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To get further insight into the causes of differences between rat splenic and thymic cells with 
regard to DNA repair synthesis, scheduled (SDS) and unscheduled (U D S) D N A  synthesis as well 
as nucleoid sedimentation o f the cells were investigated under the influence o f ethidium  bromide 
(EB, 1 -1000  ng/ml). -  At concentrations of ^ 2 5  |ig /m l, EB inhibited SD S o f both cell species 
and UDS o f thymic cells; much higher additions o f  the drug (> 2 0 0 |ig /m l)  were needed to 
diminish UDS o f splenic cells, lower EB-concentrations ( 2 5 -  175 ng/m l) stimulating the U D S o f 
the splenic cell preparation. -  The sedimentation rate o f  splenic and thym ic cell nucleoids within 
neutral sucrose gradients had a biphasic dependence on the EB-concentrations. As compared to 
thymic cells however, preincubation of splenic cells with 5 0 -2 5 0  ng EB/ml resulted in a 
significant greater (1 5 -3 0  percent) sedimentation distance. — The results suggest that a relation­
ship exists between the stimulation o f UDS and the ability o f cells to establish a greater D N A  
compactness in the presence o f EB.

Ethidiumbromid (EB), 2,7-Diamino- 10-äthyl-9- 
phenyl-phenanthridinium-bromid, gehört zu den 
Substanzen, welche interkalierend an die Desoxy­
ribonukleinsäure (DNA) gebunden werden. In 
höheren Konzentrationen (Bereich etwa 10-1000 ng/ 
ml, entsprechend ~  25 (imol bis 2,5 mmol/1) hemmt 
EB daher u.a. die Zellteilung, die DNA-Synthese 
und den enzymatischen DNA-Abbau (Übersicht 
z. B. bei Neidle, I.e. [1]). Auch die Wechselwirkung 
anderer Agentien, wie jene von Bleomycin [2] oder 
m-Diammindichlorplatin (II) [3], mit der DNA 
wird durch EB beeinflußt.

Obwohl EB gegenüber Organismen unterschied­
licher Entwicklungshöhe, wie Viren, Bakterien, 
Protozoen und Säugetierzellen, wirksam sein kann, 
machen einige Eigenschaften — wie bevorzugter 
Angriff an zirkulär geschlossener DNA, Hemmung 
der reversen Transkriptase und Anreicherung in 
Mikroorganismen -  die Substanz zu einem Chemo­
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therapeutikum bei verschiedenen mikrobiellen In­
fektionen [1, 4]. Die besondere Empfindlichkeit von 
Trypanosomen gegenüber EB wird auf erhöhte 
Membranpermeabilität dieser Protozoengattung für 
die Substanz zurückgeführt (ibid.). — In der mole­
kularen Biologie wird EB u. a. zur Färbung von 
Nukleinsäuren und Chromatin sowie als bioche­
misches Hilfsmittel bei Struktur- und Funktions­
analysen von DNA- bzw. Chromatin-Präparationen 
verwendet ([3, 5] u. a.).

Frühere Untersuchungen hatten deutliche Unter­
schiede zwischen Thymus- und Milzzellen der Ratte 
hinsichtlich ihrer in vitro gemessenen Reparatur­
synthese nach Einwirkung von Ultraviolettlicht, 
Röntgenstrahlen und Methylmethansulfonat, einem 
biologischen Alkylans, ergeben [6]. Eine Erklärung 
für dieses Phänomen steht bisher aus. Da in diesem 
Zusammenhang auch zellspezifische Unterschiede 
in der superhelikalen DNA-Struktur eine wesent­
liche Rolle spielen können, wurde vorliegend der 
Einfluß von EB auf die semikonservative (SDS) und 
die unprogrammierte (engl, „unscheduled“, UDS) 
DNA-Synthese sowie auf das Sedimentationsver­
halten von „Nucleoiden“ von Thymus- und Milz­
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zellen der Ratte untersucht. SDS und UDS wurden 
als Ausdruck funktioneller, die Nucleoid-Sedimen- 
tation als Kriterium struktureller DNA-Integrität 
gewertet. -  Die als „Nucleoide“ bezeichneten und 
im wesentlichen aus DNA, RNA und Spuren von 
Protein zusammengesetzten Partikel entstehen, so­
bald Zellen bei hohen Salzkonzentrationen mit 
einem nicht-ionischen Detergens lysiert werden 
[7-9]. Die Nucleoide eines gemeinsamen Zell­
aufschlusses bilden dabei ein gelartiges Aggregat, 
das bei Zentrifugation im Saccharosegradienten als 
einheitliche Bande sedimentiert und — etwa über 
seine Fluoreszenz in Gegenwart von EB — sichtbar 
gemacht werden kann. Gegenwärtig wird davon 
ausgegangen, daß das Sedimentationsverhalten der 
Nucleoide — innerhalb der von der Methode vor­
gegebenen Grenzen und Fehlermöglichkeiten [9] -  
superhelikale Strukturen der DNA widerspiegelt 
[9-12].

Material und Methodik

Die Versuche wurden an weiblichen Wistar- 
Ratten aus institutseigener, konventioneller Zucht 
durchgeführt. Das Körpergewicht der etwa 3 Monate 
alten Tiere betrug 200-250 g. Den Tieren standen 
Altromin ® — Standardfutter und Wasser ad libitum 
zur Verfügung.

Die Gewinnung der Zellen folgte den bereits 
früher beschriebenen laborüblichen Bedingungen 
[6, 13].

Als Maß der SD S  diente der Einbau von 
[3H]Methylthymidin (dT-3H, wäßrige Lösung mit 
2% Äthanolzusatz, 1,5-2,2 TBq/mmol, Amersham 
Buchler, TRK418) in die mit Perchlorsäure (PCA, 
Endkonzentration 1 mol/1) fällbare Fraktion. Die 
Ansätze — bestehend aus 1,0 ml Zellsuspension 
(3x 106- 5  x  106 Zellen/ml Ca2+- und Mg2+-freier 
Hanks’-Lösung) und 50 |il einer wäßrigen dT-3H- 
Lösung (46,25 kBq) -  wurden 45 -9 0  min aerob bei 
37 °C inkubiert.

Ausdruck der UDS war die in Gegenwart von 
Hydroxyhamstoff (HU) (10~2 mol/1) gemessene 
Markierung der mit PCA fällbaren Fraktion durch 
dT-3H. Die Ansätze enthielten 1,0 ml Zellsuspension 
(wie im SDS-Versuch) und (im Unterschied zum 
SDS-Versuch) 100 |il dT-3H-Lösung entsprechend 
einer Aktivität von 185 kBq. Die Inkubation dauerte 
90-120 min.

Nach Abschluß der Inkubationen wurde das mit 
PCA gefällte Sediment in 5 ml kalter PCA (1 mol/1) 
gewaschen, anschließend in 2 ml PCA (ebenfalls
1 mol/1) resuspendiert und 20 min einer Tem peratur 
von 95 °C ausgesetzt. Nach 30-minütiger Abküh­
lung bei -2 5  °C wurde das Reaktionsgemisch 
erneut zentrifugiert (10 min bei 900 xg ). Die 3H- 
Aktivität des Überstandes wurde flüssigszintilla- 
tionsspektrometrisch gemessen und auf die Extink­
tionsdifferenz AE  (260-280 nm) -  als Ausdruck 
der Zellzahl — bezogen (weitere Einzelheiten s. 
unter I.e. [13]).

Die Nucleoidsedimentation folgte im wesentlichen 
der von Weniger [9] beschriebenen Methode: In 
Zellulosenitrat-Röhrchen wurden auf einen linearen 
Saccharose-Gradienten (15-30% , Füllungsstand der 
Röhrchen 9 mm, gemessen vom oberen Rand) zu­
nächst 0,4 ml Lyselösung (Zusammensetzung:
1,5 mol NaCl, 0,1 mol EDTA x N a2 — Äthylendi- 
amintetraessigsäure-Natriumsalz — und 7 g Triton- 
X-100 in 1 Liter dest. Wasser, Einstellung auf 
pH 8,0 mit 1 mol/1 HCl) und anschließend 0,3 ml 
Zellsuspension (1 0 4 Zellen pro jj.1) aufgetragen. — 
Die Saccharoselösung enthielt NaCl (1,5 mol/1), 
Tris-Puffer (0,02 mol/1), EDTA x N a2 (1 mmol/1) 
sowie EB (30|ig/ml). -  Nach dem Aufträgen wur­
den die Zellen bei Zimmertemperatur 45 min der 
Lyselösung ausgesetzt und anschließend 90-120 min 
bei 20 °C und 25000 U/m in (Beckman -  U ltra­
zentrifuge L2, Rotor SW 41) zentrifugiert. Form 
und Lage der Nucleoid-Banden wurden aufgrund 
der Fluoreszens des EB-Komplexes im UV-Licht 
bestimmt.

EB (Serva21238) wurde in den erforderlichen 
Konzentrationen in Hanks’-Medium gelöst und den 
Zellansätzen in Volumina von jeweils 100 ul zuge­
setzt. Als Kontrollansätze dienten Zellsuspensionen, 
welche das gleiche Volumen des EB-freien Lösungs­
mittels erhalten hatten. Unter leichtem Schütteln 
wurden die Proben nunmehr 30 min bei 37 °C 
inkubiert. Nach anschließendem Ersatz des EB- 
haltigen Mediums durch EB-freie Hanks’ Lösung 
erfolgte der Zusatz von dT-3H zur Messung der 
DNA-Synthese bzw. die Lyse zur Nucleoidsedi­
mentation. -  Jeder EB-Konzentrationswert wurde in 
mindestens zwei Versuchsreihen dreifach belegt.

In einigen Versuchen wurde die EB-Wirkung auf 
die durch UV-Licht stimulierte UDS von Thymus- 
und Milzzellen gemessen: Jeweils drei Parallelan­
sätze wurden zu diesem Zweck nach Vorinkubation



mit der gewünschten EB-Konzentration (und noch 
im EB-haltigen Medium) gemeinsam auf eisge­
kühlten Petrischalen ausgebreitet (ca. 0,04 m l/cm 2) 
und mit einer UV-Lampe (Philips TUV 30 W, 
Leistung 4 J irT 2 s~1) bestrahlt. Bei Kombination 
von EB mit UV-Bestrahlung stellte sich somit die 
Reihenfolge der Arbeitsgänge wie folgt dar: Vor­
inkubation mit EB -> UV-Bestrahlung -*■ M edium ­
wechsel -» UDS-Markierungsansatz -*• Messung der 
dT-3H-Aktivität im PCA-Präzipitat.

Ergebnisse und Diskussion

dT-3H-Einbau (SD S und UDS)

Modellvorstellungen, welche prim är für isolierte 
native Nukleinsäurepräparate, z. B. für Phagen­
DNA [2], gelten [1, 5], mittlerweile aber auch auf 
komplexere Systeme -  wie Säugetierzellen -  über­
tragen wurden [14], besagen, daß EB in verhältnis­
mäßig niedrigen Konzentrationen (Größenordnung: 
Einige |ig bzw. nmol pro ml, abhängig vom EB- 
Nukleinsäurebasen-Verhältnis) zunächst zu einer 
Entwindung der negativ gedrehten DNA-Helix im 
Bereich der Interkalation führt [1, 2, 5, 14]. Die damit 
verbundene Relaxation kann die Verfügbarkeit der 
DNA für bestimmte chemische Agentien, vor allem 
aber auch als Matrize für Replikations- und Trans­
kriptionsvorgänge verbessern [1, 14-16], Als b io­
chemische Konsequenz ist in letzterem Fall mit 
einer Erhöhung der dT-3H-Einbaurate in die DNA 
zu rechnen. Tatsächlich konnten beispielsweise 
Mattem und Painter [14] an permeabilisierten Ova- 
rialzellen des Chinesischen Hamsters den Einbau 
von dTMP-3H in die säurefällbare Fraktion durch 
EB in Konzentrationen von 1 -1 0  (ig/ml -  maximal 
zweifach -  erhöhen. Konzentrationen unter 1 (ig/ml 
hatten keinen Einfluß. -  In zellfreien Ansätzen mit 
tierischen und pflanzlichen DNA-Polymerasen, 
einer Escherichia co/z-Polymerase und einer reversen 
Transkriptase blieb der stimulierende Einfluß von 
EB (Konzentrationsbereich hier 1 -  100 pmol/1) auf 
das bakterielle Enzym sowie auf die pflanzlichen 
Polymerasen beschränkt [ 16].

In Konzentrationen von 1 -  50 (ig/ml hatte EB 
vorliegend keinen signifikanten Einfluß auf den 
replikativen dT-3H-Einbau in die DNA von Milz- 
und Thymuszellen (Abb. 1). — Die nicht durch UV- 
Licht stimulierte UDS wurde im Unterschied zur 
SDS in Milzzellen durch EB-Konzentrationen von
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Abb. I. Semikonservativer dT-3H-Einbau in Milz-(CZl)- 
bzw. Thymus(!i£il)-Zellen der Ratte in vitro unter dem  
Einfluß von EB konzentrationsabhängig. Ordinate: D urch­
schnittliche Markierungsrate in Prozent, bezogen auf die 
nicht mit EB versetzten Kontrollansätze mit Standard­
abweichung.

25-175 |ig/ml signifikant um 10-25% erhöht. Der 
unprogrammierte dT-3H-Einbau nahm demgegen­
über in Thymuszellen nach Vorbehandlung mit EB 
konzentrationsproportional ab (Abb. 2).

Da die intrazelluläre Reparatur durch sekundäre 
DNA-Schädigung vor und während des R eparatur­
ablaufs beeinflußt werden kann [17], wurde auch 
die durch UV-Licht (16-64 J m -2) ausgelöste UDS 
von Milz- und Thymuszellen unter dem Einfluß von 
EB untersucht. Dabei ergab sich zunächst, daß der 
unmittelbar nach Exposition gemessene unprogram ­
mierte dT-3H-Einbau — ohne zellspezifische Beson­
derheiten -  durch EB-Konzentrationen von 0,05 — 
50 (ig/ml um rund 10% gehemmt wird. Noch höhere 
Substanzkonzentrationen führten -  analog dem 
Verhalten der SDS (Abb. 1) — zu einem konzentra­
tionsabhängig fortschreitenden Abfall der dT-3H- 
Einbaurate (keine eigene Darstellung). -  U nter 
Berücksichtigung der nicht durch UV-Licht stim u­
lierten UDS besteht somit in dem o. a. Konzen­
trationsbereich ein bisher nicht beschriebener, 
signifikanter Unterschied zwischen Milz- und 
Thymuszellen.

Bei höheren EB-Konzentrationen (j£ 25 (ig/ml: 
UDS der Thymuszellen, ^  50 (ig/ml: SDS von 
Thymus- und Milzzellen, ^  200 (ig/ml: UDS der 
Milzzellen) wurde hier wie in vergleichbaren Unter-
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Abb. 2. Unprogrammierter dT-3H-Einbau in M ilz-(«----- • )
bzw. Thymus (x-----x)-Zellen der Ratte in vitro unter dem
Einfluß von EB konzentrationsabhängig. Ordinate: Durch­
schnittliche Markierungsrate in Prozent, bezogen auf die 
nicht mit EB versetzten Kontrollansätze (=  residuale 
dT-3H-Einbaurate in Gegenwart von 10“2  mol HU pro 1) 
mit Standardabweichung.

suchungen (18-20) eine mit der Konzentration 
zunehmende starke Hemmung des dT-3H-Einbaus 
beobachtet (Abbn. 1 und 2). -  Eine Erklärung für 
die Hemmung der DNA-Synthese durch hohe EB- 
Konzentrationen wird darin gesehen, daß es in 
diesem Bereich zu einer Verdrehung der DNA- 
Helix in positiver Richtung ([1, 2, 14] u. a.) und 
somit zu einer neuerlichen Verfestigung des Chro­
matin-Komplexes kommt, was die Verfügbarkeit 
der DNA für Replikations- und Transkriptionsvor­
gänge wiederum vermindert [1]. Die vorliegenden 
Untersuchungen verdeutlichen allerdings, daß der 
Übergang einer potentiell nachweisbaren DNA- 
Synthesesteigerung in die stets eintretende Syn­
thesehemmung nach Vorbehandlung mit EB von 
den Versuchsbedingungen, insbesondere von der 
untersuchten Zellart und dem in Frage stehenden 
Synthesetyp abhängig ist.

Quantitative Unterschiede zwischen den Ergeb­
nissen verschiedener Untersuchergruppen können 
durch Verwendung primär nicht vergleichbarer 
Zell- bzw. Synthese-Systeme -  etwa permeabili- 
sierter Zellen bzw. zellfreier Systeme dort [14, 16], 
ganzer Zellen hier — bedingt sein. Die gleiche Über­

legung gilt auch, wenn zellspezifische Unterschiede 
unter im übrigen identischen Versuchsbedingungen 
(Aktivierung der UDS in Milz-, nicht dagegen in 
Thymuszellen) erklärt werden sollen. Vor allem ist 
an die Möglichkeit zu denken, daß sich verschiedene 
Zellspezies in ihrer Fähigkeit unterscheiden, ange­
botene Substanzen (hier: dT-3H, HU und EB) auf­
zunehmen, intrazellulär zu verteilen und zu meta- 
bolisieren. Setzt man einmal Unterschiede der 
genannten Art für die hier untersuchten Zellarten 
als gegeben voraus, hätte man zellspezifische 
Besonderheiten hinsichtlich der (relativen) DNA- 
Markierungsrate der Kontrollen sowie der Kon- 
zentrations-Wirkungs-Kurven für die Hemmung der 
SDS durch HU und EB erwarten müssen, was nicht 
der Fall war ([6, 13, 20], Abb. 1). Abgesehen davon 
hätten sich bei zellspezifisch divergenter EB-Auf- 
nahme die in Abb. 2 dargestellten Unterschiede 
zwischen M lz- und Thymuszellen innerhalb des 
gewählten — großen -  EB-Konzentrationsbereichs 
ausgleichen müssen, was ebenfalls nicht zutraf.

Nucleoidsedimentation

Die Sedimentationsuntersuchungen erbrachten 
signifikante Unterschiede zwischen Milz- und 
Thymuszellen nach Vorbehandlung mit EB: In 
Übereinstimmung mit den Befunden von Mattern 
und Painter [14] an EB-vorbehandelten Ovarial- 
zellen des Chinesischen Hamsters (Nucleoidsedi­
mentation im EB-freien Gradienten) und in Ana­
logie zu den Ergebnissen von Autoren, welche den 
Einfluß der EB-Konzentration des Saccharosegra­
dienten auf die Sedimentation von Nucleoiden EB- 
frei inkubierter Zellen untersucht hatten (so 1. c. 
[11, 21-22]), wurde deutlich, daß die Sedimen­
tationsstrecke im unteren EB-Konzentrationsbereich 
abnimmt und jenseits eines — von den genannten 
Autoren bei etwa l - 6 |ig/ml angenommenen — 
„Äquivalenzpunktes“ (Bereich maximaler DNA- 
Relaxation) konzentrationsabhängig bis auf Werte 
zunimmt, die beträchtlich — vorliegend etwa 30% -  
über den Kontrollen liegen können (Abb. 3). Ver­
gleicht man nun unter den gewählten Bedingungen 
die Sedimentation von Milz- und Thymuszell- 
nucleoiden nach Vorbehandlung der Zellen mit EB, 
so fällt auf, daß erstere in einem EB-Konzentra­
tionsbereich von 50-250  |ig/m l (maximal um 
100jig/ml) eine signifikant (15-30% ) längere 
Sedimentationsstrecke durchlaufen als Thymuszell-
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Abb. 3. Sedimentation von Milz-(IZD) bzw. 
Thymus(lIS)-Nucleoiden nach Vorbehand­
lung der Zellen mit EB konzentrationsab­
hängig. Ordinate: Relative Sedimentations­
strecke in Prozent, bezogen auf die nicht mit 
EB versetzten Kontrollansätze.

EB- Konzentration [yug/ml]

nucleoide (Abb. 3), woraus auf stärkere „Kom­
paktierung“ der Milzzell-DNA nach Einwirkung 
von EB geschlossen werden kann [12].

dT^H-Einbau und Nucleoidsedimentation 
im Vergleich

Die Gegenüberstellung der Diagramme von 
Abb. 2 und Abb. 3 verdeutlicht für vergleichbare 
EB-Konzentrationen die Fähigkeit von Milzzellen 
zur Aktivierung der UDS und zu stärkerer DNA- 
Kompaktierung. -  DNA-Reparatursynthese gilt im 
allgemeinen als Zeichen vorausgegangener DNA- 
Schädigung [23]. Zumindest für Strangbrüche — sie 
können unmittelbar und/oder m ittelbar (etwa durch 
Endonucleasen) ausgelöst werden — lieferten die 
vorliegenden Untersuchungen keinen Anhaltspunkt, 
da man in diesem Fall eine mit der EB-Konzen- 
tration zunehmende Verminderung der Nucleoid­
sedimentation unter die entsprechenden Kontroll- 
werte hätte erwarten müssen (Abb. 3). — Auch mit 
der Methode der „Alkalischen Elution“ [24] konnte 
für die untersuchten Zellarten kein signifikanter 
Einfluß von EB (Konzentrationsbereich 10-1000 
(ig/ml) im Sinne der Bildung von DNA-Bruch- 
stücken nachgewiesen werden [25]. Dies kann be­
deuten, daß sich -  entsprechend der von anderen 
Autoren gegebenen Deutung [1, 14-16] -  die Ver­

fügbarkeit der DNA für Reparaturenzyme (z. B. die 
DNA-Polymerase ß) bei Helixrelaxation unter dem 
Einfluß von EB zellspezifisch unterschiedlich er­
höht. -  Von Bedeutung ist in diesem Zusam m en­
hang auch die Feststellung, daß der stimulierende 
Einfluß von EB auf die UDS von Milzzellen nicht 
mehr nachweisbar ist oder gar in eine Hem m wir­
kung übergeht, wenn „echte“ Reparaturvorgänge 
(hier: nach Einwirkung von UV-Licht) ablaufen 
bzw. wenn die superhelikale Struktur der DNA 
bereits so weit verändert ist, daß sich eine — 
theoretisch denkbare -  Verbesserung der DNA- 
Verfügbarkeit für Reparaturenzyme nicht m ehr 
auswirken kann.

Zusammengefaßt erlauben die hier mitgeteilten 
Ergebnisse folgende Schlüsse: 1. Durch EB-Vor­
behandlung und Nucleoidsedimentation lassen sich 
orientierende Aussagen über zellspezifische Be­
sonderheiten im Verhalten der superhelikalen 
DNA-Struktur gewinnen. — 2. Hinsichtlich ihrer 
Reaktion gegenüber EB bestehen zwischen Thymus- 
und Milzzellen der Ratte deutliche physikalisch 
(Nucleoidsedimentation) und biochemisch (Repara­
tursynthese) faßbare Unterschiede. -  3. Die Frage, 
inwieweit sich die spezifische Fähigkeit von Zellen 
zur Änderung ihrer superhelikalen DNA-Struktur 
zell- und schädigungsspezifisch auf den Ablauf von 
Reparaturvorgängen auswirkt, bleibt Gegenstand 
weiterer Untersuchungen.
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