
[6 , 12-17], This can be seen in the accompanying 
Figures 1 a —c. There has been some discussion 
about the possible reasons for such enhanced 
thermal diffusion. Some experiments showed a 
tendency for the apparent magnitude of the thermal 
diffusion coefficient, D', to increase considerably 
when a critical point of mixing was approached 
[12, 14, 18]. On the other hand, some more recent 
experiments [16, 17, 19] seem to indicate that D' 
does not vary very much and that the increased 
thermal diffusion effects, e.g. solute redistribution 
when approaching Soret equilibrium, are mostly 
due to an increase in the Soret coefficient, viz. 
a = D ' / D , caused by a decrease in the Fickian 
diffusion coefficient, D (cf. Fig. l a - c ) .  Thus, this 
Soret coefficient would increase considerably in the 
vicinity of a critical point, even if D' stays almost 
constant, since for thermodynamic reasons D tends 
to zero at a critical point [14, 16, 20-23].

The flow equation for undirectional, non-con- 
vective mass flow in the presence of a tem perature 
gradient for a two component system under quite 
general conditions can be written [3]

dc dT
(1)

Here J  is the solute flux (i.e. mass of solute trans­
ported through unit cross-sectional area in unit 
time), c is the solute concentration (i.e. mass per 
unit volume), T is the temperature, x is the posi­

tional coordinate, and D and D' are the already 
mentioned Fickian and thermal diffusion coeffi­
cients, respectively. In general J  is a function of 
both position, x, and time, t. With J  everywhere 
equal to zero, i.e. under steady state (Soret equi­
librium) conditions, integrating equation 1 between 
the positional limits .xa and x^ (which could cor­
respond to the positions of the inner and outer 
interfaces of a membrane along a coordinate normal 
to its surface), while assuming a constant tem per­
ature gradient T=d77d.v and constant coefficients 
D and D \  gives

—  e -<7T(-Vb--Va) (2)

Whether solute accumulates at the lower or the 
higher temperature depends on the system through 
the sign of a [24, 25], Macromolecular solutes 
usually accumulate at the lower temperature [6 , 7, 
15], i.e. <?b >  c.A if Th <  T.A (where r a and Tb cor­
respond to the positional coordinates x a and xb, 
respectively). This direction of solute redistribution 
implies D' >  0 since D >  0.

Assessment

In order to assess to what extent biological sys­
tems can maintain conditions required for signif­
icant thermal diffusion, a single living cell with heat 
removal at the surface by conduction only and an 
ensemble of cells, e.g. an organ of a tumor, again 
with heat removal at the surface by conduction only 
will be considered. The following calculations based 
on these models are not intended to describe the 
biological processes in detail but rather to give 
some numerical basis for estimating if conditions 
could exist under which thermal diffusion might 
play a role in biological transport.

The magnitudes of local tem perature differences 
in living organisms are not known in much detail, 
but the total variation of tem perature inside the 
human body, for instance, is to the order of 1 °C. 
Temperature differences of 0.5 to 1.0 °C have been 
measured in and around tumors [26]. Normal local 
temperature differences generally would probably 
be much smaller. In some recent measurements on 
enzyme systems of physically small dimensions by 
means of thermistors [27, 28] temperature variations 
circa 0.01 °C have been measured. The local tem­
perature variations in a living cell could well be 
even less. Even though these temperature differences
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are very small, they could, if operative over short 
enough distances, give rise to temperature gradients 
of sufficient magnitude to support significant 
thermal diffusive transport. A tem perature differ­
ence of only 0 . 0 0 0 1  °C across a 1 0 0  A thick m em ­
brane, e.g. a bimolecular, “black”, lipid type m em ­
brane, could cause a temperature gradient as high 
as 100 °C cm-1. From laboratory experiments on 
thermal diffusion of electrolytes [24, 29], nonelec­
trolytes [12, 13, 21], and macromolecules [7, 15] in 
solution, one knows that even tem perature gradients 
of only 1 to 10 °C cm - 1  can cause measurable mass 
transport (or a redistribution of solute in the Soret 
equilibrium case). Thus, even allowing for the 
possibility that some convection within the m em ­
brane would lower the effective tem perature gra­
dient, it seems reasonable to conclude that vanish­
ingly small temperature differences across biological 
membranes could still produce sufficient tem per­
ature gradients to support substantial thermal 
diffusion.

The possibility that thermal diffusion could func­
tion as a general mechanism for active biological 
transport, i.e. transport across a membrane from 
lower to higher concentration, is especially intriguing. 
To assess this possibility in terms of Eq. (2), Ta and 
Tb are selected so that cb >  ca. The primary task is 
then to investigate under what conditions and to 
what extent the ratio cb/ca might be greater than 
unity. Substituting

£ = -(7T(.Vb -.Y a) (3)

in Eq. (2) gives

Three parameters determine c and thereby also the 
ratio ct/ca, viz. er, relating to the chemical and 
physical properties of the system; r, the tem perature 
gradient imposed externally or by internally gener­
ated heat; Ax = x b — .xa, expressing the dimensional 
size of the heat and mass transfer path. The last two 
quantities can be combined for a not too extended 
system where, with A T  = Tb — T.d, x =  AT / A x  is a 
good approximation. Then

Z =  o A T ,  (5)

which leads to

— = e ~ aJT. (6 )
ca

Thus, as a z ( x b — .va) or a A T  varies from 0.001 
to 1 0 , cb/ca will vary from 1 . 0 0 1  to 2 . 2  x 1 0 4 and the 
corresponding indications of possible active trans­
port would vary from negligible to very large. The 
assessment now devolves to determining the maxi­
mum accessible values of o r (.vb -  x a) or a A T  .

The Soret coefficient, a, is usually much less than 
unity [7, 12, 13, 17, 29]. As already mentioned, 
however, it increases in the vicinity of the critical 
point of mixing; and so, values of the order of unity 
have been measured in solutions under these condi­
tions [12, 17], It could therefore be expected that in 
a set of experiments where the temperature is kept 
near the critical solution temperature, the Soret 
coefficient would show a marked increase as the 
concentration is increased towards the value cor­
responding to the critical point of mixing. There is 
some experimental evidence for this, viz. data 
for polystyrene in cyclohexane at 30 °C (Fig. la )  
indicate the Soret coefficient to be small at lower 
concentrations but to approximate 1 . 6  at higher 
concentrations where the system is almost in a state 
of incipient phase separation [17], This observation 
could be fairly general, i.e. one could expect the 
magnitude of the thermal diffusion effect to be 
quite different in dilute and in concentrated sys­
tems, the more so the closer the critical conditions 
are approached. In this way, even assuming that the 
thermal diffusion coefficient does not increase, it is 
possible to calculate a value of the Soret coefficient 
around 1 0  in the immediate vicinity of the critical 
point temperature, Tc, for the system nitrobenzene/ 
«-hexane [12, 14] as follows (with even higher values 
suggested for biological membranes).

Combining the thermodynamic observation that 
D — 0 at T = T C with the finding from experimental 
data that d D / d T  approximates 10~ 6 cm 2 s- 1  °C " ' in 
the vicinity of Tc gives D = 10_8 cm 2 s_1  for a tem ­
perature 0.01 °C above the critical. Further as­
suming that D' — 10- 7  cm 2 s_1 °C_1, which seems a 
rather conservative lower limit [16, 19], then gives a 
Soret coefficient, viz. a = D ' / D , equal to 10 °C -1. 
Values for D one and two orders of magnitude less 
than the just considered 1 0 - 8 cm 2 s- 1  have been 
determined for solutes in biological membranes 
[30-32], which is consistent with biological mem­
branes being systems near phase separation and 
which also would increase o to 1 0 0  and 1 0 0 0 , 
respectively. Assuming a rather small A T  of 0.001 °C 
and applying equation 5, values for a of 100 and
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1 0 0 0  give £ equal to 0 . 1  and 1 .0 , which by equa­
tion 4 and 6  then give ch/c a equal to 1.1 and 2.7. This 
assessment thus indicates that cb/ca around 2  could 
be accessible and therefore that thermal diffusion 
could be a significant mechanism for active bio­
logical transport. If higher values of D' were 
operative, e.g. if D' increases in the vicinity of Tc, 
much larger values for cb/ca would become acces­
sible. For instance, if the decrease in two orders of 
magnitude for D described above were matched

by D' increasing one order of magnitude, cb/ca 
would grow to 2.2 x 104.

Now consider a single living cell with a tem per­
ature gradient across its surrounding membrane, 
this gradient being maintained by a balance be­
tween (a) the rate of heat production within the cell 
and (b) the rate of heat removal from the outer 
surface of the cell by conduction only. An estimate 
for the rate of heat production can be made from 
data on the bacterial cells Escherichia coli [36], 
Production of protein constitutes about 90% of the 
energy balance of the cell. The average rate of 
production of protein molecules of 500 peptide 
bonds each is 1000 per second. With a bond energy 
of 174 kcal mol- 1  and assuming a reaction efficiency 
of 50%, the maximum average rate of energy pro­
duction in one cell is then to the order of 1 0 _13cal s-1. 
If the volume of the cell is taken to be 10" 12 cm3, the 
energy source strength in the cell interior is
0.1 cal s~' cirT3, i.e. 10~13/10-12. (If the entire energy 
production is assumed to occur in the mitochondria, 
the energy source strength there will be a thousand 
times greater or 1 0 0  cal s_l cm-3.)

In order to give a simplified assessment of the 
temperature gradient that could result from the 
above heat production combined with heat removal 
by conduction, the living cell will be approximated 
by a sphere of radius R with a homogeneous source 
strength A0. This sphere is in contact with a sur­
rounding medium having an energy source strength 
equal to zero and a heat conductivity K. Assuming 
spherical symmetry and no conductivity resistance at

M----------------------------------------------------------------------

Fig. l a - c .  Fig. la  shows experimental determinations [17] 
of the Soret coefficient, D 7D , for a sharp fraction o f polysty­
rene, PS (M ~  400000) in cyclohexane at various tempera­
tures (T= average experimental temperature) in a 10 °C in­
terval below the theta-temperature {0 «  3 4 0 C) for three 
different concentrations: o ~  0.002gcm -3, A~ 0.008gem -3, 
and □ ~  0.025 g cm-3. In separate diffusion experiments 
the ordinary free diffusion coefficient, D, was determined 
which allowed the thermal diffusion coefficient, D', to be 
calculated. Fig. 1 b shows D' as a function o f  T  for the 
lowest concentration ( ~  0.002 g cm-3). Fig. 1 c shows D' as 
a function of initial (approximately average) experimental 
concentration for a temperature around 30 ° C.

For the PS-fraction used, the critical point o f  mixing 
(maximum of phase equilibrium curve) in cyclohexane 
would be in the vicinity o f 27 °C and probably located at a 
concentration 0 .03 -0 .04  g cm -3. Although the data shown 
must be considered preliminary they seem to indicate that 
(1°) the Soret effect increases considerably in the vicinity 
of a critical point and that (2 °) the thermal diffusion  
coefficient shows similar tendencies but much less pro­
nounced.
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the surface of the sphere, the Fourier heat conduc­
tion equation can be integrated [37]. Giving the 
solution in terms of the radius vector, r, from the 
center of the sphere, one has for r >  R, i.e. in the 
surrounding medium:

dT A^R3 1
(10)

dr 3 K

It follows from Eq. (10) that r attains its largest 
value on the spherical surface, i.e.

Aq
^surface — ~^~K ^  " ( 11)

For a given energy source strength, Tsurface thus 
depends critically on the numerical values of K  
(the heat conductivity in the surrounding medium) 
and R (the size of the sphere). If the sphere, i.e. the 
cell, were surrounded by material, e.g. fat, with a 
heat conductivity similar to that of wax, which is 
very low, one finds for A0 =  10- 1  cal s_l cm - 3  and 
R =  10~4cm (viz. the approximate size of an Esche­
richia coli cell) Tsurface ~  0.3 deg cm-1. Considering a 
mitochondrion inside the cell, approximately the 
same value results if A0 =  100 cal s_l cm - 3  and 
R = 10~ 5 cm with water as the surrounding medium.

If structures larger than a single cell are con­
sidered much more favorable temperature gradients 
are obtained. Consider instead of a single cell an 
agglomerate of cells, e.g. an organ in the human 
body, a tumor, etc., surrounded by a medium 
having the same low heat conductivity as wax. 
Retaining the energy source strength of the single cell 
for the whole agglomerate, i.e. A0 =  10_1 cal s_l cm-3,

^surface ! ~  300 R . (12)

For a sphere, i.e. an organ or a tumor, with a radius 
R = 3 cm one obtains Tsurface ~  1000 °C cm -1, 
which is more than a thousand times greater than 
for a single cell. A conservative assumption that the 
effective wall thickness of such a cell ensemble is 
several orders of magnitude greater than the 1 0 _6cm

thickness of bimolecular lipid membranes, e.g. 
1 0 ~2 cm, produces a very favorable result in terms 
of the Soret equilibrium concentration redistribu­
tion. Putting er= 1, t =  100, and (.vb — .va) = 0.01 cm 
in Eq. (3) gives c = 1 and therefore cb/ca = 2.7 from 
Eq. (4). If o increases to only 2.3 while the other 
parameters remain constant, cb/ca becomes 1 0 , and 
with er= 10, cb/ca grows to 2.2 x lO 4. Thus, this 
assessment indicates that cell ensembles such as 
organs and tumors could produce a physical situa­
tion favorable to significant mass transport, and 
even active mass transport, by thermal diffusion.

Concluding Remarks

From the simple models considered and from the 
present general knowledge about thermal diffusion 
this assessment indicates that at least in certain 
structures thermal diffusion could be an important 
mechanism for transport in biological systems. 
Under conditions where the ordinary Fickian 
diffusive flow is sufficiently suppressed thermal 
diffusion could even be a mechanism for active 
mass transport, i.e. transport from a low to a high 
concentration. As such, it could act as regulator and 
“lock in” or “lock out” specific substances relative 
to certain organs or regions, thus causing a redis­
tribution of solutes across membranes at various 
levels of organization, and it could couple reactions 
occurring on opposite sides of such boundaries.
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